• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 50
  • 34
  • 13
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 276
  • 58
  • 45
  • 37
  • 33
  • 32
  • 32
  • 25
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Prostory Sobolevova typu na metrických prostorech s mírou / Sobolev-type Spaces on Metric Measure Spaces

Malý, Lukáš January 2014 (has links)
Title: Sobolev-Type Spaces on Metric Measure Spaces Author: RNDr. Lukáš Malý Department: Department of Mathematical Analysis Supervisor: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis Abstract: is thesis focuses on function spaces related to rst-order analysis in abstract metric measure spaces. In metric spaces, we can replace distributional gra- dients, whose de nition depends on the linear structure of Rn , by upper gradients that control the functions' behavior along all recti able curves. is gives rise to the so-called Newtonian spaces. e summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newtonian spaces in particular, have been under intensive study since the mid- s. Standard toolbox for the theory is set up in this general setting and Newto- nian spaces are proven complete. Summability of an upper gradient of a function is shown to guarantee the function's absolute continuity on almost all curves. Ex- istence of a unique minimal weak upper gradient is established. Regularization of Newtonian functions via Lipschitz truncations is discussed in doubling Poincaré spaces using weak boundedness of maximal...
182

Stochastické evoluční rovnice / Stochastic Evolution Equations

Čoupek, Petr January 2017 (has links)
Stochastic Evolution Equations Petr Čoupek Doctoral Thesis Abstract Linear stochastic evolution equations with additive regular Volterra noise are studied in the thesis. Regular Volterra processes need not be Gaussian, Markov or semimartingales, but they admit a certain covariance structure instead. Particular examples cover the fractional Brownian motion of H > 1/2 and, in the non-Gaussian case, the Rosenblatt process. The solution is considered in the mild form, which is given by the variation of constants formula, and takes values either in a separable Hilbert space or the space Lp(D, µ) for large p. In the Hilbert-space setting, existence, space-time regularity and large-time behaviour of the solutions are studied. In the Lp setting, existence and regularity is studied, and in concrete cases of stochastic partial differential equations, the solution is shown to be a space-time continuous random field.
183

Projection, justification et description dans l'oeuvre de Nelson Goodman / Projection, justification and description in Nelson Goodman’s work

Kammer, Quentin 14 September 2018 (has links)
Cette thèse de doctorat étudie la façon dont Nelson Goodman comprend la correction d’une projection, c’est-à-dire du passage d’un certain ensemble d’items à un ensemble plus large. Une projection est justifiée par sa conformité avec des règles générales de projections et ces règles sont justifiées par leur conformité avec des projections que nous tenons pour valides. Il suffit de décrire pour justifier : une règle est justifiée si elle peut compter comme une description des projections admises. Cette injonction à seulement décrire soulève un dilemme. Si une règle est un standard de la correction de ses cas d’application, comment peut-elle être justifiée par sa seule adéquation descriptive à l’égard de ses cas d’applications ? Si la règle n’est justifiée par rien d’autre, en quoi se distingue-t-elle d’une description de nos comportements réguliers ? Notre objet est de montrer comment Goodman pourrait surmonter ce dilemme. / This PhD dissertation examines how Nelson Goodman understands rightness of projection, i.e. the transition from a set of items to a wider one. A projection is justified by its conformity to general rules of projection and rules are justified by their conformity to some projections we consider valid. To justify, all one needs to do is to describe: a rule is justified if it can count as a description of admitted projections. Yet this call for description faces a dilemma. If a rule is a standard for rightness of its applications, how could it be justified by its sole descriptive adequacy to those cases of application? If a rule is justified by nothing else, what could distinguish it from a mere description of our regular behaviors? Our object is to show how Goodman could resolve this dilemma.
184

Résolutions et Régularité de Castelnuovo-Mumford / Resolutions and Castelnuovo-Mumford Regularity

Yazdan Pour, Ali Akbar 28 October 2012 (has links)
Le sujet de cette thèse est l'étude d'idéaux monomiaux de l'anneau de polynômes S qui ont une résolution linéaire. D'après un résultat remarquable de Bayer et Stilman et en utilisant la polarisation, la classification des idéaux monomiaux ayant une résolution linéaire est équivalente à la classification des idéaux monomiaux libres de carrés ayant une résolution linéaire. Pour cette raison dans cette thèse nous considérons seulement le cas d'idéaux monomiaux libres de carrés. De plus, le théorème de Eagon-Reiner établit une dualité entre les idéaux monomiaux libres de carrés ayant une résolution linéaire et les idéaux monomiaux libres de carrés Cohen-Macaulay, ce qui montre que le problème de classification des idéaux monomiaux libres de carrés ayant une résolution linéaire est très difficile. Nous rappelons que les idéaux monomiaux libres de carrés sont en correspondance biunivoque avec les complexes simpliciaux d'une part, et d'autre part avec les clutters. Ces correspondances nous motivent pour utiliser les propriétés combinatoires des complexes simpliciaux et des clutters pour obtenir des résultats algébriques. La classification des idéaux monomiaux libres de carrés ayant une résolution linéaire engendrés en degré 2 a été faite par Froberg en 1990. Froberg a observé que l'idéal des circuits d'un graphe G a une résolution 2-linéaire si et seulement si G est un graphe de cordes, i.e. il n'a pas de cycles minimaux de longueur plus grande que 4. Dans [Em, ThVt, VtV, W] les auteurs ont partiellement généralisé les résultats de Froberg à des idéaux engendrés en degré >2. Ils ont introduit plusieurs définitions de clutters de cordes et démontré que les idéaux de circuits correspondant ont une résolution linéaire. Nous pouvons voir les cycles du point de vue topologique, comme la triangulation d'une courbe fermée, dans cette thèse nous utiliserons cette idée pour étudier des clutters associés à des triangulation de pseudo-manifolds en vue d'obtenir une généralisation partielle des résultats de Froberg à des idéaux engendrés en degré >2. Nous comparons notre travail à ceux de [Em, ThVt, VtV, W]. Nous présentons nos résultats dans le chapitres 4 et 5. / In this thesis, we study square-free monomial ideals of the polynomial ring S which have a linear resolution. By remarkable result of Bayer and Stilman [BS] and the technique of polarization, classification of ideals with linear resolution is equivalent to classification of square-free monomial ideals with linear resolution. For this reason, we consider only square-free monomial ideals in S. However, classification of square-free monomial ideals with linear resolution seems to be so difficult because by Eagon-Reiner Theorem [ER], this is equivalent to classification of Cohen-Macaulay ideals. It is worth to note that, square-free monomial ideals in S are in one-to-one correspondence to Stanley-Reisener ideals of simplicial complexes on one hand and the circuit ideal of clutters from another hand. This correspondence motivated mathematicians to use the combinatorial and geometrical properties of these objects in order to get the desired algebraic results. Classification of square-free monomial ideals with 2-linear resolution, was successfully done by Froberg [Fr] in 1990. Froberg observed that the circuit ideal of a graph G has a 2-linear resolution if and only if G is chordal, that is, G does not have an induced cycle of length > 3. In [Em, ThVt, VtV, W] the authors have partially generalized the Fr¨oberg's theorem for degree greater than 2. They have introduced several definitions of chordal clutters and proved that, their corresponding circuit ideals have linear resolutions. Viewing cycles as geometrical objects (triangulation of closed curves), in this thesis we try to generalize the concept of cycles to triangulation of pseudo-manifolds and get a partial generalization of Froberg's theorem for higher dimensional hypergraphs. All the results in Chapters 4 and 5 and some results in Chapter 3 are devoted to be the original results.
185

Sobre a fibra especial e o teorema de Risler-Teissier para filtrações / On fiber cone and Risler-Teissier theorem to fibration

Pedro Henrique Apoliano Albuquerque Lima 26 February 2013 (has links)
Seja (R;m) um anel Noetheriano local e R \'CONTÉM\' \'iota IND. 1\' \'CONTÉM\' \'iota IND. 2\' \'CONTÉM ... uma filtração de ideais de R. Podemos então construir a álgebra graduada F(\'\\Im) := \'SOMA DIRETA IND. n > OU = 0 POT. \'iota IND. n / \'m \'iota IND. n\', chamada de fibra especial. Esta tese objetiva a pesquisa deste anel. Investigamos sobre a sua propriedade de ser Gorenstein e a sua regularidade de Castelnuovo-Mumford. Outro objetivo, é generalizarmos o teorema de Risler-Teissier (sobre multiplicidades mistas) para o caso de filtrações de Hilbert / Let (R;m) be a Noetherian local ring and R \'CONTAINS\' \'iota IND. 1\' \'CONTAINS\' \'iota IND. 2\' \'CONTAINS\' ... a filtration of ideals in R. We may then construct the graded algebra F(\\Im) := \'DIRECT SUM\' IND. n > OR = \'0 POT. \'iota\' IND. n / \'m \'iota IND. n\' , which is called fiber cone. This thesis has the goal to research about this graded ring. We investigate its Gorenstein property and its Castelnuovo-Mumford regularity. Another aim is to generalize the Risler-Teissiers theorem (about mixed multiplicities) for the case of Hilbert filtration
186

Elementos finitos quadrilaterais Hermitianos de alta regularidade gerados pela partição de unidade aplicados na solução de problemas de elasticidade e elastodinâmica

Mazzochi, Rudimar January 2014 (has links)
Neste trabalho foram desenvolvidas as funções de interpolação com regularidades C1 e C2, utilizando o Método da Partição de Unidade, referentes ao elemento quadrilateral de quatro nós. Estes elementos quadrilaterais Hermitianos de regularidade C1 e C2 foram implementados em uma plataforma própria de elementos finitos, considerando uma estratégia do tipo sub-paramétrica. De forma comparativa com os elementos Lagrangeanos de regularidade C0 e diferentes ordens polinomiais, os elementos de regularidade C1 e C2 foram aplicados na solução de: problemas clássicos de elasticidade plana infinitesimal isotrópica; aproximação das frequências naturais de vibração livre de barras e viga; pro- pagação de onda elástica em barra devido à aplicação de força impulsiva. Os resultados obtidos mostraram que foi possível se obter um maior percentual de frequências naturais aproximadas do espectro discreto, dado um certo nível de erro máximo, com os elementos de regularidade C1 e C2 em comparação com os elementos Lagrangeanos de regularidade C0 de quatro, oito, dezesseis e vinte e cinco nós. Quanto ao problema de propagação de onda elástica devido à aplicação de força impulsiva, as soluções obtidas com os elementos de regularidade C1 e C2 também apresentaram-se satisfatórias em relação à solução ana- lítica e às soluções aproximadas obtidas com os elementos Lagrangeanos de regularidade C0 de quatro e oito nós. Por outro lado, nas simulações dos problemas de elasticidade plana infinitesimal isotrópica, os elementos de regularidade C1 e C2 não apresentaram um comportamento satisfatório. Os erros relativos em normas L2 e de energia da solução aproximada foram maiores do que aqueles obtidos com o elemento Lagrangeano de regularidade C0 de oito nós, por exemplo, e as taxas de convergência em norma de energia obtidas com tais elementos foram inferiores às preditas pelo estimador de erro a priori. / In this work the shape functions with regularity C1 e C2 were developed, by means of the Partition of Unity Method, concerning to the four-node quadrilateral element. These Hermitian quadrilateral elements with regularity C1 e C2 were implemented in an own platform of finite elements, considering the subparametric strategy. Comparatively with the C 0 regularity Lagrangian elements of different polynomial order, C1 and C2 regularity elements were applied in simulations of: classical isotropic infinitesimal plane elasticity problems; approximation of natural frequencies of free vibration for bars and beam; elastic wave propagation in bar caused by forced vibration with impulsive loading applied. The results obtained showed that was possible to get a major number of natural frequencies of free vibration for the discrete spectrum, given a certain level of error, for C1 and C2 regularity elements in comparison with C 0 regularity Lagrangian elements of four, eight, sixteen and twenty-five nodes. Regarding to the elastic wave propagation problem in bar due to the application of impulsive loading, the solution obtained with C1 and C2 regularity elements also presented satisfactory results with relation to the analytical solution and those obtained with C 0 regularity Lagrangian elements with four and eight nodes. On the other hand, for isotropic infinitesimal plane elasticity problems, C1 and C2 regularity elements did not present satisfactory results. Relative errors in L2 and energy norms of approximate solution were greater than those computed for the C 0 Lagrangian element of eight nodes, for example, and convergence rates obtained with the C1 and C2 regularity elements were lower than those predicted by the a priori error estimator.
187

Elementos finitos quadrilaterais Hermitianos de alta regularidade gerados pela partição de unidade aplicados na solução de problemas de elasticidade e elastodinâmica

Mazzochi, Rudimar January 2014 (has links)
Neste trabalho foram desenvolvidas as funções de interpolação com regularidades C1 e C2, utilizando o Método da Partição de Unidade, referentes ao elemento quadrilateral de quatro nós. Estes elementos quadrilaterais Hermitianos de regularidade C1 e C2 foram implementados em uma plataforma própria de elementos finitos, considerando uma estratégia do tipo sub-paramétrica. De forma comparativa com os elementos Lagrangeanos de regularidade C0 e diferentes ordens polinomiais, os elementos de regularidade C1 e C2 foram aplicados na solução de: problemas clássicos de elasticidade plana infinitesimal isotrópica; aproximação das frequências naturais de vibração livre de barras e viga; pro- pagação de onda elástica em barra devido à aplicação de força impulsiva. Os resultados obtidos mostraram que foi possível se obter um maior percentual de frequências naturais aproximadas do espectro discreto, dado um certo nível de erro máximo, com os elementos de regularidade C1 e C2 em comparação com os elementos Lagrangeanos de regularidade C0 de quatro, oito, dezesseis e vinte e cinco nós. Quanto ao problema de propagação de onda elástica devido à aplicação de força impulsiva, as soluções obtidas com os elementos de regularidade C1 e C2 também apresentaram-se satisfatórias em relação à solução ana- lítica e às soluções aproximadas obtidas com os elementos Lagrangeanos de regularidade C0 de quatro e oito nós. Por outro lado, nas simulações dos problemas de elasticidade plana infinitesimal isotrópica, os elementos de regularidade C1 e C2 não apresentaram um comportamento satisfatório. Os erros relativos em normas L2 e de energia da solução aproximada foram maiores do que aqueles obtidos com o elemento Lagrangeano de regularidade C0 de oito nós, por exemplo, e as taxas de convergência em norma de energia obtidas com tais elementos foram inferiores às preditas pelo estimador de erro a priori. / In this work the shape functions with regularity C1 e C2 were developed, by means of the Partition of Unity Method, concerning to the four-node quadrilateral element. These Hermitian quadrilateral elements with regularity C1 e C2 were implemented in an own platform of finite elements, considering the subparametric strategy. Comparatively with the C 0 regularity Lagrangian elements of different polynomial order, C1 and C2 regularity elements were applied in simulations of: classical isotropic infinitesimal plane elasticity problems; approximation of natural frequencies of free vibration for bars and beam; elastic wave propagation in bar caused by forced vibration with impulsive loading applied. The results obtained showed that was possible to get a major number of natural frequencies of free vibration for the discrete spectrum, given a certain level of error, for C1 and C2 regularity elements in comparison with C 0 regularity Lagrangian elements of four, eight, sixteen and twenty-five nodes. Regarding to the elastic wave propagation problem in bar due to the application of impulsive loading, the solution obtained with C1 and C2 regularity elements also presented satisfactory results with relation to the analytical solution and those obtained with C 0 regularity Lagrangian elements with four and eight nodes. On the other hand, for isotropic infinitesimal plane elasticity problems, C1 and C2 regularity elements did not present satisfactory results. Relative errors in L2 and energy norms of approximate solution were greater than those computed for the C 0 Lagrangian element of eight nodes, for example, and convergence rates obtained with the C1 and C2 regularity elements were lower than those predicted by the a priori error estimator.
188

A regularidade de Castelnuovo-Mumford de módulos sobre anéis de polinômios

Santos, Júnio Teles dos 20 February 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / David Mumford introduced the concept of regularity of a coherent beam into the projective space in terms of local cohomology, generalizing a classic argument of Castelnuovo. In this dissertation under view of commutative algebra, we will introduce the concept of regularity of finitely generated graduated modules on the ring of polynomials. First, we perform a preliminary study on dimension theory and especially on Hilbert’s function. We also studied the basics of Cohen- Macaulay modules, properties of Betti’s graduated numbers, and the local cohomology functors. In the main chapter, we define the regularity of Castelnuovo-Mumford using the free resolution shifts. Soon after, we show that the definition of regularity can be given in terms of local cohomology, with emphasis on the cases of Artinian and Cohen-Macaulay modules. / David Mumford introduziu o conceito de regularidade de um feixe coerente no espac¸o projetivo em termos de cohomologia local, generalizando um argumento cl´assico de Castelnuovo. Nessa dissertac¸ ˜ao sob a vis˜ao da ´algebra comutativa, introduziremos o conceito de regularidade de m´odulos graduados finitamente gerados sobre o anel de polinˆomios. Primeiramente realizamos um estudo preliminar sobre teoria da dimens˜ao e em especial sobre a func¸ ˜ao de Hilbert. Tamb´em estudamos noc¸ ˜oes b´asicas em m´odulos Cohen-Macaulay, propriedades dos n´umeros graduados de Betti e dos funtores de cohomologia local. No cap´ıtulo principal, definimos a regularidade de Castelnuovo-Mumford utilizando os shifts de resoluc¸ ˜oes livres. Logo ap´os, mostramos que a definic¸ ˜ao de regularidade pode ser dada em termos de cohomologia local, dando ˆenfase aos casos de m´odulos Artinianos e Cohen-Macaulay. / São Cristóvão, SE
189

Sobre a topologia das fibrações de Milnor / On the topology of the Milnor fibrations

Rafaella de Souza Martins 16 February 2018 (has links)
Nesta tese abordaremos dois tipos de problemas relacionados aos célebres Teorema da Fibração de Milnor e Teorema da Fibração de Milnor-Lê para o caso real com valores críticos não isolados. Primeiramente, asseguramos fibrações do tipo Milnor-Lê para F : (Xm, 0) &rarr; (Yn, 0), germe de aplicação subanalítico com X e Y espaços subanalíticos sobre C \\ {0} uma curva subanalítica conexa em Y e sobre um subespaço analítico suave W &sub; Y de dimensão p, n &ge; p &ge; 2, sob algumas condições. Em particular, mostramos a existência das fibrações sobre o discriminantes de germe de aplicações subanalíticos, caso esse ainda não estudado na literatura, normalmente o conjunto dos valores críticos são desconsiderados. Finalizando nossa análise da categoria subanalítica, certificamos que existe a fibração de Milnor-Lê para f : (X, 0) &rarr;(Rp, 0), com dimensão de X maior que p &ge; 2, subanalítica e X subanalítico com valores críticos não isolados, definindo d-regularidade. Abordamos estes problemas utilizando resultados de campos de vetores rugosos. Em uma segunda etapa apresentamos um novo critério necessário e suficiente para verificar a importante propriedade de transversalidade de um germe de aplicação real f de classe Cl, l &ge; 1. Fazendo uso também de uma recente ferramenta desenvolvida, a D-regularidade, verificamos condições para a existência das fibrações do germe de aplicação &Psi; F, X : (Cn, 0) &rarr; (C, 0) não holomorfo, dado por &Psi; (z, z&#772;) = &Sigma;nj=1 kjtjzj a<sub<jzj bj, aj, bj &ge; 0 com aj = bj para pelo menos um j e aj &ne; bj para ao menos um j, com j = 1, ... , n. Observamos que &Psi;F, X são polinômios homogêneos pesados mistos com R+ -ação. Consideramos &Psi;F, X : (R2n ,0) &rarr; (R2, 0) germe de aplicação analítico real. Estudamos a topologia dessas fibrações nos reais, constatando que o discriminante tem dimensão 1 e por isso tem ambas as fibrações conhecidas. Por fim exibimos um homeomorfismo entre as fibras dos valores regulares e dos valores críticos. / In this thesis two types of problems related to the famous Milnor Fibration Theorem and Milnor-Lê Fibration Theorem for the real case with non-isolated critical values will be addressed. Primarily, we assure the fibrations of type Milnor-Lê for the germ F : (X, 0) &rarr; (Y, 0) subanalytic with X and Y subanalytic spaces on C \\ {0} a subanalytic connected curve in Y and over a smooth analytical subspace W &sub; Y of dimension p, n &ge p &ge; 2, under some conditions. In particular, we show the existence of the fibrations about the discriminants of subanalytical map-germ, if this not been studied in the literature, usually the set of critical values are disregarded. Finalizing our analysis of this subanalytic category, we certify that there exist the fibrations of type Milnor-Lê to f : (X, 0) &rarr; (Rp, 0), with dimension of X greater than p &ge; 2, subanalytic and X subanalytic with non-isolated critical values, setting d -regularity. We address these problems using results of the rugose vector fields. In a second part, we present a new necessary and sufficient criterion to verify the important transversality property of a real map-germ f of class Cl, l &ge; 1. Using a recent developed tool, D-regularity, we verify conditions for the existence of the fibrations of map-germ &Psi; F, X : (Cn, 0) &rarr; (C, 0) non holomorphic, given by &Psi; (z, z&#772;) = &Sigma;nj=1 kjtjzj ajzb<sup<j, aj, bj &ge; 0 with aj = bj for at least one j and aj &ne; bj for at leeast one j = 1, ..., n. We note that &Psi; F, X are mixed weighted homogeneous polynomials with R+-action. We consider &Psi;F, X : (R2n, 0) &rarr; (R2, 0) real analytic map-germ. We studied the topology of these fibrations, noting that the discriminant has dimension 1 and therefore has both the fibrations known. Lastly we show a homeomorphism between the fibers of the regular values and the critical values for a case special this family.
190

Processus d’évolution discontinus de Moreau et stabilité de la prox-régularité : Applications à l’optimisation non-convexe et aux équations généralisée / Discontinuous Moreau’s sweeping process and stability of the prox-regularity : Applications to nonconvex optimization and generalized equations

Nacry, Florent 26 June 2017 (has links)
Cette thèse est consacrée, d'une part, à l'étude d'existence de solutions pour des problèmes d'évolution et, d'autre part, à la stabilité de la propriété de prox-régularité ensembliste. Nous étudions dans la première partie des processus de rafle de Moreau perturbés et discontinu du premier et du second ordre. L'ensemble mouvant est prox-régulier dans un espace de Hilbert réel quelconque et sa variation est contrôlé par une mesure de Radon. Des applications à la théorie de la complémentarité et à celle des inéquations variationnelles sont présentées. Dans la seconde partie, on donne des conditions suffisantes assurant la prox-régularité d'ensembles décrit par des contraintes non nécessairement lisses sous forme d'inégalités et/ ou d'égalités et plus généralement d'ensembles de solutions d'équations généralisées. On y développe également des conditions vérifiables assurant la préservation de la prox-régularité vis-à-vis d'opérations ensemblistes : les cas de l'intersection, d'image directe, de pré-image, d'union et projection sur un sous-espace sont considérés. / In this dissertation, we study, on the one hand, the existence of solutions for some evolution problems and, on the other hand, the stability of prox-regularity under set operations. The first topic is devoted to first and second order nonconvex perturberd Moreau's sweeping processes in infinite dimensional framework. The moving set is assumed to be prox-regular and moved in a bounded variation way. Applications to the theory of complementarity problems and evolution variational inequalities are given. In the other topic, we first give verifiable sufficient conditions ensuring the prox-regularity of constrained sets and more generally for solution sets of generalized equations. We also develop the preservation of prox-regularity under set operations as intersection, direct image, inverse image, union and projection along a vector space.

Page generated in 0.0254 seconds