• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 35
  • 13
  • 4
  • Tagged with
  • 114
  • 76
  • 61
  • 59
  • 48
  • 28
  • 26
  • 20
  • 16
  • 16
  • 16
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Modelling and Quantification of scRNA-seq Experiments and the Transcriptome Dynamics of the Cell Cycle

Laurentino Schwabe, Daniel 26 October 2022 (has links)
In dieser Dissertation modellieren und analysieren wir scRNA-Seq-Daten, um Mechanismen, die biologischen Prozessen zugrunde liegen, zu verstehen In scRNA-Seq-Experimenten wird biologisches Rauschen mit technischem Rauschen vermischt. Mittels eines vereinfachten scRNA-Seq-Modells leiten wir eine analytische Verteilungsfunktion für die beobachtete Verteilung unter Kenntnis einer Ausgangsverteilung her. Charakteristiken und sogar ein allgemeines Moment der Ausgangsverteilung können aus der beobachteten Verteilung berechnet werden. Unsere Formeln stellen den Ausgangspunkt zur Quantifizierung von Zellvariabilität dar. Wir haben eine vollständig lineare Analyse von Transkriptomdaten entwickelt, die zeigt, dass sich Zellen während des Zellzyklus auf einer ebenen zirkulären Trajektorie im Transkriptomraum bewegen. In immortalisierten Zelllinien stellen wir fest, dass die Transkriptomdynamiken des Zellzyklus hauptsächlich unabhängig von den Dynamiken anderer Zellprozesse stattfinden. Unser Algorithmus (“Revelio”) bringt eine einfache Methode mit sich, um unsynchronisierte Zellen nach der Zeit zu ordnen und ermöglicht das exakte Entfernen von Zellzykluseffekten. Die Form der Zellzyklus-Trajektorie zeigt, dass der Zellzyklus sich dazu entwickelt hat, Änderungen der transkriptionellen Aktivitäten und der damit verbundenen regulativen Anstrengungen zu minimieren. Dieses Konstruktionsprinzip könnte auch für andere Prozesse relevant sein. Durch die Verwendung von metabolischer Molekülmarkierung erweitern wir Modelle zur mRNA-Kinetik, um dynamische mRNA-Ratenparameter für Transkription, Splicing und Degradation zu erhalten und die Lösungen auf den Zellzyklus anzuwenden. Wir zeigen, dass unser Modell zwischen Genen mit ähnlicher Genexpression aber unterschiedlicher Genregulation unterscheiden kann. Zwar enthalten scRNA-Seq-Daten aktuell noch zu viel technisches Rauschen, unser Modell wird jedoch für das zukünftige Errechnen von dynamischen mRNA-Ratenparametern von großem Nutzen sein. / In this dissertation, we model and analyse scRNA-seq data to understand mechanisms underlying biological processes. In scRNA-seq experiments, biological noise gets convoluted with various sources of technical noise. With the help of a simplified scRNA-seq model, we derive an analytical probability distribution function for the observed output distribution given a true input distribution. We find that characteristics and even general moments of the input distribution can be calculated from the output distribution. Our formulas are a starting point for the quantification of cell-to-cell variability. We developed a fully linear analysis of transcriptome data which reveals that cells move along a planar circular trajectory in transcriptome space during the cell cycle. Additionally, we find in immortalized cell lines that cell cycle transcriptome dynamics occur largely independently from other cellular processes. Our algorithm (“Revelio”) offers a simple method to order unsynchronized cells in time and enables the precise removal of cell cycle effects from the data. The shape of the cell cycle trajectory indicates that the cell cycle has evolved to minimize changes of transcriptional activity and their related regulatory efforts. This design principle may be of relevance to other cellular processes. By considering metabolic labelling, we extend existing mRNA kinetic models to obtain dynamic mRNA rate parameters for transcription, splicing and degradation and apply our solutions to the cell cycle. We can distinguish genes with similar expression values but different gene regulation strategies. While current scRNA-seq data contains too much technical noise, the model will be of great value for inferring dynamic mRNA rate parameters in future research.
112

Generierung und Analyse EMA/E2F-6-defizienter Mäuse

Pohlers, Michael 12 December 2005 (has links)
The present study focuses on the biological functions of the transcription factor EMA/E2F-6, a member of the E2F-family of transcription factors that play an import role in cell cycle progression, differentiation and apoptosis. EMA/E2F-6 functions as a transcriptional repressor by recruiting a large protein complex, that includes polycomb group proteins, to specific target genes in order to silence their expression. To identify the biological functions of EMA/E2F-6 mice lacking this factor were developed and subsequently analysed. EMA/E2F6-/- mice are born with the expected frequency, are fertile and develop normally up to 18 months of age. Then about 25 % of these mice develop a paralysis of the hind limbs and present with a severe primary myelination defect of the spinal cord (and in part of peripheral nerves, too) that is accompanied by a massive infiltration of macrophages. Importantly, the histological findings were also detected in EMA/E2F-6-/- mice lacking clinical symptoms albeit to a lesser extend. With respect to EMA/E2F-6 association with polycomb group (Pc-G) proteins there were no significant findings such as skeletal transformations. In addition, only a mild proliferation defect of T-lymphocytes was observed that, in a more severe form, is typical for Pc-G mutations in the mice. Surprisingly, embryonic fibroblasts from EMA/E2F-6-/- mice have no obvious cell cycle defects. Accordingly, gene expression profiles showed that classical E2F target genes were normally regulated in these cells. However, EMA/E2F-6-/- fibroblasts ubiquitously express genes like alpha-tubulin-3 and -7 that are normally expressed in a strictly testis-specific manner. All EMA/E2F-6-dependent target genes identified contain a conserved E2F-binding site in their promoters that is required both for EMA/E2F-6 binding and regulation.
113

Regulation des Zellzyklus durch das Maus- und Ratten-Zytomegalievirus

Neuwirth, Anke 29 November 2005 (has links)
Das humane Zytomegalievirus, ist ein ubiquitäres Pathogen, welches akute und persistierende Infektionen verursacht. Bei immunsupprimierten Patienten kann das Virus zu schweren Erkrankungen, wie Hepatitis, Pneumonie und bei kongenitaler Infektion außerdem zu Schädigungen des ZNS führen. HCMV blockiert die Zellproliferation durch einen Arrest am G1/S-Übergang des Zellzyklus, andererseits wird aber gleichzeitig die Expression S-Phase spezifischer Gene aktiviert. Teilweise lässt sich dies durch eine Virus vermittelte spezifische Inhibition der zellulären DNA-Repliaktion sowie durch eine massive Deregulation Zyklin-assozzierter Kinasen erklären. Zellkulturexperimente deuten darauf hin, dass die Zellzyklusalterationen wichtige Voraussetzungen für eine erfolgreiche Virusreplikation darstellen. Es ist hingegen nicht bekannt, welche Relevanz sie für die Virusvermehrung in vivo und das pathologische Erscheinungsbild im erkrankten Organismus besitzen. Diese Frage kann nur in einem Tiermodell sinnvoll angegangen werden. Aufgrund der Wirtsspezifität der Zytomegalieviren, ist man dabei auf die Verwendung der jeweiligen artspezifischen CMV angewiesen. Murines CMV (MCMV) und Ratten-CMV (RCMV) sind dabei die bislang bestuntersuchtesten Systeme. Das Anliegen dieser Arbeit war es zu prüfen, inwieweit die für HCMV beschriebenen Zellzyklusregulationen in MCMV und RCMV auf Zellkulturbasis konserviert sind. Es konnte gezeigt werden, dass sowohl RCMV als auch MCMV einen antiproliferativen Effekt auf infizierte Zellen besitzen und ebenso wie HCMV zu einem Zellzyklusarrest führen. Nager-Zytomegalieviren können Zellen auch in der G2-Phase arretieren und in dieser Zellzyklusphase auch effizient replizieren können. Die Infektion mit Nager-CMV führt außerdem auf breiter Basis zur Veränderung Zyklin-assoziierter Kinaseaktivitäten. Allen Zytomegalieviren ist die Hemmung der zellulären DNA-Synthese am G1/S-Übergang durch die Inhibition des replication licensing, dem Beginn der DNA-Synthese gemein. Durch diese vergleichende Studie wird einerseits deutlich, dass wesentliche funktionelle Schritte der Zellzyklusregulation zwischen den Zytomegalieviren konserviert sind, aber andererseits die zu Grunde liegenden molekularen Mechanismen zum Teil deutlich variieren. / Human Cytomegalovirus (HCMV) is an ubiquitous, species-specific beta-herpesvirus that, like other herpesviruses, can establish lifelong latency following primary infection. HCMV infection becomes virulent only in immunocompromised patients such as premature infants, transplant recipients and AIDS patients where the virus causes severe disease like hepatitis, pneumonitis and retinitis. Congenital infection produces birth defects, most commonly hearing loss. To develop rational-based strategies for prevention and treatment of HCMV infection, it is crucial to understand the interactions between the virus and its host cell that support the establishment and progression of the virus replicative cycle. In general, herpesviruses are known to replicate most efficiently in the absence of cellular DNA synthesis. What is more, they have evolved mechanisms to avoid the cell´s DNA replication phase by blocking cell cycle progression outside S phase. HCMV has been shown to specifically inhibit the onset of cellular DNA synthesis resulting in cells arrested with a G1 DNA content. Towards a better understanding of CMV-mediated cell cycle alterations in vivo, we tested murine and rat CMV (MCMV/RCMV), being common animal models for CMV infection, for their influence on the host cell cycle. It was found that both MCMV and RCMV exhibit a strong anti-proliferative capacity on immortalised and primary embryonic fibroblasts after lytic infection. This results from specific cell cycle blocks in G1 and G2 as demonstrated by flow cytometry analysis. The G1 arrest is at least in part caused by a specific inhibition of cellular DNA synthesis and involves both the formation and activation of the cells’ DNA replication machinery. Interestingly, and in contrast to HCMV, the replicative cycle of rodent CMVs started from G2 as efficiently as from G1. Whilst the cell cycle arrest is accompanied by a broad induction of cyclin-cdk2 and cyclin-cdk1 activity, cyclin D1-cdk4/6 activity is selectively suppressed in MCMV and RCMV infected cells. Thus, given that both rodent and human CMVs are anti-proliferative and arrest cell cycle progression we found a surprising divergence of some of the underlying mechanisms. Therefore, any question put forward to a rodent CMV model involving cell cycle regulation has to be well defined in order to extrapolate meaningful information for the human system.
114

Modulation of human antigen-specific T cell response - therapeutic implications for multiple sclerosis

Waiczies, Sonia 22 September 2003 (has links)
Multiple Sklerose (MS) ist eine heterogene Krankheit des Zentralnervensystems, deren pathologische Mechanismen noch nicht vollständig aufgeklärt sind. Die gegenwärtige Hypothese ist, daß pro-inflammatorische T-Zellen entscheidend an der Pathogenese der MS beteiligt sind. Man geht davon aus, daß eine Fehlregulation der T-Zell-Kontrolle, möglicherweise bedingt durch ein Ungleichgewicht an Apoptose-regulierenden Molekülen, dabei eine Rolle spielt. Tatsächlich zielen therapeutische Strategien darauf ab, T-Zell-Aktivierung, Proliferation und Produktion von Zytokinen zu verringern, oder T-Zell-Eliminierung zu fördern. Diese Arbeit sollte zum einen die Bedeutung regulatorischer Faktoren klären, die für das überleben der T-Zellen von MS-Patienten verantwortlich sind. Zum anderen sollten die antiproliferative oder Apoptose-fördende Wirkung potentiell therapeutisch wirksamer Moleküle untersucht werden. Eine eingeschränkte Regulation der autoreaktiven T-Zellen durch Apoptose in der Peripherie und im ZNS trägt möglicherweise zur Pathophysiologie der MS bei. Als Schlüsselfaktoren der Regulation von Apoptose wurden Mitglieder der Bcl-2-Familie in MS-Patienten und Probanden untersucht. Diese Faktoren wurden in Relation zu der Suszeptibilität der T-Zellen gegenüber aktivierungsinduziertem Zelltod (sog. Activation-induced cell death oder AICD) überprüft. Um die in-vivo-Elimination der Antigen-reaktiven T-Zellen nachzuahmen, wurde ein in-vitro-Modell des AICD mit repetitiver T-Zell-Stimulation verwendet. Tatsächlich zeigten polyklonale T-Zellen von MS-Patienten eine verringerte Suszeptibilität für AICD, nachgewiesen sowohl durch verminderte Caspaseaktivtät (p=0.013) als auch durch DNA-Fragmentierung (p=0.0071). Weiter wurden höhere Spiegel des Proteins Bcl-XL in den Immunzellen von MS-Patienten mit Immunoblotting gemessen (p=0.014). Eine inverse Korrelation zwischen der Expression an Bcl-XL und der Empfindlichkeit der T-Zellen gegenüber AICD steht in Übereinstimmung mit vorhergehenden Daten bezüglich der Bedeutung dieses Proteins für die Apoptose-Resistenz von T-Zellen. Es wurde bereits gezeigt, daß dieses Molekül die Ausprägung der experimentell-autoimmun Enzephalomyelitis, des Tiermodells der MS, verstärkt. Zusammen mit den erhöhten Bcl-XL-Werten bei MS-Patienten, ergeben sich nun Perspektiven für einen therapeutischen Ansatz. Abgesehen von dem Konzept die apoptotische Eliminierung von T-Zellen zu unterstützen, streben gegenwärtige therapeutische Strategien an, die Aktivierung und weitere Proliferation der schädlichen T-Zellen zu hemmen. Basierend auf klinischer Erfahrung mit eher unselektiven Therapien, ist es ein therapeutisches Ziel, neue immunomodulatorische Substanzen mit besserer Selektivität zu finden, um das Nutzen/Risiko-Verhältnis zu maximieren. Aus diesem Grund wurden zwei unterschiedliche Substanzen untersucht die beide den Zellzyklus beeinflussen. Als erster Kandidat wurde der kürzlich entdeckte Todesligand TRAIL (engl.: TNF-related apoptosis inducing ligand) aus der TNF/NGF-Familie untersucht, da diesem bereits T-Zell-regulatorische Funktionen zugeschrieben worden waren, humane Antigen-spezifische T-Zellen jedoch resistent gegenüber TRAIL-induzierter Apoptose sind. Der zweite Kandidat mit potenziell therapeutischer Wirkung bei MS ist Atorvastatin, ein HMG-CoA-Reduktase-Hemmer, der bereits als Lipidsenker bei Patienten eingesetzt wird. Um die Hypothese zu überprüfen, daß diese Substanzen T-Zell-Rezeptor-Signale beeinflussen können, wurden humane Antigen-spezifische T-Zell-Linien von MS-Patienten und gesunden Probanden eingesetzt. Diese wurden hinsichtlich T-Helfer-Phänotyp und Peptid-Spezifität charakterisiert. Eine Behandlung mit TRAIL führte zur Hemmung der Proliferation in unterschiedlichem Ausmaß (6.2% - 63.8%). Atorvastatin hemmte in Abhängigkeit von der Dosis ebenso die Proliferation Antigen-spezifischer T-Zellen. Beide Substanzen wirkten antiproliferativ unabhängig von der Antigenpräsentation, aufgrund ihrer Fähigkeit, die Proliferation in Abwesenheit von professionellen Antigen-präsentierenden Zellen zu vermindern. Diese Eigenschaft weißt auf einen direkten Einfluß auf die T-Zell-Funktion hin. Die TRAIL-induzierte Hypoproliferation war assoziiert mit einer Herunterregulation der Zyklin-abhängigen Kinase CDK4 (engl.: cyclin dependent kinase 4), einem Schlüsselenzym für die nach T-Zell-Rezeptor-Stimulation einsetzende Transition von der G1- zur S-Phase des Zellzyklus. Inkubation mit Atorvastatin induzierte ebenso eine Verminderung von CDK4, begleitet von einer Erhöhung von p27Kip1. Die Atorvastatin-vermittelte Proliferations- und Zellzyklus-Blockade konnte durch Mevalonat rückgängig gemacht werden. Mevalonat ist ein Zwischenprodukt des HMG-CoA-Reduktaseweges. Atorvastatin scheint demnach einen direkten Einfluß auf diese Enzymkaskade zu haben, der wichtig für die Isoprenylierung von GTPase-Proteinen der Rho-Familie ist. T-Zell-Rezeptor-Stimulation führt zur Freisetzung von Kalzium aus intrazellulären Speichern und nachfolgend zur Öffnung transmembranöser Kalzium-Kanäle (sog. calcium release-activated calcium oder CRAC-Kanäle), die eine für die T-Zellaktivierung notwendige und anhaltende Erhöhung der intrazellulären Kalzium-Konzentration hervorruft. Nach Behandlung mit TRAIL wurde eine konzentrationsabhängige Inhibition des Einstroms extrazellulärer Kalzium-Ionen durch die CRAC-Kanäle beobachtet. Dies wurde mit löslichem TRAIL-Rezeptor-Fusionsprotein, einem TRAIL-Antagonisten, rückgängig gemacht. Die Blockade von Kalzium-abhängigen Aktivierungssignalen stellt damit möglicherweise einen primären immunregulatorischen Mechanismus für diese Todesliganden dar. Jedoch wurde keine Auswirkung von Atorvastatin auf die T-Zellaktivierung beobachtet, da der Einstrom von extrazellulärem Kalzium nicht beeinflußt wurde. Während Studien zum TRAIL-vermittelten Einfluß auf die T-Zell-Aktivierung und dem Zellzyklus erst in der präklinischen Phase sind, werden Statine, die ebenfalls den Zellzyklus beeinflussen, bereits in der Therapie anderer Erkrankungen angewand. Darüber hinaus werden derzeit bereits klinische Studien mit Statinen zur MS-Therapie durchgeführt. Weitere Untersuchungen zu den detaillierten Mechanismen antiproliferativer Substanzen mit potenziellem therapeutischen Effekt in der MS ermöglichen die Entwicklung von selektiveren immunomodulatorischen Therapien mit höherem therapeutischen Nutzen für MS-Patienten. / Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system whose pathological mechanisms are far from completely understood. The current hypothesis is that pro-inflammatory T cells are orchestrating the pathogenesis of this condition. It is considered that a dysregulation in T cell control to be involved, with an imbalance in apoptosis-regulating molecules possibly playing a role. In fact, therapeutic strategies aim to reduce T cell activation, proliferation and cytokine production or to promote T cell elimination. The focus of this thesis was to identify the role of regulatory molecules for T cell survival in the immune pathogenesis of MS, and to investigate antiproliferative or apoptosis-promoting effects on T cells by potential therapeutic molecules. A limitation in the apoptotic regulation of autoreactive T cells in the periphery and in the CNS may contribute to the pathophysiology of MS. As key regulators of apoptosis, members of the Bcl-2 family were investigated in both MS patients and controls. These factors were examined in relation to the susceptibility of T cells, from both groups, towards activation-induced cell death (AICD). To mimic the in vivo elimination of antigen-reactive T cells, an in vitro model of AICD involving repetitive T cell receptor mediated stimulation was utilized. In fact, polyclonal T cells from MS patients showed a decreased susceptibility to undergo AICD as shown by both caspase activity (p=0.013) and DNA fragmentation (p=0.0071) assays. Furthermore, Bcl-XL protein levels, as measured by immunoblotting, were increased in the peripheral immune cells of MS patients (p=0.014). An inverse correlation observed between Bcl-XL levels and susceptibility of T cells to undergo AICD is in line with previous data on the significance of this anti-apoptotic protein in T cell resistance. Since this molecule has already been shown to aggravate the outcome of experimental autoimmune encephalitis, the animal model for MS, the observation of elevated Bcl-XL levels in patients offers perspectives towards therapeutic manipulation in MS. Apart from promoting apoptotic elimination, current therapeutic strategies aim at inhibiting activation and further proliferation of potentially harmful T cells. Based on clinical experience with rather non-selective therapies that promote T cell elimination, a therapeutic goal is to identify newer immunomodulatory substances with better selectivity in order to maximize the therapy's benefit to risk ratio. Thus, two different substances, both interfering with cell cycle regulation, were investigated. The first candidate was the recently discovered member of the TNF/NGF family of death ligands, TNF-related apoptosis inducing ligand (TRAIL) since it has been reported to have immunoregulatory functions and since human antigen-specific T cells were shown to be resistant towards apoptosis induction by this ligand. The second candidate drug with potential in MS therapy is atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibitor and lipid-lowering drug, already indicated for anomalies in lipid metabolism. In order to prove the hypothesis that these substances interfere with T cell receptor signaling, human antigen-specific T cell lines from both MS patients and controls, characterized with regards to T helper differentiation and peptide specificity, were employed. Exogenous treatment of TRAIL resulted in an inhibition in proliferation, albeit to varying degrees (6.2% - 63.8% inhibition). Atorvastatin also inhibited proliferation of antigen-specific T cell lines in a dose-dependent manner. Both compounds induced hypoproliferation independently of antigen presentation, as shown by their ability to block T cell proliferation in response to direct T cell receptor engagement, thus indicating a direct influence on T cell function. The growth inhibition by TRAIL was associated with a downregulation of the cell cycle regulator CDK4, indicative of an inhibition of cell cycle progression at the G1/S transition. Incubating T cells with atorvastatin also induced a downregulation of CDK4 expression, which was accompanied by an upregulation of p27Kip1 expression. The atorvastatin-mediated inhibition in proliferation and cell cycle progression could be reversed by mevalonate, an intermediate product of the HMG-CoA reductase pathway, suggesting a direct involvement of atorvastatin in this pathway, necessary for the isoprenylation of small GTPase proteins of the Rho family. Utilizing a thapsigargin model of calcium influx to activate the same calcium-release activated calcium (CRAC) channels as T cell receptor-stimulation by antigen, an inhibition in calcium influx could be observed on pre-incubating T cells with TRAIL. Co-incubating with human recombinant TRAIL receptor 2 fusion protein, a competitive antagonist for TRAIL, reversed this inhibition. A direct influence on calcium influx is indicative of an influence of TRAIL on the activation status of human T cells. Therefore, TRAIL directly inhibits activation of these cells via blockade of calcium influx. However, no impact of atorvastatin on early T cell activation was observed, since calcium influx was unaffected. While TRAIL-mediated interference with T cell activation and further cell cycle progression is still in the pre-clinical phase, statins, which have also been shown here to interfere with the T cell cycle, are already employed in the clinic for other ailments. In fact, clinical trials are currently being undertaken with this group of drugs for MS. Further studies on detailed mechanisms of antiproliferative substances effective in MS will allow the development of highly selective immunomodulatory agents with increased beneficial profile as MS therapy.

Page generated in 0.0459 seconds