Spelling suggestions: "subject:"[PHYS:MPHY] fhysics/amathematical fhysics"" "subject:"[PHYS:MPHY] fhysics/amathematical ephysics""
41 |
Renormalisation des théories de champs non commutativesVignes-Tourneret, Fabien 14 September 2006 (has links) (PDF)
La physique des très hautes énergies nécessite une description cohérente des quatre forces fondamentales. La géométrie non commutative représente un cadre mathématique prometteur qui a déjà permis d'unifier la relativité générale et le modèle standard, au niveau classique, grâce au principe de l'action spectrale. L'étude des théories quantiques de champs sur des espaces non commutatifs est une première étape vers la quantification de ce modèle. Celles-ci ne sont pas simplement obtenues en récrivant les théories commutatives sur des espaces non commutatifs. En effet, ces tentatives ont révélé un nouveau type de divergences, appelé mélange ultraviolet/infrarouge, qui rend ces modèles non renormalisables. H. Grosse et R. Wulkenhaar ont montré, sur un exemple, qu'une modification du propagateur restaure la renormalisabilité. L'étude de la généralisation de cette méthode est le cadre de cette thèse. Nous avons ainsi étudié deux modèles sur espace de Moyal qui ont permis de préciser certains aspects des théories non commutatives. En espace x, la principale difficulté technique est due aux oscillations de l'interaction. Nous avons donc généralisé les résultats de T. Filk afin d'exploiter au mieux ces oscillations. Nous avons pu ainsi distinguer deux types de mélange, renormalisable ou pas. Nous avons aussi mis en lumière la notion d'orientabilité : le modèle de Gross-Neveu non commutatif orientable est renormalisable sans modification du propagateur. L'adaptation de l'analyse multi-échelles à la base matricielle a souligné l'importance du graphe dual et représente un premier pas vers une formulation des théories de champs indépendante de l'espace sous-jacent.
|
42 |
Propriétés statistiques des systèmes dynamiques déterministes et aléatoiresMarie, Philippe 02 December 2009 (has links) (PDF)
La première partie de la thèse concerne l'étude d'une classe particulière de systèmes dynamiques déterministes présentant deux problèmes: la présence de points fixes neutres et des points de discontinuité auxquels la dérivée n'est pas bornée. La seconde partie traite des systèmes dynamiques aléatoires: du problème de la récurrence dans ce type de système puis de leur application à la modélisation de petites perturbations stochastiques. On traite en particulier du problème de la stabilité stochastique.
|
43 |
Quantification conformément équivariante des fibrés supercotangentsMichel, Jean-Philippe 16 October 2009 (has links) (PDF)
Cette thèse comprend deux parties. <br /> 1. Quantification conformément équivariante des fibrés supercotangents.<br /> Nous entendons par quantification du fibré supercotangent d'une variété M, un isomorphisme linéaire entre l'espace des superfonctions polynomiales en les fibres et l'espace des opérateurs différentiels spinoriels sur M. Nous montrons qu'il existe une unique quantification pour les fibrés supercotangents des variétés (M,g) conformément plates, qui soit équivariante sous l'action des transformations conformes de M. <br /> 2. Sur la géométrie projective du supercercle: une construction unifiée des super birapport et dérivée schwarzienne.<br /> Nous établissons, pour trois supergroupes agissant sur le supercercle, une correspondance entre le supergroupe, les invariants caractéristiques de son action et le 1-cocycle associé, définissant ainsi trois géométries sur le supercercle. L'invariant de la géométrie projective est le super birapport, son 1-cocycle associé étant la dérivée schwarzienne.
|
44 |
Interactions effectives et théorie de champs moyens: de la matière nucléaire aux noyauxCochet, B. 07 July 2005 (has links) (PDF)
Un des principaux axes de recherche en physique nucléaire est l'étude des noyaux dans des conditions extrêmes en spin et isospin. Les méthodes microscopiques de type champ moyen, parmi lesquelles la méthode Hartree-Fock basée sur l'approximation des particules indépendantes, sont un des outils les plus performants pour les prédictions théoriques dans ce domaine. Représentant les interactions entre les nucléons dans le noyau, les forces effectives nucléon-nucléon sont le principal ingrédient de ces théories microscopiques auto-cohérentes. L'interaction de Skyrme est une force de portée nulle permettant de construire de manière relativement simple le champ moyen.<br />Bien que cette force ait, sous sa forme standard actuelle, un pouvoir prédictif reconnu, il apparaît aujourd'hui nécessaire d'enrichir sa paramétrisation afin d'améliorer la description des noyaux, en particulier des noyaux exotiques. Ceci peut notamment se faire en introduisant une dépendance en densité plus complexe que dans les paramétrisations standards.<br />L'ajustement des paramètres de cette force peut s'appuyer sur les approches microscopiques de type Brueckner-Hartree-Fock qui n'utilisent comme ingrédient que l'interaction nucléon-nucléon nue. La construction des paramètres de la force va désormais reposer sur des contraintes plus fondamentales. L'étude de la matière nucléaire nous conduit à inclure dans notre procédure d'ajustement une meilleure prise en compte des instabilités de spin et d'isospin, libérant en même temps le domaine d'évolution possible des paramètres de la force lors de leurs ajustements. L'ensemble de ces éléments permet de décrire les propriétés de la matière nucléaire et des noyaux en s'appuyant sur des bases plus solides.
|
45 |
Action spectrale en géométrie non commutative et calcul pseudodifférentiel globalLevy, Cyril 12 June 2009 (has links) (PDF)
Dans cette thèse nous avons étudié certaines questions mathématiques associées au calcul de l'action spectrale de Chamseddine--Connes sur des exemples fondamentaux de triplets spectraux non commutatifs, tels que le tore non commutatif et la 3-sphère quantique SUq(2). Nous avons montré en particulier qu'une condition diophantienne sur la matrice de déformation du tore est cruciale pour obtenir l'action spectrale en tenant compte de la structure réelle. <br />Nous avons aussi étudié la question de l'existence de tadpoles (termes linéaires par rapport au potentiel de jauge de la fluctuation de la métrique dans l'action spectrale) dans le cas de géométries riemanniennes commutatives, et la construction d'un calcul pseudodifférentiel global permettant une généralisation du produit de Weyl--Moyal sur un espace de Schwartz de sections rapidement décroissantes sur un fibré cotangent d'une variété avec linéarisation.
|
46 |
Théorie des cordes, compactifications avec flux et géométrie généraliséeCassani, Davide 04 June 2009 (has links) (PDF)
Cette thèse porte sur les compactifications en théorie des cordes et supergravité. Nous étudions les réductions dimensionnelles des théories de type II sur des fonds avec flux, en utilisant les techniques de la géométrie géneralisée de Hitchin.<br />Nous commençons en introduisant les outils mathématiques nécessaires: nous nous concentrons sur les structures SU(3)xSU(3) sur le fibré tangent généralisé T+T*, en analysant leurs déformations. Ensuite nous étudions la théorie de supergravité N=2 quadri-dimensionnelle définie par réduction des théories de type II sur des fonds à structure SU(3)xSU(3) avec flux généraux de NSNS et RR: nous établissons l'action bosonique complète, et nous montrons comment ces donées sont reliées au formalisme de la géométrie généralisée sur T+T*. En particulier, nous trouvons une expression géométrique pour le potentiel scalaire N=2. Puis nous nous concentrons sur les relations entre les descriptions à 10d et à 4d des fonds supersymétriques avec flux: nous dérivons les conditions de vide N=1 dans la théorie N=2 à 4d, ainsi que dans sa troncation N=1, et nous prouvons une correspondance précise avec les équations qui caractérisent les vides N=1 au niveau dix-dimensionnel. Nous terminons en présentant des exemples concrets, basés sur des espaces quotients avec structure SU(3). Nous établissons pour ces espaces la cohérence de la troncation basée sur l'invariance gauche, et nous explorons les vides de la théorie associée, en prenant en compte les corrections des boucles des cordes.
|
47 |
G-structures projective et conforme et leur structure de BRSTidei, Carina 23 July 2009 (has links) (PDF)
Cette étude propose une application innovante de deux concepts très étudiés par la communauté mathématique, le fibré des k-repères et la connexion de Cartan. D'une part, l'utilisation d'une connexion de Cartan particulière sur le fibré des 2-repères nous permet de proposer une généralisation de la notion de dérivée de Schwarz en dimension arbitraire, pour les difféomorphismes projectifs et conformes. D'autre part, nous avons pu élaborer une structure de BRS permettant de reproduire infinitésimalement l'action des difféomorphismes sur des champs de jauge à un terme de courbure près. Ainsi, la notion de connexion de Cartan sur le fibré des 2-repères a permis de résoudre un problème ouvert, originellement formulé par A.M. Polyakov en 1990 qui obtient formellement l'action de difféomorphismes (symétrie de l'espace-temps) à partir d'une transformation de jauge (symétrie interne). Les symétries d'espace-temps et les symétries internes peuvent ainsi être exprimées dans un formalisme similaire.
|
48 |
Structures algébriques dans les théories à deux dimensionsRagoucy, Eric 15 September 2004 (has links) (PDF)
Cette habilitation est consacrée aux structures algébriques intervenant dans les systèmes uni- et bi-dimensionnels étudiés en physique. Nous y montrons comment ces structures peuvent être utilisées pour obtenir une meilleure compréhension des systèmes physiques qu'elles sous-tendent. Nous y décrivons aussi certains de leurs aspects mathématiques.<br /><br />Quatre parties composent cette présentation. Elles décrivent différents domaines de la physique que j'ai étudiés, et dans lesquels les cadres algébriques peuvent s'appliquer, à savoir:<br /><br />- Les théories conformes à deux dimensions, en particulier les algèbres W. Nous présentons la classification de ces dernières et leur quantification en cohomologie BRS.<br /><br />- Les algèbres W finies et leur application en physique (anyons et leurs généralisations) et en mathématique (représentations des algèbres de Lie).<br /><br />- Les structures d'algèbres de Hopf et leur généralisation dynamique, cadre mathématique utilisé dans la partie suivante.<br /><br />- Les systèmes intégrables, avec deux éclairages différents. D'une part, les chaînes de spins, qui décrivent des modèles unidimensionnels de spins en interaction. Nous parlerons des systèmes périodiques, et des systèmes avec bords. D'autre part, les systèmes intégrables en théorie des champs, avec une attention particulière aux systèmes avec bord ou avec impureté.
|
49 |
Supersymétrie dans les Univers BranairesMoura, Cesar 29 June 2009 (has links) (PDF)
Cette thèse est consacrée à l'analyse, dans le cadre des théories supersymétriques, des phénomènes liés à la présence de dimensions supplémentaires et de secteurs branaires. Nous proposons une extension du MSSM motivé par les théories présentant des dimensions supplémentaires, dans laquelle le secteur de jauge est étendu de manière à former une représentation N = 2 de l'algèbre de supersymétrie. Nous décrivons comment, dans ce modèle, des masses de Dirac apparaissent naturellement pour les jauginos, et calculons les interactions et matrices de masse des nouveaux neutralinos et charginos présents. Puis nous étudions, dans le cadre des théories de supergravité en cinq dimensions, le couplage des champs de gravité aux multiplets chiraux localisés sur les branes. Cette étude conduit à l'introduction d'une nouvelle extension hors couche de masse de la supergravité en cinq dimensions, qui est bien adaptée au couplage des champs chiraux sur les branes au multiplet de supergravité pentadimensionnelle dans le cas d'un superpotentiel quelconque et dans la présence de F-termes différents de zéro. Le mécanisme de Scherk-Schwarz généralisé et le mécanisme de super-Higgs dans cette classe de théories sont également étudiés en détail. Notamment nous décrivons comment les pseudo-Goldstinos apparaissent lorsque la supersymétrie est brisée par des F-termes sur les branes et dans le volume pentadimensionnel par le mécanisme de Scherk-Schwarz. Nous étudions des possibilités d'identification des pseudo-Goldstinos aux neutrinos stériles. Enfin, des propriétés des gravitinos dans les théories à six dimensions sont étudiées.
|
50 |
Supercordes, théories conformes et dualité holographiqueBenichou, Raphael 05 June 2009 (has links) (PDF)
Cette thèse se consacre à l'étude de la théorie des cordes en utilisant les outils des théories conformes bidimensionnelles. Dans la première partie, une famille de solutions non-compactes et courbes est etudiées : les modèles de Gepner non-compacts. Dans la deuxième partie, on se concentre sur des problèmes liés à la quantification de la corde en présence de flux RR.
|
Page generated in 0.0596 seconds