Spelling suggestions: "subject:"[een] NLP"" "subject:"[enn] NLP""
421 |
Trauma in the Syntax: Trauma Writing in David Foster Wallace's Infinite JestAlyssa Caroline Fernandez (11181666) 26 July 2021 (has links)
<p>This project presents a case study of postmodern trauma, working at the boundaries of the humanities and computer science to produce an in-depth examination of trauma writing in David Foster Wallace’s novel <i>Infinite Jest</i>. The goal of this project is to examine the intricacies of syntax and language in postmodern trauma writing through an iterative process I refer to as <i>broken reading</i>, which combines traditional humanities methodologies (close reading) and distant, computational methodologies (Natural Language Processing). Broken reading begins with close reading, then ventures into the distant reading processes of sentiment analysis and entity analysis, and then returns again to close reading when the data must be analyzed and the broken computational elements must be corrected. While examining the syntactical structure of traumatic and non-traumatic passages through this broken reading methodology, I found that Wallace represents trauma as gendered. The male characters in the novel, when recollecting past traumata or undergoing traumatic events, maintain their subject status, recognize those around them as subjects, and are able to engage actively with the world around them. On the other hand, the female characters in the novel are depicted as lacking the same capacities for subjectivity and action. Through computational text analysis, it becomes clear that Wallace writes female trauma in a way that reflects their lack of agency and subjectivity while he writes male trauma in a way that maintains their agency and subjectivity. Through close reading, I was able to discover qualitative differences in Wallace’s representations of trauma and form initial observations about syntactical and linguistic patterns; through distant reading, I was able to quantify the differences I uncovered through close reading by conducting part of speech tagging, entity analysis, semantic analysis, and sentiment analysis. Distant reading led me to discover elements of the text that I had not noticed previously, despite the occasional flaw in computation. The analyses I produced through this broken reading process grew richer because of failure—when I failed as an interpreter, and when computational analysis failed, these failures gave me further insight into the trauma writing within the novel. Ultimately, there are marked syntactical and linguistic differences between the way that Wallace represents male and female trauma, which points toward the larger question of whether other white male postmodern authors gender trauma in their writings, too. This study has generated a prototype model for the <i>broken reading </i>methodology, which can be used to further examine postmodern trauma writing.</p>
|
422 |
Speech-To-Model: A Framework for Creating Software Models Using Voice CommandsBhandari, Nabin 21 July 2023 (has links)
No description available.
|
423 |
Avancerade Stora Språk Modeller i Praktiken : En Studie av ChatGPT-4 och Google Bard inom DesinformationshanteringAhmadi, Aref, Barakzai, Ahmad Naveed January 2023 (has links)
SammanfattningI denna studie utforskas kapaciteterna och begränsningarna hos avancerade stora språkmodeller (SSM), med särskilt fokus på ChatGPT-4 och Google Bard. Studien inleds med att ge en historisk bakgrund till artificiell intelligens och hur denna utveckling har lett fram till skapandet av dessa modeller. Därefter genomförs en kritisk analys av deras prestanda i språkbehandling och problemlösning. Genom att evaluera deras effektivitet i hanteringen av nyhetsinnehåll och sociala medier, samt i utförandet av kreativa uppgifter som pussel, belyses deras förmåga inom språklig bearbetning samt de utmaningar de möter i att förstå nyanser och utöva kreativt tänkande.I denna studie framkom det att SSM har en avancerad förmåga att förstå och reagera på komplexa språkstrukturer. Denna förmåga är dock inte utan begränsningar, speciellt när det kommer till uppgifter som kräver en noggrann bedömning för att skilja mellan sanning och osanning. Denna observation lyfter fram en kritisk aspekt av SSM:ernas nuvarande kapacitet, de är effektiva inom många områden, men möter fortfarande utmaningar i att hantera de finare nyanserna i mänskligt språk och tänkande. Studiens resultat betonar även vikten av mänsklig tillsyn vid användning av artificiell intelligens (AI), vilket pekar på behovet av att ha realistiska förväntningar på AI:s kapacitet och betonar vidare betydelsen av en ansvarsfull utveckling av AI, där en noggrann uppmärksamhet kring etiska aspekter är central. En kombination av mänsklig intelligens och AI föreslås som en lösning för att hantera komplexa utmaningar, vilket bidrar till en fördjupad förståelse av avancerade språkmodellers dynamik och deras roll inom AI:s bredare utveckling och tillämpning.
|
424 |
Génération de données synthétiques pour l'adaptation hors-domaine non-supervisée en réponse aux questions : méthodes basées sur des règles contre réseaux de neuronesDuran, Juan Felipe 02 1900 (has links)
Les modèles de réponse aux questions ont montré des résultats impressionnants sur plusieurs ensembles de données et tâches de réponse aux questions. Cependant, lorsqu'ils sont testés sur des ensembles de données hors domaine, la performance diminue. Afin de contourner l'annotation manuelle des données d'entraînement du nouveau domaine, des paires de questions-réponses peuvent être générées synthétiquement à partir de données non annotées. Dans ce travail, nous nous intéressons à la génération de données synthétiques et nous testons différentes méthodes de traitement du langage naturel pour les deux étapes de création d'ensembles de données : génération de questions et génération de réponses. Nous utilisons les ensembles de données générés pour entraîner les modèles UnifiedQA et Bert-QA et nous les testons sur SCIQ, un ensemble de données hors domaine sur la physique, la chimie et la biologie pour la tâche de question-réponse à choix multiples, ainsi que sur HotpotQA, TriviaQA, NatQ et SearchQA, quatre ensembles de données hors domaine pour la tâche de question-réponse. Cette procédure nous permet d'évaluer et de comparer les méthodes basées sur des règles avec les méthodes de réseaux neuronaux. Nous montrons que les méthodes basées sur des règles produisent des résultats supérieurs pour la tâche de question-réponse à choix multiple, mais que les méthodes de réseaux neuronaux produisent généralement des meilleurs résultats pour la tâche de question-réponse. Par contre, nous observons aussi qu'occasionnellement, les méthodes basées sur des règles peuvent compléter les méthodes de réseaux neuronaux et produire des résultats compétitifs lorsqu'on entraîne Bert-QA avec les bases de données synthétiques provenant des deux méthodes. / Question Answering models have shown impressive results in several question answering datasets and tasks. However, when tested on out-of-domain datasets, the performance decreases. In order to circumvent manually annotating training data from the new domain, question-answer pairs can be generated synthetically from unnanotated data. In this work, we are interested in the generation of synthetic data and we test different Natural Language Processing methods for the two steps of dataset creation: question/answer generation. We use the generated datasets to train QA models UnifiedQA and Bert-QA and we test it on SCIQ, an out-of-domain dataset about physics, chemistry, and biology for MCQA, and on HotpotQA, TriviaQA, NatQ and SearchQA, four out-of-domain datasets for QA. This procedure allows us to evaluate and compare rule-based methods with neural network methods. We show that rule-based methods yield superior results for the multiple-choice question-answering task, but neural network methods generally produce better results for the question-answering task. However, we also observe that occasionally, rule-based methods can complement neural network methods and produce competitive results when training Bert-QA with synthetic databases derived from both methods.
|
425 |
Detecting Deception, Partisan, and Social BiasesSánchez Junquera, Juan Javier 06 September 2022 (has links)
Tesis por compendio / [ES] En la actualidad, el mundo político tiene tanto o más impacto en la sociedad que ésta en el mundo político. Los líderes o representantes de partidos políticos hacen uso de su poder en los medios de comunicación, para modificar posiciones ideológicas y llegar al pueblo con el objetivo de ganar popularidad en las elecciones gubernamentales.A través de un lenguaje engañoso, los textos políticos pueden contener sesgos partidistas y sociales que minan la percepción de la realidad. Como resultado, los seguidores de una ideología, o miembros de una categoría social, se sienten amenazados por otros grupos sociales o ideológicos, o los perciben como competencia, derivándose así una polarización política con agresiones físicas y verbales.
La comunidad científica del Procesamiento del Lenguaje Natural (NLP, según sus siglas en inglés) contribuye cada día a detectar discursos de odio, insultos, mensajes ofensivos, e información falsa entre otras tareas computacionales que colindan con ciencias sociales. Sin embargo, para abordar tales tareas, es necesario hacer frente a diversos problemas entre los que se encuentran la dificultad de tener textos etiquetados, las limitaciones de no trabajar con un equipo interdisciplinario, y los desafíos que entraña la necesidad de soluciones interpretables por el ser humano.
Esta tesis se enfoca en la detección de sesgos partidistas y sesgos sociales, tomando como casos de estudio el hiperpartidismo y los estereotipos sobre inmigrantes. Para ello, se propone un modelo basado en una técnica de enmascaramiento de textos capaz de detectar lenguaje engañoso incluso en temas controversiales, siendo capaz de capturar patrones del contenido y el estilo de escritura. Además, abordamos el problema usando modelos basados en BERT, conocidos por su efectividad al capturar patrones sintácticos y semánticos sobre las mismas representaciones de textos. Ambos enfoques, la técnica de enmascaramiento y los modelos basados en BERT, se comparan en términos de desempeño y explicabilidad en la detección de hiperpartidismo en noticias políticas y estereotipos sobre inmigrantes. Para la identificación de estos últimos, se propone una nueva taxonomía con fundamentos teóricos en sicología social, y con la que se etiquetan textos extraídos de intervenciones partidistas llevadas a cabo en el Parlamento español. Los resultados muestran que los enfoques propuestos contribuyen al estudio del hiperpartidismo, así como a identif i car cuándo los ciudadanos y políticos enmarcan a los inmigrantes en una imagen de víctima, recurso económico, o amenaza. Finalmente, en esta investigación interdisciplinaria se demuestra que los estereotipos sobre inmigrantes son usados como estrategia retórica en contextos políticos. / [CA] Avui, el món polític té tant o més impacte en la societat que la societat en el món polític. Els líders polítics, o representants dels partits polítics, fan servir el seu poder als mitjans de comunicació per modif i car posicions ideològiques i arribar al poble per tal de guanyar popularitat a les eleccions governamentals. Mitjançant un llenguatge enganyós, els textos polítics poden contenir biaixos partidistes i socials que soscaven la percepció de la realitat. Com a resultat, augmenta la polarització política nociva perquè els seguidors d'una ideologia, o els membres d'una categoria social, veuen els altres grups com una amenaça o competència, que acaba en agressions verbals i físiques amb resultats desafortunats.
La comunitat de Processament del llenguatge natural (PNL) té cada dia noves aportacions amb enfocaments que ajuden a detectar discursos d'odi, insults, missatges ofensius i informació falsa, entre altres tasques computacionals relacionades amb les ciències socials. No obstant això, molts obstacles impedeixen eradicar aquests problemes, com ara la dif i cultat de tenir textos anotats, les limitacions dels enfocaments no interdisciplinaris i el repte afegit per la necessitat de solucions interpretables.
Aquesta tesi se centra en la detecció de biaixos partidistes i socials, prenent com a cas pràctic l'hiperpartidisme i els estereotips sobre els immigrants.
Proposem un model basat en una tècnica d'emmascarament que permet detectar llenguatge enganyós en temes polèmics i no polèmics, capturant pa-trons relacionats amb l'estil i el contingut. A més, abordem el problema avaluant models basats en BERT, coneguts per ser efectius per capturar patrons semàntics i sintàctics en la mateixa representació. Comparem aquests dos enfocaments (la tècnica d'emmascarament i els models basats en BERT) en termes de rendiment i les seves solucions explicables en la detecció de l'hiperpartidisme en les notícies polítiques i els estereotips d'immigrants.
Per tal d'identificar els estereotips dels immigrants, proposem una nova tax-onomia recolzada per la teoria de la psicologia social i anotem un conjunt de dades de les intervencions partidistes al Parlament espanyol. Els resultats mostren que els nostres models poden ajudar a estudiar l'hiperpartidisme i identif i car diferents marcs en què els ciutadans i els polítics perceben els immigrants com a víctimes, recursos econòmics o amenaces. Finalment, aquesta investigació interdisciplinària demostra que els estereotips dels immigrants s'utilitzen com a estratègia retòrica en contextos polítics. / [EN] Today, the political world has as much or more impact on society than society has on the political world. Political leaders, or representatives of political parties, use their power in the media to modify ideological positions and reach the people in order to gain popularity in government elections.
Through deceptive language, political texts may contain partisan and social biases that undermine the perception of reality. As a result, harmful political polarization increases because the followers of an ideology, or members of a social category, see other groups as a threat or competition, ending in verbal and physical aggression with unfortunate outcomes.
The Natural Language Processing (NLP) community has new contri-butions every day with approaches that help detect hate speech, insults, of f ensive messages, and false information, among other computational tasks related to social sciences. However, many obstacles prevent eradicating these problems, such as the dif f i culty of having annotated texts, the limitations of non-interdisciplinary approaches, and the challenge added by the necessity of interpretable solutions.
This thesis focuses on the detection of partisan and social biases, tak-ing hyperpartisanship and stereotypes about immigrants as case studies. We propose a model based on a masking technique that can detect deceptive language in controversial and non-controversial topics, capturing patterns related to style and content. Moreover, we address the problem by evalu-ating BERT-based models, known to be ef f ective at capturing semantic and syntactic patterns in the same representation. We compare these two approaches (the masking technique and the BERT-based models) in terms of their performance and the explainability of their decisions in the detection of hyperpartisanship in political news and immigrant stereotypes. In order to identify immigrant stereotypes, we propose a new taxonomy supported by social psychology theory and annotate a dataset from partisan interventions in the Spanish parliament. Results show that our models can help study hyperpartisanship and identify dif f erent frames in which citizens and politicians perceive immigrants as victims, economic resources, or threat. Finally, this interdisciplinary research proves that immigrant stereotypes are used as a rhetorical strategy in political contexts. / This PhD thesis was funded by the MISMIS-FAKEnHATE research project
(PGC2018-096212-B-C31) of the Spanish Ministry of Science and Innovation. / Sánchez Junquera, JJ. (2022). Detecting Deception, Partisan, and Social Biases [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185784 / Compendio
|
426 |
Stylometry: Quantifying Classic Literature For Authorship Attribution : - A Machine Learning ApproachYousif, Jacob, Scarano, Donato January 2024 (has links)
Classic literature is rich, be it linguistically, historically, or culturally, making it valuable for future studies. Consequently, this project chose a set of 48 classic books to conduct a stylometric analysis on the defined set of books, adopting an approach used by a related work to divide the books into text segments, quantify the resulting text segments, and analyze the books using the quantified values to understand the linguistic attributes of the books. Apart from the latter, this project conducted different classification tasks for other objectives. In one respect, the study used the quantified values of the text segments of the books for classification tasks using advanced models like LightGBM and TabNet to assess the application of this approach in authorship attribution. From another perspective, the study utilized a State-Of-The-Art model, namely, RoBERTa for classification tasks using the segmented texts of the books instead to evaluate the performance of the model in authorship attribution. The results uncovered the characteristics of the books to a reasonable degree. Regarding the authorship attribution tasks, the results suggest that segmenting and quantifying text using stylometric analysis and supervised machine learning algorithms is practical in such tasks. This approach, while showing promise, may still require further improvements to achieve optimal performance. Lastly, RoBERTa demonstrated high performance in authorship attribution tasks.
|
427 |
Malicious Intent Detection Framework for Social NetworksFausak, Andrew Raymond 05 1900 (has links)
Many, if not all people have online social accounts (OSAs) on an online community (OC) such as Facebook (Meta), Twitter (X), Instagram (Meta), Mastodon, Nostr. OCs enable quick and easy interaction with friends, family, and even online communities to share information about. There is also a dark side to Ocs, where users with malicious intent join OC platforms with the purpose of criminal activities such as spreading fake news/information, cyberbullying, propaganda, phishing, stealing, and unjust enrichment. These criminal activities are especially concerning when harming minors. Detection and mitigation are needed to protect and help OCs and stop these criminals from harming others. Many solutions exist; however, they are typically focused on a single category of malicious intent detection rather than an all-encompassing solution. To answer this challenge, we propose the first steps of a framework for analyzing and identifying malicious intent in OCs that we refer to as malicious mntent detection framework (MIDF). MIDF is an extensible proof-of-concept that uses machine learning techniques to enable detection and mitigation. The framework will first be used to detect malicious users using solely relationships and then can be leveraged to create a suite of malicious intent vector detection models, including phishing, propaganda, scams, cyberbullying, racism, spam, and bots for open-source online social networks, such as Mastodon, and Nostr.
|
428 |
Deep Continual Multimodal Multitask Models for Out-of-Hospital Emergency Medical Call Incidents Triage Support in the Presence of Dataset ShiftsFerri Borredà, Pablo 28 March 2024 (has links)
[ES] El triaje de los incidentes de urgencias y emergencias extrahospitalarias representa un reto difícil, debido a las limitaciones temporales y a la incertidumbre. Además, errores en este proceso pueden tener graves consecuencias para los pacientes. Por lo tanto, cualquier herramienta o estrategia novedosa que mejore estos procesos ofrece un valor sustancial en términos de atención al paciente y gestión global de los incidentes.
La hipótesis en la que se basa esta tesis es que el Aprendizaje Automático, concretamente el Aprendizaje Profundo, puede mejorar estos procesos proporcionando estimaciones de la gravedad de los incidentes, mediante el análisis de millones de datos derivados de llamadas de emergencia de la Comunitat Valenciana (España) que abarcan desde 2009 hasta 2019.
Por tanto, esta tesis profundiza en el diseño y desarrollo de modelos basados en Aprendizaje Profundo Multitarea que aprovechan los datos multimodales asociados a eventos de urgencias y emergencias extrahospitalarias. Nuestro objetivo principal era predecir si el incidente suponía una situación de riesgo vital, la demora admisible de la respuesta y si era competencia del sistema de emergencias o de atención primaria. Utilizando datos disponibles entre 2009 y 2012, se observaron mejoras sustanciales en las métricas macro F1, con ganancias del 12.5% para la clasificación de riesgo vital, del 17.5% para la demora en la respuesta y del 5.1% para la clasificación por jurisdicción, en comparación con el protocolo interno de triaje de la Comunidad Valenciana.
Sin embargo, los sistemas, los protocolos de triaje y las prácticas operativas evolucionan de forma natural con el tiempo. Los modelos que mostraron un rendimiento excelente con el conjunto de datos inicial de 2009 a 2012 no demostraron la misma eficacia cuando se evaluaron con datos posteriores que abarcaban de 2014 a 2019. Estos últimos habían sufrido modificaciones en comparación con los anteriores, que dieron lugar a variaciones en las distribuciones de probabilidad, caracterizadas e investigadas meticulosamente en esta tesis.
Continuando con nuestra investigación, nos centramos en la incorporación de técnicas de Aprendizaje Continuo Profundo en nuestros desarrollos. Gracias a ello, pudimos mitigar sustancialmente los efectos adversos consecuencia de los cambios distribucionales sobre el rendimiento. Los resultados indican que, si bien las fluctuaciones de rendimiento no se eliminan por completo, pueden mantenerse dentro de un rango manejable. En particular, con respecto a la métrica F1, cuando las variaciones distribucionales son ligeras o moderadas, el comportamiento se mantiene estable, sin variar más de un 2.5%.
Además, nuestra tesis demuestra la viabilidad de construir herramientas auxiliares que permitan a los operadores interactuar con estos complejos modelos. En consecuencia, sin interrumpir el flujo de trabajo de los profesionales, se hace posible proporcionar retroalimentación mediante predicciones de probabilidad para cada clase de etiqueta de gravedad y tomar las medidas pertinentes.
Por último, los resultados de esta tesis tienen implicaciones directas en la gestión de las urgencias y emergencias extrahospitalarias en la Comunidad Valenciana, al integrarse el modelo final resultante en los centros de atención de llamadas. Este modelo utilizará los datos proporcionados por los operadores telefónicos para calcular automáticamente las predicciones de gravedad, que luego se compararán con las generadas por el protocolo de triaje interno. Cualquier disparidad entre estas predicciones desencadenará la derivación del incidente a un coordinador médico, que supervisará su tratamiento. Por lo tanto, nuestra tesis, además de realizar importantes contribuciones al campo de la Investigación en Aprendizaje Automático Biomédico, también conlleva implicaciones sustanciales para mejorar la gestión de las urgencias y emergencias extrahospitalarias en el contexto de la Comunidad Valenciana. / [CA] El triatge dels incidents d'urgències i emergències extrahospitalàries representa un repte difícil, a causa de les limitacions temporals i de la incertesa. A més, els errors en aquest procés poden tindre greus conseqüències per als pacients. Per tant, qualsevol eina o estratègia innovadora que millore aquests processos ofereix un valor substancial en termes d'atenció al pacient i gestió global dels incidents.
La hipòtesi en què es basa aquesta tesi és que l'Aprenentatge Automàtic, concretament l'Aprenentatge Profund, pot millorar significativament aquests processos proporcionant estimacions de la gravetat dels incidents, mitjançant l'anàlisi de milions de dades derivades de trucades d'emergència de la Comunitat Valenciana (Espanya) que abasten des de 2009 fins a 2019.
Per tant, aquesta tesi aprofundeix en el disseny i desenvolupament de models basats en Aprenentatge Profund Multitasca que aprofiten dades multimodals d'incidents mèdics d'urgències i emergències extrahospitalàries. El nostre objectiu principal era predir si l'incident suposava una situació de risc vital, la demora admissible de la resposta i si era competència del sistema d'emergències o d'atenció primària. Utilitzant dades disponibles entre 2009 i 2012, es van observar millores substancials en les mètriques macro F1, amb guanys del 12.5% per a la classificació de risc vital, del 17.5% per a la demora en la resposta i del 5.1% per a la classificació per jurisdicció, en comparació amb el protocol intern de triatge de la Comunitat Valenciana.
Tanmateix, els protocols de triatge i les pràctiques operatives evolucionen de forma natural amb el temps. Els models que van mostrar un rendiment excel·lent amb el conjunt de dades inicial de 2009 a 2012 no van demostrar la mateixa eficàcia quan es van avaluar amb dades posteriors que abastaven de 2014 a 2019. Aquestes últimes havien sofert modificacions en comparació amb les anteriors, que van donar lloc a variacions en les distribucions de probabilitat, caracteritzades i investigades minuciosament en aquesta tesi.
Continuant amb la nostra investigació, ens vam centrar en la incorporació de tècniques d'Aprenentatge Continu als nostres desenvolupaments. Gràcies a això, vam poder mitigar substancialment els efectes adversos sobre el rendiment conseqüència dels canvis distribucionals. Els resultats indiquen que, si bé les fluctuacions de rendiment no s'eliminen completament al llarg del temps, poden mantenir-se dins d'un rang manejable. En particular, respecte a la mètrica F1, quan les variacions distribucionals són lleugeres o moderades, el comportament es manté estable, sense variar més d'un 2.5%.
A més, la nostra tesi demostra la viabilitat de construir eines auxiliars que permeten als operadors interactuar amb aquests models complexos. En conseqüència, sense interrompre el flux de treball dels professionals, es fa possible proporcionar retroalimentació mitjançant prediccions de probabilitat per a cada classe d'etiqueta de gravetat i prendre les mesures pertinents.
Finalment, els resultats d'aquesta tesi tenen implicacions directes en la gestió de les urgències i emergències extrahospitalàries a la Comunitat Valenciana, al integrar-se el model final resultant als centres d'atenció de telefonades. Aquest model utilitzarà les dades proporcionades pels operadors telefònics per calcular automàticament les prediccions de gravetat, que després es compararan amb les generades pel protocol de triatge intern. Qualsevol disparitat entre aquestes prediccions desencadenarà la derivació de l'incident a un coordinador mèdic, que supervisarà el seu tractament. Per tant, és evident que la nostra tesi, a més de realitzar importants contribucions al camp de la Investigació en Aprenentatge Automàtic Biomèdic, també comporta implicacions substancials per a millorar la gestió de les urgències i emergències extrahospitalàries en el context de la Comunitat Valenciana. / [EN] Triage for out-of-hospital emergency incidents represents a tough challenge, primarily due to time constraints and uncertainty. Furthermore, errors in this process can have severe consequences for patients. Therefore, any novel tool or strategy that enhances these processes can offer substantial value in terms of patient care and overall management of out-of-hospital emergency medical incidents.
The hypothesis upon which this thesis is based is that Machine Learning, specifically Deep Learning, can improve these processes by providing estimations of the severity of incidents, by analyzing millions of data derived from emergency calls from the Valencian Region (Spain) spanning from 2009 to 2019.
Hence, this thesis delves into designing and developing Deep Multitask Learning models that leverage multimodal out-of-hospital emergency medical data. Our primary objective was to predict whether the incident posed a life-threatening situation, the admissible response delay, and whether it fell under the jurisdiction of the emergency system or primary care. Using data available from 2009 to 2012, the results obtained were promising. We observed substantial improvements in macro F1-scores, with gains of 12.5% for life-threatening classification, 17.5% for response delay, and 5.1% for jurisdiction classification, compared to the in-house triage protocol of the Valencian Region.
However, systems, dispatch protocols, and operational practices naturally evolve over time. Models that exhibited excellent performance with the initial dataset from 2009 to 2012 did not demonstrate the same efficacy when evaluated on data spanning from 2014 to 2019. This later dataset had undergone modifications compared to the earlier one, which led to dataset shifts, which we have meticulously characterized and investigated in this thesis.
Continuing our research, we incorporated Deep Continual Learning techniques in our developments. As a result, we could substantially mitigate the adverse performance effects consequence of dataset shifts. The results indicate that, while performance fluctuations are not completely eliminated, they can be kept within a manageable range. In particular, with respect to the F1-score, when distributional variations fall within the light to moderate range, the performance remains stable, not varying by more than 2.5%.
Furthermore, our thesis demonstrates the feasibility of building auxiliary tools that enable dispatchers to interact with these complex deep models. Consequently, without disrupting professionals' workflow, it becomes possible to provide feedback through probability predictions for each severity label class and take appropriate actions based on these predictions.
Finally, the outcomes of this thesis hold direct implications for the management of out-of-hospital emergency medical incidents in the Valencian Region. The final model resulting from our research is slated for integration into the emergency medical dispatch centers of the Valencian Region. This model will utilize data provided by dispatchers to automatically compute severity predictions, which will then be compared with those generated by the in-house triage protocol. Any disparities between these predictions will trigger the referral of the incident to a physician coordinator, who will oversee its handling. Therefore, it is evident that our thesis, in addition to making significant contributions to the field of Biomedical Machine Learning Research, also carries substantial implications for enhancing the management of out-of-hospital emergencies in the context of the Valencian Region. / Ferri Borredà, P. (2024). Deep Continual Multimodal Multitask Models for Out-of-Hospital Emergency Medical Call Incidents Triage Support in the Presence of Dataset Shifts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203192
|
429 |
Integrating Natural Language Processing (NLP) and Language Resources Using Linked DataHellmann, Sebastian 09 January 2014 (has links)
This thesis is a compendium of scientific works and engineering
specifications that have been contributed to a large community of
stakeholders to be copied, adapted, mixed, built upon and exploited in
any way possible to achieve a common goal: Integrating Natural Language
Processing (NLP) and Language Resources Using Linked Data
The explosion of information technology in the last two decades has led
to a substantial growth in quantity, diversity and complexity of
web-accessible linguistic data. These resources become even more useful
when linked with each other and the last few years have seen the
emergence of numerous approaches in various disciplines concerned with
linguistic resources and NLP tools. It is the challenge of our time to
store, interlink and exploit this wealth of data accumulated in more
than half a century of computational linguistics, of empirical,
corpus-based study of language, and of computational lexicography in all
its heterogeneity.
The vision of the Giant Global Graph (GGG) was conceived by Tim
Berners-Lee aiming at connecting all data on the Web and allowing to
discover new relations between this openly-accessible data. This vision
has been pursued by the Linked Open Data (LOD) community, where the
cloud of published datasets comprises 295 data repositories and more
than 30 billion RDF triples (as of September 2011).
RDF is based on globally unique and accessible URIs and it was
specifically designed to establish links between such URIs (or
resources). This is captured in the Linked Data paradigm that postulates
four rules: (1) Referred entities should be designated by URIs, (2)
these URIs should be resolvable over HTTP, (3) data should be
represented by means of standards such as RDF, (4) and a resource should
include links to other resources.
Although it is difficult to precisely identify the reasons for the
success of the LOD effort, advocates generally argue that open licenses
as well as open access are key enablers for the growth of such a network
as they provide a strong incentive for collaboration and contribution by
third parties. In his keynote at BNCOD 2011, Chris Bizer argued that
with RDF the overall data integration effort can be “split between data
publishers, third parties, and the data consumer”, a claim that can be
substantiated by observing the evolution of many large data sets
constituting the LOD cloud.
As written in the acknowledgement section, parts of this thesis has
received numerous feedback from other scientists, practitioners and
industry in many different ways. The main contributions of this thesis
are summarized here:
Part I – Introduction and Background.
During his keynote at the Language Resource and Evaluation Conference in
2012, Sören Auer stressed the decentralized, collaborative, interlinked
and interoperable nature of the Web of Data. The keynote provides strong
evidence that Semantic Web technologies such as Linked Data are on its
way to become main stream for the representation of language resources.
The jointly written companion publication for the keynote was later
extended as a book chapter in The People’s Web Meets NLP and serves as
the basis for “Introduction” and “Background”, outlining some stages of
the Linked Data publication and refinement chain. Both chapters stress
the importance of open licenses and open access as an enabler for
collaboration, the ability to interlink data on the Web as a key feature
of RDF as well as provide a discussion about scalability issues and
decentralization. Furthermore, we elaborate on how conceptual
interoperability can be achieved by (1) re-using vocabularies, (2) agile
ontology development, (3) meetings to refine and adapt ontologies and
(4) tool support to enrich ontologies and match schemata.
Part II - Language Resources as Linked Data.
“Linked Data in Linguistics” and “NLP & DBpedia, an Upward Knowledge
Acquisition Spiral” summarize the results of the Linked Data in
Linguistics (LDL) Workshop in 2012 and the NLP & DBpedia Workshop in
2013 and give a preview of the MLOD special issue. In total, five
proceedings – three published at CEUR (OKCon 2011, WoLE 2012, NLP &
DBpedia 2013), one Springer book (Linked Data in Linguistics, LDL 2012)
and one journal special issue (Multilingual Linked Open Data, MLOD to
appear) – have been (co-)edited to create incentives for scientists to
convert and publish Linked Data and thus to contribute open and/or
linguistic data to the LOD cloud. Based on the disseminated call for
papers, 152 authors contributed one or more accepted submissions to our
venues and 120 reviewers were involved in peer-reviewing.
“DBpedia as a Multilingual Language Resource” and “Leveraging the
Crowdsourcing of Lexical Resources for Bootstrapping a Linguistic Linked
Data Cloud” contain this thesis’ contribution to the DBpedia Project in
order to further increase the size and inter-linkage of the LOD Cloud
with lexical-semantic resources. Our contribution comprises extracted
data from Wiktionary (an online, collaborative dictionary similar to
Wikipedia) in more than four languages (now six) as well as
language-specific versions of DBpedia, including a quality assessment of
inter-language links between Wikipedia editions and internationalized
content negotiation rules for Linked Data. In particular the work
described in created the foundation for a DBpedia Internationalisation
Committee with members from over 15 different languages with the common
goal to push DBpedia as a free and open multilingual language resource.
Part III - The NLP Interchange Format (NIF).
“NIF 2.0 Core Specification”, “NIF 2.0 Resources and Architecture” and
“Evaluation and Related Work” constitute one of the main contribution of
this thesis. The NLP Interchange Format (NIF) is an RDF/OWL-based format
that aims to achieve interoperability between Natural Language
Processing (NLP) tools, language resources and annotations. The core
specification is included in and describes which URI schemes and RDF
vocabularies must be used for (parts of) natural language texts and
annotations in order to create an RDF/OWL-based interoperability layer
with NIF built upon Unicode Code Points in Normal Form C. In , classes
and properties of the NIF Core Ontology are described to formally define
the relations between text, substrings and their URI schemes. contains
the evaluation of NIF.
In a questionnaire, we asked questions to 13 developers using NIF. UIMA,
GATE and Stanbol are extensible NLP frameworks and NIF was not yet able
to provide off-the-shelf NLP domain ontologies for all possible domains,
but only for the plugins used in this study. After inspecting the
software, the developers agreed however that NIF is adequate enough to
provide a generic RDF output based on NIF using literal objects for
annotations. All developers were able to map the internal data structure
to NIF URIs to serialize RDF output (Adequacy). The development effort
in hours (ranging between 3 and 40 hours) as well as the number of code
lines (ranging between 110 and 445) suggest, that the implementation of
NIF wrappers is easy and fast for an average developer. Furthermore the
evaluation contains a comparison to other formats and an evaluation of
the available URI schemes for web annotation.
In order to collect input from the wide group of stakeholders, a total
of 16 presentations were given with extensive discussions and feedback,
which has lead to a constant improvement of NIF from 2010 until 2013.
After the release of NIF (Version 1.0) in November 2011, a total of 32
vocabulary employments and implementations for different NLP tools and
converters were reported (8 by the (co-)authors, including Wiki-link
corpus, 13 by people participating in our survey and 11 more, of
which we have heard). Several roll-out meetings and tutorials were held
(e.g. in Leipzig and Prague in 2013) and are planned (e.g. at LREC
2014).
Part IV - The NLP Interchange Format in Use.
“Use Cases and Applications for NIF” and “Publication of Corpora using
NIF” describe 8 concrete instances where NIF has been successfully used.
One major contribution in is the usage of NIF as the recommended RDF
mapping in the Internationalization Tag Set (ITS) 2.0 W3C standard
and the conversion algorithms from ITS to NIF and back. One outcome
of the discussions in the standardization meetings and telephone
conferences for ITS 2.0 resulted in the conclusion there was no
alternative RDF format or vocabulary other than NIF with the required
features to fulfill the working group charter. Five further uses of NIF
are described for the Ontology of Linguistic Annotations (OLiA), the
RDFaCE tool, the Tiger Corpus Navigator, the OntosFeeder and
visualisations of NIF using the RelFinder tool. These 8 instances
provide an implemented proof-of-concept of the features of NIF.
starts with describing the conversion and hosting of the huge Google
Wikilinks corpus with 40 million annotations for 3 million web sites.
The resulting RDF dump contains 477 million triples in a 5.6 GB
compressed dump file in turtle syntax. describes how NIF can be used to
publish extracted facts from news feeds in the RDFLiveNews tool as
Linked Data.
Part V - Conclusions.
provides lessons learned for NIF, conclusions and an outlook on future
work. Most of the contributions are already summarized above. One
particular aspect worth mentioning is the increasing number of
NIF-formated corpora for Named Entity Recognition (NER) that have come
into existence after the publication of the main NIF paper Integrating
NLP using Linked Data at ISWC 2013. These include the corpora converted
by Steinmetz, Knuth and Sack for the NLP & DBpedia workshop and an
OpenNLP-based CoNLL converter by Brümmer. Furthermore, we are aware of
three LREC 2014 submissions that leverage NIF: NIF4OGGD - NLP
Interchange Format for Open German Governmental Data, N^3 – A Collection
of Datasets for Named Entity Recognition and Disambiguation in the NLP
Interchange Format and Global Intelligent Content: Active Curation of
Language Resources using Linked Data as well as an early implementation
of a GATE-based NER/NEL evaluation framework by Dojchinovski and Kliegr.
Further funding for the maintenance, interlinking and publication of
Linguistic Linked Data as well as support and improvements of NIF is
available via the expiring LOD2 EU project, as well as the CSA EU
project called LIDER, which started in November 2013. Based on the
evidence of successful adoption presented in this thesis, we can expect
a decent to high chance of reaching critical mass of Linked Data
technology as well as the NIF standard in the field of Natural Language
Processing and Language Resources.:CONTENTS
i introduction and background 1
1 introduction 3
1.1 Natural Language Processing . . . . . . . . . . . . . . . 3
1.2 Open licenses, open access and collaboration . . . . . . 5
1.3 Linked Data in Linguistics . . . . . . . . . . . . . . . . . 6
1.4 NLP for and by the Semantic Web – the NLP Inter-
change Format (NIF) . . . . . . . . . . . . . . . . . . . . 8
1.5 Requirements for NLP Integration . . . . . . . . . . . . 10
1.6 Overview and Contributions . . . . . . . . . . . . . . . 11
2 background 15
2.1 The Working Group on Open Data in Linguistics (OWLG) 15
2.1.1 The Open Knowledge Foundation . . . . . . . . 15
2.1.2 Goals of the Open Linguistics Working Group . 16
2.1.3 Open linguistics resources, problems and chal-
lenges . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Recent activities and on-going developments . . 18
2.2 Technological Background . . . . . . . . . . . . . . . . . 18
2.3 RDF as a data model . . . . . . . . . . . . . . . . . . . . 21
2.4 Performance and scalability . . . . . . . . . . . . . . . . 22
2.5 Conceptual interoperability . . . . . . . . . . . . . . . . 22
ii language resources as linked data 25
3 linked data in linguistics 27
3.1 Lexical Resources . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Linguistic Corpora . . . . . . . . . . . . . . . . . . . . . 30
3.3 Linguistic Knowledgebases . . . . . . . . . . . . . . . . 31
3.4 Towards a Linguistic Linked Open Data Cloud . . . . . 32
3.5 State of the Linguistic Linked Open Data Cloud in 2012 33
3.6 Querying linked resources in the LLOD . . . . . . . . . 36
3.6.1 Enriching metadata repositories with linguistic
features (Glottolog → OLiA) . . . . . . . . . . . 36
3.6.2 Enriching lexical-semantic resources with lin-
guistic information (DBpedia (→ POWLA) →
OLiA) . . . . . . . . . . . . . . . . . . . . . . . . 38
4 DBpedia as a multilingual language resource:
the case of the greek dbpedia edition. 39
4.1 Current state of the internationalization effort . . . . . 40
4.2 Language-specific design of DBpedia resource identifiers 41
4.3 Inter-DBpedia linking . . . . . . . . . . . . . . . . . . . 42
4.4 Outlook on DBpedia Internationalization . . . . . . . . 44
5 leveraging the crowdsourcing of lexical resources
for bootstrapping a linguistic linked data cloud 47
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Problem Description . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Processing Wiki Syntax . . . . . . . . . . . . . . 50
5.2.2 Wiktionary . . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Wiki-scale Data Extraction . . . . . . . . . . . . . 53
5.3 Design and Implementation . . . . . . . . . . . . . . . . 54
5.3.1 Extraction Templates . . . . . . . . . . . . . . . . 56
5.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . 56
5.3.3 Language Mapping . . . . . . . . . . . . . . . . . 58
5.3.4 Schema Mediation by Annotation with lemon . 58
5.4 Resulting Data . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Discussion and Future Work . . . . . . . . . . . . . . . 60
5.6.1 Next Steps . . . . . . . . . . . . . . . . . . . . . . 61
5.6.2 Open Research Questions . . . . . . . . . . . . . 61
6 nlp & dbpedia, an upward knowledge acquisition
spiral 63
6.1 Knowledge acquisition and structuring . . . . . . . . . 64
6.2 Representation of knowledge . . . . . . . . . . . . . . . 65
6.3 NLP tasks and applications . . . . . . . . . . . . . . . . 65
6.3.1 Named Entity Recognition . . . . . . . . . . . . 66
6.3.2 Relation extraction . . . . . . . . . . . . . . . . . 67
6.3.3 Question Answering over Linked Data . . . . . 67
6.4 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.1 Gold and silver standards . . . . . . . . . . . . . 69
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
iii the nlp interchange format (nif) 73
7 nif 2.0 core specification 75
7.1 Conformance checklist . . . . . . . . . . . . . . . . . . . 75
7.2 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.1 Definition of Strings . . . . . . . . . . . . . . . . 78
7.2.2 Representation of Document Content with the
nif:Context Class . . . . . . . . . . . . . . . . . . 80
7.3 Extension of NIF . . . . . . . . . . . . . . . . . . . . . . 82
7.3.1 Part of Speech Tagging with OLiA . . . . . . . . 83
7.3.2 Named Entity Recognition with ITS 2.0, DBpe-
dia and NERD . . . . . . . . . . . . . . . . . . . 84
7.3.3 lemon and Wiktionary2RDF . . . . . . . . . . . 86
8 nif 2.0 resources and architecture 89
8.1 NIF Core Ontology . . . . . . . . . . . . . . . . . . . . . 89
8.1.1 Logical Modules . . . . . . . . . . . . . . . . . . 90
8.2 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.1 Access via REST Services . . . . . . . . . . . . . 92
8.2.2 NIF Combinator Demo . . . . . . . . . . . . . .
92
8.3 Granularity Profiles . . . . . . . . . . . . . . . . . . . . .
93
8.4 Further URI Schemes for NIF . . . . . . . . . . . . . . .
95
8.4.1 Context-Hash-based URIs . . . . . . . . . . . . .
99
9 evaluation and related work 101
9.1 Questionnaire and Developers Study for NIF 1.0 . . . . 101
9.2 Qualitative Comparison with other Frameworks and
Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.3 URI Stability Evaluation . . . . . . . . . . . . . . . . . . 103
9.4 Related URI Schemes . . . . . . . . . . . . . . . . . . . . 104
iv the nlp interchange format in use 109
10 use cases and applications for nif 111
10.1 Internationalization Tag Set 2.0 . . . . . . . . . . . . . . 111
10.1.1 ITS2NIF and NIF2ITS conversion . . . . . . . . . 112
10.2 OLiA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.3 RDFaCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.4 Tiger Corpus Navigator . . . . . . . . . . . . . . . . . . 121
10.4.1 Tools and Resources . . . . . . . . . . . . . . . . 122
10.4.2 NLP2RDF in 2010 . . . . . . . . . . . . . . . . . . 123
10.4.3 Linguistic Ontologies . . . . . . . . . . . . . . . . 124
10.4.4 Implementation . . . . . . . . . . . . . . . . . . . 125
10.4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . 126
10.4.6 Related Work and Outlook . . . . . . . . . . . . 129
10.5 OntosFeeder – a Versatile Semantic Context Provider
for Web Content Authoring . . . . . . . . . . . . . . . . 131
10.5.1 Feature Description and User Interface Walk-
through . . . . . . . . . . . . . . . . . . . . . . . 132
10.5.2 Architecture . . . . . . . . . . . . . . . . . . . . . 134
10.5.3 Embedding Metadata . . . . . . . . . . . . . . . 135
10.5.4 Related Work and Summary . . . . . . . . . . . 135
10.6 RelFinder: Revealing Relationships in RDF Knowledge
Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.6.1 Implementation . . . . . . . . . . . . . . . . . . . 137
10.6.2 Disambiguation . . . . . . . . . . . . . . . . . . . 138
10.6.3 Searching for Relationships . . . . . . . . . . . . 139
10.6.4 Graph Visualization . . . . . . . . . . . . . . . . 140
10.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 141
11 publication of corpora using nif 143
11.1 Wikilinks Corpus . . . . . . . . . . . . . . . . . . . . . . 143
11.1.1 Description of the corpus . . . . . . . . . . . . . 143
11.1.2 Quantitative Analysis with Google Wikilinks Cor-
pus . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.2 RDFLiveNews . . . . . . . . . . . . . . . . . . . . . . . . 144
11.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . 145
11.2.2 Mapping to RDF and Publication on the Web of
Data . . . . . . . . . . . . . . . . . . . . . . . . . 146
v conclusions 149
12 lessons learned, conclusions and future work 151
12.1 Lessons Learned for NIF . . . . . . . . . . . . . . . . . . 151
12.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 153
|
430 |
Medical image captioning based on Deep Architectures / Medicinsk bild textning baserad på Djupa arkitekturerMoschovis, Georgios January 2022 (has links)
Diagnostic Captioning is described as “the automatic generation of a diagnostic text from a set of medical images of a patient collected during an examination” [59] and it can assist inexperienced doctors and radiologists to reduce clinical errors or help experienced professionals increase their productivity. In this context, tools that would help medical doctors produce higher quality reports in less time could be of high interest for medical imaging departments, as well as significantly impact deep learning research within the biomedical domain, which makes it particularly interesting for people involved in industry and researchers all along. In this work, we attempted to develop Diagnostic Captioning systems, based on novel Deep Learning approaches, to investigate to what extent Neural Networks are capable of performing medical image tagging, as well as automatically generating a diagnostic text from a set of medical images. Towards this objective, the first step is concept detection, which boils down to predicting the relevant tags for X-RAY images, whereas the ultimate goal is caption generation. To this end, we further participated in ImageCLEFmedical 2022 evaluation campaign, addressing both the concept detection and the caption prediction tasks by developing baselines based on Deep Neural Networks; including image encoders, classifiers and text generators; in order to get a quantitative measure of my proposed architectures’ performance [28]. My contribution to the evaluation campaign, as part of this work and on behalf of NeuralDynamicsLab¹ group at KTH Royal Institute of Technology, within the school of Electrical Engineering and Computer Science, ranked 4th in the former and 5th in the latter task [55, 68] among 12 groups included within the top-10 best performing submissions in both tasks. / Diagnostisk textning avser automatisk generering från en diagnostisk text från en uppsättning medicinska bilder av en patient som samlats in under en undersökning och den kan hjälpa oerfarna läkare och radiologer, minska kliniska fel eller hjälpa erfarna yrkesmän att producera diagnostiska rapporter snabbare [59]. Därför kan verktyg som skulle hjälpa läkare och radiologer att producera rapporter av högre kvalitet på kortare tid vara av stort intresse för medicinska bildbehandlingsavdelningar, såväl som leda till inverkan på forskning om djupinlärning, vilket gör den domänen särskilt intressant för personer som är involverade i den biomedicinska industrin och djupinlärningsforskare. I detta arbete var mitt huvudmål att utveckla system för diagnostisk textning, med hjälp av nya tillvägagångssätt som används inom djupinlärning, för att undersöka i vilken utsträckning automatisk generering av en diagnostisk text från en uppsättning medi-cinska bilder är möjlig. Mot detta mål är det första steget konceptdetektering som går ut på att förutsäga relevanta taggar för röntgenbilder, medan slutmålet är bildtextgenerering. Jag deltog i ImageCLEF Medical 2022-utvärderingskampanjen, där jag deltog med att ta itu med både konceptdetektering och bildtextförutsägelse för att få ett kvantitativt mått på prestandan för mina föreslagna arkitekturer [28]. Mitt bidrag, där jag representerade forskargruppen NeuralDynamicsLab² , där jag arbetade som ledande forskningsingenjör, placerade sig på 4:e plats i den förra och 5:e i den senare uppgiften [55, 68] bland 12 grupper som ingår bland de 10 bästa bidragen i båda uppgifterna.
|
Page generated in 0.077 seconds