Spelling suggestions: "subject:"[een] SEARCH ENGINE"" "subject:"[enn] SEARCH ENGINE""
211 |
The Legal Implications of Internet Marketing : Exploiting the Digital Marketplace Within the Boundaries of the LawMizrahi, Sarit 12 1900 (has links)
Au cours des dernières années, le domaine de la consommation a grandement évolué. Les agents de marketing ont commencé à utiliser l’Internet pour influencer les consommateurs en employant des tactiques originales et imaginatives qui ont rendus possible l’atteinte d'un niveau de communication interpersonnelle qui avait précédemment été insondable. Leurs interactions avec les consommateurs, en utilisant la technologie moderne, se manifeste sous plusieurs formes différentes qui sont toutes accompagnés de leur propre assortiment de problèmes juridiques. D’abord, il n'est pas rare pour les agents de marketing d’utiliser des outils qui leur permettent de suivre les actions des consommateurs dans le monde virtuel ainsi que dans le monde physique. Les renseignements personnels recueillis d'une telle manière sont souvent utilisés à des fins de publicité comportementale en ligne – une utilisation qui ne respecte pas toujours les limites du droit à la vie privée. Il est également devenu assez commun pour les agents de marketing d’utiliser les médias sociaux afin de converser avec les consommateurs. Ces forums ont aussi servi à la commission d’actes anticoncurrentiels, ainsi qu’à la diffusion de publicités fausses et trompeuses – deux pratiques qui sont interdites tant par la loi sur la concurrence que la loi sur la protection des consommateurs. Enfin, les agents de marketing utilisent diverses tactiques afin de joindre les consommateurs plus efficacement en utilisant diverses tactiques qui les rendent plus visible dans les moteurs de recherche sur Internet, dont certaines sont considérés comme malhonnêtes et pourraient présenter des problèmes dans les domaines du droit de la concurrence et du droit des marques de commerce. Ce mémoire offre une description détaillée des outils utilisés à des fins de marketing sur Internet, ainsi que de la manière dont ils sont utilisés. Il illustre par ailleurs les problèmes juridiques qui peuvent survenir à la suite de leur utilisation et définit le cadre législatif régissant l’utilisation de ces outils par les agents de marketing, pour enfin démontrer que les lois qui entrent en jeu dans de telles circonstances peuvent, en effet, se révéler bénéfiques pour ces derniers d'un point de vue économique. / The evolution of consumerism in recent years has been nothing short of remarkable. The unprecedented use of the Internet by marketers to influence consumers in original and imaginative ways has rendered possible a level of communicative efficiency that had previously been unfathomable. Their interaction with consumers using modern technology manifests itself in several different forms – all of which are accompanied by their own assortment of legal issues. To begin with, it is not unheard of for marketers to use tools meant to track the behaviour of individuals throughout both the virtual and physical worlds. The personal information collected in such a manner is often utilized for Online Behavioural Advertising purposes – a use which does not always respect the boundaries of privacy law. It has also become rather common for marketers to utilize online social media to promote conversations with consumers. It has occurred, however, that these forums have also been utilized to further the anti-competitive ambitions of companies while also serving as an outlet for false advertising – two eventualities that are prohibited by both competition laws and consumer protection laws. Finally, marketers utilize various tactics in order to more successfully reach consumers through online search engines – a practice known as Search Engine Marketing – some of which are considered to be dishonest and could present issues from both competition law and trademark law perspectives. This thesis essentially provides a detailed description of these tools and the manners in which they are utilized and then proceeds to illustrate the legal issues that may arise as a result of their use. In doing so, it outlines the legal boundaries within which marketers must use these tools so as to ultimately demonstrate that the laws that come into play under such circumstances may, in fact, prove to be beneficial to marketers from an economic perspective.
|
212 |
Flight search engine CPU consumption predictionTao, Zhaopeng January 2021 (has links)
The flight search engine is a technology used in the air travel industry. It allows the traveler to search and book for the best flight options, such as the combination of flights while keeping the best services, options, and price. The computation for a flight search query can be very intensive given its parameters and complexity. The project goal is to predict the flight search queries computation cost for a new flight search engine product when dealing with parameters change and optimizations. The problem of flight search cost prediction is a regression problem. We propose to solve the problem by delimiting the problem based on its business logic and meaning. Our problem has data defined as a graph, which is why we have chosen Graph Neural Network. We have investigated multiple pretraining strategies for the evaluation of node embedding concerning a realworld regression task, including using a line graph for the training. The embeddings are used for downstream regression tasks. Our work is based on some stateoftheart Machine Learning, Deep Learning, and Graph Neural Network methods. We conclude that for some business use cases, the predictions are suitable for production use. In addition, the prediction of tree ensemble boosting methods produces negatives predictions which further degrade the R2 score by 4% because of the business meaning. The Deep Neural Network outperformed the most performing Machine Learning methods by 8% to 12% of R2 score. The Deep Neural Network also outperformed Deep Neural Network with pretrained node embedding from the Graph Neural Network methods by 11% to 17% R2 score. The Deep Neural Network achieved 93%, 81%, and 63% R2 score for each task with increasing difficulty. The training time range from 1 hour for Machine Learning models, 2 to 10 hours for Deep Learning models, and 8 to 24 hours for Deep Learning model for tabular data trained end to end with Graph Neural Network layers. The inference time is around 15 minutes. Finally, we found that using Graph Neural Network for the node regression task does not outperform Deep Neural Network. / Flygsökmotor är en teknik som används inom flygresebranschen. Den gör det möjligt för resenären att söka och boka de bästa flygalternativen, t.ex. kombinationer av flygningar med bästa service, alternativ och pris. Beräkningen av en flygsökning kan vara mycket intensiv med tanke på dess parametrar och komplexitet. Projektets mål är att förutsäga beräkningskostnaden för flygsökfrågor för en ny produkt för flygsökmotor när parametrar ändras och optimeringar görs. Problemet med att förutsäga kostnaderna för flygsökning är ett regressionsproblem. Vi föreslår att man löser problemet genom att avgränsa det utifrån dess affärslogik och innebörd. Vårt problem har data som definieras som en graf, vilket är anledningen till att vi har valt Graph Neural Network. Vi har undersökt flera förträningsstrategier för utvärdering av nodinbäddning när det gäller en regressionsuppgift från den verkliga världen, bland annat genom att använda ett linjediagram för träningen. Inbäddningarna används för regressionsuppgifter i efterföljande led. Vårt arbete bygger på några toppmoderna metoder för maskininlärning, djupinlärning och grafiska neurala nätverk. Vi drar slutsatsen att förutsägelserna är lämpliga för produktionsanvändning i vissa Vi drar slutsatsen att förutsägelserna är lämpliga för produktionsanvändning i vissa fall. Dessutom ger förutsägelserna från trädens ensemble av boostingmetoder negativa förutsägelser som ytterligare försämrar R2poängen med 4% på grund av affärsmässiga betydelser. Deep Neural Network överträffade de mest effektiva metoderna för maskininlärning med 812% av R2poängen. Det djupa neurala nätverket överträffade också det djupa neurala nätverket med förtränad node embedding från metoderna för grafiska neurala nätverk med 11 till 17% av R2poängen. Deep Neural Network uppnådde 93, 81 och 63% R2poäng för varje uppgift med stigande svårighetsgrad. Träningstiden varierar från 1 timme för maskininlärningsmodeller, 2 till 10 timmar för djupinlärningsmodeller och 8 till 24 timmar för djupinlärningsmodeller för tabelldata som tränats från början till slut med grafiska neurala nätverkslager. Inferenstiden är cirka 15 minuter. Slutligen fann vi att användningen av Graph Neural Network för uppgiften om regression av noder inte överträffar Deep Neural Network.
|
213 |
The Legal Implications of Internet Marketing : Exploiting the Digital Marketplace Within the Boundaries of the LawMizrahi, Sarit 12 1900 (has links)
Au cours des dernières années, le domaine de la consommation a grandement évolué. Les agents de marketing ont commencé à utiliser l’Internet pour influencer les consommateurs en employant des tactiques originales et imaginatives qui ont rendus possible l’atteinte d'un niveau de communication interpersonnelle qui avait précédemment été insondable. Leurs interactions avec les consommateurs, en utilisant la technologie moderne, se manifeste sous plusieurs formes différentes qui sont toutes accompagnés de leur propre assortiment de problèmes juridiques. D’abord, il n'est pas rare pour les agents de marketing d’utiliser des outils qui leur permettent de suivre les actions des consommateurs dans le monde virtuel ainsi que dans le monde physique. Les renseignements personnels recueillis d'une telle manière sont souvent utilisés à des fins de publicité comportementale en ligne – une utilisation qui ne respecte pas toujours les limites du droit à la vie privée. Il est également devenu assez commun pour les agents de marketing d’utiliser les médias sociaux afin de converser avec les consommateurs. Ces forums ont aussi servi à la commission d’actes anticoncurrentiels, ainsi qu’à la diffusion de publicités fausses et trompeuses – deux pratiques qui sont interdites tant par la loi sur la concurrence que la loi sur la protection des consommateurs. Enfin, les agents de marketing utilisent diverses tactiques afin de joindre les consommateurs plus efficacement en utilisant diverses tactiques qui les rendent plus visible dans les moteurs de recherche sur Internet, dont certaines sont considérés comme malhonnêtes et pourraient présenter des problèmes dans les domaines du droit de la concurrence et du droit des marques de commerce. Ce mémoire offre une description détaillée des outils utilisés à des fins de marketing sur Internet, ainsi que de la manière dont ils sont utilisés. Il illustre par ailleurs les problèmes juridiques qui peuvent survenir à la suite de leur utilisation et définit le cadre législatif régissant l’utilisation de ces outils par les agents de marketing, pour enfin démontrer que les lois qui entrent en jeu dans de telles circonstances peuvent, en effet, se révéler bénéfiques pour ces derniers d'un point de vue économique. / The evolution of consumerism in recent years has been nothing short of remarkable. The unprecedented use of the Internet by marketers to influence consumers in original and imaginative ways has rendered possible a level of communicative efficiency that had previously been unfathomable. Their interaction with consumers using modern technology manifests itself in several different forms – all of which are accompanied by their own assortment of legal issues. To begin with, it is not unheard of for marketers to use tools meant to track the behaviour of individuals throughout both the virtual and physical worlds. The personal information collected in such a manner is often utilized for Online Behavioural Advertising purposes – a use which does not always respect the boundaries of privacy law. It has also become rather common for marketers to utilize online social media to promote conversations with consumers. It has occurred, however, that these forums have also been utilized to further the anti-competitive ambitions of companies while also serving as an outlet for false advertising – two eventualities that are prohibited by both competition laws and consumer protection laws. Finally, marketers utilize various tactics in order to more successfully reach consumers through online search engines – a practice known as Search Engine Marketing – some of which are considered to be dishonest and could present issues from both competition law and trademark law perspectives. This thesis essentially provides a detailed description of these tools and the manners in which they are utilized and then proceeds to illustrate the legal issues that may arise as a result of their use. In doing so, it outlines the legal boundaries within which marketers must use these tools so as to ultimately demonstrate that the laws that come into play under such circumstances may, in fact, prove to be beneficial to marketers from an economic perspective.
|
214 |
[en] ALUMNI TOOL: INFORMATION RECOVERY OF PERSONAL DATA ON THE WEB IN AUTHENTICATED SOCIAL NETWORKS / [pt] ALUMNI TOOL: RECUPERAÇÃO DE DADOS PESSOAIS NA WEB EM REDES SOCIAIS AUTENTICADASLUIS GUSTAVO ALMEIDA 02 August 2018 (has links)
[pt] O uso de robôs de busca para coletar informações para um determinado contexto sempre foi um problema desafiante e tem crescido substancialmente nos últimos anos. Por exemplo, robôs de busca podem ser utilizados para capturar dados de redes sociais profissionais. Em particular, tais redes permitem estudar as trajetórias profissionais dos egressos de uma universidade, e responder diversas perguntas, como por exemplo: Quanto tempo um ex-aluno da PUC-Rio leva para chegar a um cargo de relevância? No entanto, um problema de natureza comum a este cenário é a impossibilidade de coletar informações devido a sistemas de autenticação, impedindo um robô de busca de acessar determinadas páginas e conteúdos. Esta dissertação aborda uma solução para capturar dados, que contorna o problema de autenticação e automatiza o processo de coleta de dados. A solução proposta coleta dados de perfis de usuários de uma rede social profissional para armazenamento em banco de dados e posterior análise. A dissertação contempla ainda a possibilidade de adicionar diversas outras fontes de dados dando ênfase a uma estrutura de armazém de dados. / [en] The use of search bots to collect information for a given context has grown substantially in recent years. For example, search bots may be used to capture data from professional social networks. In particular, such social networks facilitate studying the professional trajectory of the alumni of a given university, and answer several questions such as: How long does a former student of PUC-Rio take to arrive at a management position? However, a common problem in this scenario is the inability to collect information due to authentication systems, preventing a search robot from accessing certain pages and content. This dissertation addresses a solution to capture data, which circumvents the authentication problem and automates the data collection process. The proposed solution collects data from user profiles for later database storage and analysis. The dissertation also contemplates the possibility of adding several other sources of data giving emphasis to a data warehouse structure.
|
215 |
Noções de grafos dirigidos, cadeias de Markov e as buscas do GoogleOliveira, José Carlos Francisco de 30 August 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper has as its main purpose to highlight some mathematical concepts,
which are behind the ranking given by a research made on the website mostly
used in the world: Google. At the beginning, we briefly approached some High
School’s concepts, such as: Matrices, Linear Systems and Probability. After that,
we presented some basic notions related to Directed Graphs and Markov Chains
of Discrete Time. From this last one, we gave more emphasis to the Steady State
Vector because it ensures foreknowledge results from long-term. These concepts
are extremely important to our paper, because they will be used to explain the
involvement of Mathematic behind the web search “Google”. Then, we tried to
detail the ranking operation of the search pages on Google, i.e., how the results of a
research are classified, determining which results are presented in a sequential way
in order of relevance. Finally we obtained “PageRank”, an algorithm which creates
what we call Google’s Matrices and ranks the pages of a search. We finished making
a brief comment about the historical arising of the web searches, from their founders
to the rise and hegemony of Google. / O presente trabalho tem como objetivo destacar alguns conceitos matemáticos
que estão por trás do ranqueamento dado por uma pesquisa feita no site de busca
mais usados do mundo, o “Google”. Inicialmente abordamos de forma breve alguns
conteúdos da matemática do ensino médio, a exemplo de: matrizes, sistemas lineares,
probabilidades. Em seguida são introduzidas noções básicas de grafos dirigidos e
cadeias de Markov de tempo discreto; essa última, é dada uma ênfase ao vetor estado
estacionário, por ele garantir resultados de previsão de longo prazo. Esses conceitos
são de grande importância em nosso trabalho, pois serão usados para explicar o
envolvimento da matemática por trás do site de buscas “Google”. Na sequência,
buscamos detalhar o funcionamento do ranqueamento das páginas de uma busca no
“Google”, isto é, como são classificados os resultados de uma pesquisa, determinando
quais resultados serão apresentados de modo sequencial em ordem de relevância.
Finalmente, chegamos na obtenção do “PageRank”, algoritmo que gera a chamada
Matriz do Google e ranqueia as páginas de uma busca. Encerramos com um breve
histórico do surgimento dos sites de buscas, desde os seus fundadores até a ascensão
e hegemonia do Google.
|
216 |
Návrh dílčí strategie při propagaci elektronického obchodu firmy / Proposal of the Partial Strategy for Promotion of E-shop of the CompanyŽenatová, Eva January 2014 (has links)
This thesis focuses on the definition of important terms in e-commerce for the proper functioning e-shop. It analyzes the current condition of an existing e-shop and on the basis of the weaknesses proposes a partial strategy for further promotion of trade.
|
217 |
A Study on Comparison Websites in the Airline Industry and Using CART Methods to Determine Key Parameters in Flight Search Conversion / En studie av jämförelsehemsidor i flygbranschen och tillämpningen av CART metoder för att analysera nyckelparametrar i konvertering av flygsökningar.Hansén, Jacob, Gustafsson, Axel January 2019 (has links)
This bachelor thesis in applied mathematics and industrial engineering and management aimed to identify relationships between search parameters in flight comparison search engines and the exit conversion rate, while also investigating how the emergence of such comparison search engines has impacted the airline industry. To identify such relationships, several classification models were employed in conjunction with several sampling methods to produce a predictive model using the program R. To investigate the impact of the emergence of comparison websites, Porter's 5 forces and a SWOT - analysis were employed to analyze findings of a literature study and a qualitative interview. The classification models developed performed poorly with regards to several assessments metrics which suggested that there were little to no significance in the relationship between the search parameters investigated and exit conversion rate. Porter's 5 forces and the SWOT-analysis suggested that the competitive landscape of the airline industry has become more competitive and that airlines which do not manage to adapt to this changing market environment will experience decreasing profitability. / Detta kandidatexamensarbete inriktat på tillämpad matematik och industriell ekonomi syftade till att identifiera samband mellan sökparametrar från flygsökmotorer och konverteringsgraden för utträde till ett flygbolags hemsida, och samtidigt undersöka hur uppkomsten av flygsökmotorer har påverkat flygindustrin för flygbolag. För att identifiera sådana samband, tillämpades flera klassificeringsmodeller tillsammans med stickprovsmetoder för att bygga en predikativ modell i programmet R. För att undersöka påverkan av flygsökmotorer tillämpades Porters 5 krafter och SWOT-analys som teoretiska ramverk för att analysera information uppsamlad genom en litteraturstudie och en intervju. Klassificeringsmodellerna som byggdes presterade undermåligt med avseende på flera utvärderingsmått, vilket antydde att det fanns lite eller inget samband mellan de undersökta sökparametrarna och konverteringsgraden för utträde. Porters 5 krafter och SWOT-analysen visade att flygindustrin hade blivit mer konkurrensutsatt och att flygbolag som inte lyckas anpassa sig efter en omgivning i ändring kommer att uppleva minskande lönsamhet.
|
218 |
Deep Neural Networks for Context Aware Personalized Music Recommendation : A Vector of Curation / Djupa neurala nätverk för kontextberoende personaliserad musikrekommendationBahceci, Oktay January 2017 (has links)
Information Filtering and Recommender Systems have been used and has been implemented in various ways from various entities since the dawn of the Internet, and state-of-the-art approaches rely on Machine Learning and Deep Learning in order to create accurate and personalized recommendations for users in a given context. These models require big amounts of data with a variety of features such as time, location and user data in order to find correlations and patterns that other classical models such as matrix factorization and collaborative filtering cannot. This thesis researches, implements and compares a variety of models with the primary focus of Machine Learning and Deep Learning for the task of music recommendation and do so successfully by representing the task of recommendation as a multi-class extreme classification task with 100 000 distinct labels. By comparing fourteen different experiments, all implemented models successfully learn features such as time, location, user features and previous listening history in order to create context-aware personalized music predictions, and solves the cold start problem by using user demographic information, where the best model being capable of capturing the intended label in its top 100 list of recommended items for more than 1/3 of the unseen data in an offine evaluation, when evaluating on randomly selected examples from the unseen following week. / Informationsfiltrering och rekommendationssystem har använts och implementeratspå flera olika sätt från olika enheter sedan gryningen avInternet, och moderna tillvägagångssätt beror påMaskininlärrning samtDjupinlärningför att kunna skapa precisa och personliga rekommendationerför användare i en given kontext. Dessa modeller kräver data i storamängder med en varians av kännetecken såsom tid, plats och användardataför att kunna hitta korrelationer samt mönster som klassiska modellersåsom matris faktorisering samt samverkande filtrering inte kan. Dettaexamensarbete forskar, implementerar och jämför en mängd av modellermed fokus påMaskininlärning samt Djupinlärning för musikrekommendationoch gör det med succé genom att representera rekommendationsproblemetsom ett extremt multi-klass klassifikationsproblem med 100000 unika klasser att välja utav. Genom att jämföra fjorton olika experiment,så lär alla modeller sig kännetäcken såsomtid, plats, användarkänneteckenoch lyssningshistorik för att kunna skapa kontextberoendepersonaliserade musikprediktioner, och löser kallstartsproblemet genomanvändning av användares demografiska kännetäcken, där den bästa modellenklarar av att fånga målklassen i sin rekommendationslista medlängd 100 för mer än 1/3 av det osedda datat under en offline evaluering,när slumpmässigt valda exempel från den osedda kommande veckanevalueras.
|
219 |
Разработка проекта сайта о горном туризме : магистерская диссертация / Web-Site Project Development on Mountain TourismБоровкова, Н. М., Borovkova, N. M. January 2018 (has links)
Магистерская диссертация «Разработка проекта сайта о горном туризме» состоит из введения, двух глав – теоретической и практической, заключения, библиографического списка, включающего 73 наименования, и пяти приложений. Цель исследования – разработать проект информационного сайта о горном туризме, основываясь на данных, собранных в ходе анализа информационных сайтов о горном туризме и в результате работы с научными источниками. Объект исследования – информационные сайты о горном туризме. Предмет – структурно-содержательные и визуальные особенности информационных сайтов о горном туризме. Подобрано доменное имя ресурса. Сформирована концепция дизайна сайта. Подобран шрифт и цветовая палитра ресурса, разработан логотип. Обосновано решение использовать для реализации проекта CMS (WordPress) в качестве основной и конструктор Tilda Publishing для работы в разделе «Отчеты». Разработан прототип и два варианта макета стартовой страницы. При помощи конструктора сайтов разработана цифровая история. Отдельные положения проведенного исследования были представлены на VI Международной научно-практической интернет-конференции «Книжное дело: достижения, проблемы, перспективы» (Екатеринбург, 2017) и Международной научно-практической интернет-конференции «Язык. Текст. Книга» (Екатеринбург, 2018). / The Master's thesis "Web-Site Project Development on Mountain Tourism" consists of an introduction, two chapters - theoretical and practical, conclusion, reference comprising of 73 titles, and five annexes. The study purpose is to develop a draft information web-site on mountain tourism based on data collected during the analysis of information web-sites on mountain tourism and as a result of working with the scientific sources. The study object is the information web-sites on mountain tourism. The study subject is the structural and visual features of the information web-sites on mountain tourism. The domain name of the resource is chosen. The concept of the web-site design is formed. The font and color palette are chosen, and a logo for the resource is developed. The decision to use the CMS (WordPress) as the main for the project implementation and the Tilda Publishing designer to work in the "Reports" section is justified. A prototype and two versions of the layout of the start page are developed. A digital story with the help of the web-site designer is developed. Separate provisions of the study made were presented at the VI International Scientific and Practical Internet Conference "Book Business: Achievements, Problems, Prospects" (Yekaterinburg, 2017) and the International Scientific and Practical Internet Conference "Language. Text. Book" (Yekaterinburg, 2018).
|
220 |
Semi-automated Ontology Generation for Biocuration and Semantic SearchWächter, Thomas 01 February 2011 (has links) (PDF)
Background:
In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed.
Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing.
Motivation:
The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences.
Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods.
Results:
The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results.
To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org.
|
Page generated in 0.0611 seconds