41 |
[en] PRODUCT DEVELOPMENT FOR THE FILM INDUSTRY: A CONJOINT ANALYSIS APPLICATION / [pt] CONCEPÇÃO DE FILMES DE LONGA-METRAGEM A PARTIR DE DIRETRIZES DE MERCADO: UMA APLICAÇÃO DE ANÁLISE CONJUNTAPEDRO HENRIQUE DE ALMEIDA QUADRA 21 July 2017 (has links)
[pt] Crescendo em média doze por cento ao ano no período de 2010 a 2015, a indústria de filmes no Brasil ainda é dominada por produtos importados. Visto que o importante apoio governamental recebido não foi suficiente para garantir a hegemonia dos produtos nacionais, percebe-se a necessidade da orientação para o mercado objetivando resultados superiores. Portanto, este estudo busca identificar características de produto que otimizem sua utilidade para o público alvo. Para tanto, a pesquisa levantou os atributos de produto mais importantes e seus respectivos níveis sob a perspectiva da indústria, avaliando-os com base em diretrizes de mercado para sugestão de novos produtos. Trata-se de uma aplicação de análise conjunta, na qual é possível calcular a utilidade de diferentes produtos para a amostra, o que gera insights importantes para os produtores nacionais. O levantamento de atributos e níveis foi feito através de grupos foco com executivos da indústria e com consumidores, para garantir o entendimento mútuo. Tais informações foram base para geração de um projeto fatorial fracionado, essencial para a exequibilidade da survey realizada em sequência. A análise dos resultados permitiu a identificação do produto ideal para a amostra, além de permitir a definição dos produtos ideais para doze segmentos definidos a priori. Os resultados indicam que produtos com elenco nacional e gravados em português possuem utilidades inferiores aos produtos com elenco misto ou internacional, gravados em inglês ou em idioma misto. Adicionalmente, quebrou-se o paradigma de que o pouco uso de efeitos especiais é uma grande desvantagem da produção nacional. Percebe-se que coproduções internacionais, que são alianças estratégicas pouco utilizadas atualmente, constituem alternativas que podem amplificar a utilidade dos produtos nacionais. As coproduções internacionais possibilitam a captação em mais mercados e, em consequência, o uso de elenco misto e maior investimentos em aspectos técnicos e artísticos. Ao fim e ao cabo essa estratégia tende a reduzir barreiras de entrada nos grandes mercados internacionais, o que facilita a exportação e aumenta a atratividade do produto para investidores. / [en] Growing twelve per cent on average each year, from 2010 to 2015, the film industry in Brazil remains dominated by imported products. Acknowledging that the government support received by this industry was not enough to ensure national products hegemony, the necessity for company s orientation toward the maketplace is perceived. The objective of this study is to identify which product s features optimize the product s utility for it s target market. For such purpose, this study identified which product s attributes were more relevant and their respective levels according to the industry and evaluated them using market directives to develop new products. This is study is an application of conjoint analysis, in which the utility of different products for the sample can be calculated and insights produced to help national producers. Focus-groups with executives and customers were conducted to identify the attributes and their levels and assure mutual understanding. Such data was used in the fractional factorial design, essential for survey s feasibility. Outcome analysis indicated the ideal product for the sample and for each of the twelve market segment defined a priori. They also shown that the utility of Brazilian cast and Portuguese as a spoken language is lower to the sample than the utility of multi-national cast using more than one language. In addition, the paradigm that Brazilian films were in a disadvantage because of it s lack or few usage of special effects was broken. International co-productions, which are strategic alliances rarely used by Brazilian producers, constitutes an alternative that may amplify the utility of Brazilian films. They enable multi-market fundraising and, by consequence, multi-national cast and bigger investments in technical and artistic aspects. In summary, this strategy tend to reduce entry barriers in bigger markets, which facilitates export and attract more investments.
|
42 |
[pt] APLICAÇÃO DE REDES TOTALMENTE CONVOLUCIONAIS PARA A SEGMENTAÇÃO SEMÂNTICA DE IMAGENS DE DRONES, AÉREAS E ORBITAIS / [en] APPLYING FULLY CONVOLUTIONAL ARCHITECTURES FOR THE SEMANTIC SEGMENTATION OF UAV, AIRBORN, AND SATELLITE REMOTE SENSING IMAGERY14 December 2020 (has links)
[pt] A crescente disponibilidade de dados de sensoriamento remoto vem criando novas oportunidades e desafios em aplicações de monitoramento de processos naturais e antropogénicos em escala global. Nos últimos anos, as técnicas de aprendizado profundo tornaram-se o estado da arte na análise de dados
de sensoriamento remoto devido sobretudo à sua capacidade de aprender automaticamente atributos discriminativos a partir de grandes volumes de dados. Um dos problemas chave em análise de imagens é a segmentação semântica, também conhecida como rotulação de pixels. Trata-se de atribuir uma classe a cada sítio de imagem. As chamadas redes totalmente convolucionais de prestam a esta função. Os anos recentes têm testemunhado inúmeras propostas de arquiteturas de redes totalmente convolucionais que
têm sido adaptadas para a segmentação de dados de observação da Terra. O presente trabalho avalias cinco arquiteturas de redes totalmente convolucionais que representam o estado da arte em segmentação semântica de imagens de sensoriamento remoto. A avaliação considera dados provenientes de diferentes plataformas: veículos aéreos não tripulados, aeronaves e satélites. Cada um destes dados refere-se a aplicações diferentes: segmentação de espécie arbórea, segmentação de telhados e desmatamento. O desempenho das redes é avaliado experimentalmente em termos de acurácia e da carga computacional associada. O estudo também avalia os benefícios da utilização do Campos Aleatórios Condicionais (CRF) como etapa de pósprocessamento para melhorar a acurácia dos mapas de segmentação. / [en] The increasing availability of remote sensing data has created new opportunities and challenges for monitoring natural and anthropogenic processes on a global scale. In recent years, deep learning techniques have become state of the art in remote sensing data analysis, mainly due to their ability
to learn discriminative attributes from large volumes of data automatically. One of the critical problems in image analysis is the semantic segmentation, also known as pixel labeling. It involves assigning a class to each image site. The so-called fully convolutional networks are specifically designed for this task. Recent years have witnessed numerous proposals for fully convolutional network architectures that have been adapted for the segmentation of Earth observation data. The present work evaluates five fully convolutional
network architectures that represent the state of the art in semantic segmentation of remote sensing images. The assessment considers data from different platforms: unmanned aerial vehicles, airplanes, and satellites. Three applications are addressed: segmentation of tree species, segmentation of roofs, and deforestation. The performance of the networks is evaluated experimentally in terms of accuracy and the associated computational load. The study also assesses the benefits of using Conditional Random Fields
(CRF) as a post-processing step to improve the accuracy of segmentation maps.
|
43 |
[pt] ABORDAGEM POR COORTES NO BRASIL E TENDÊNCIA NOSTÁLGICA UMA PERSPECTIVA DE MARKETING APLICADA A ATITUDES DO CONSUMIDOR / [es] ABORDAJE POR COHORTES NO BRASIL Y TENDENCIA NOSTÁLGICA UNA PERSPECTIVA DE MARKETING APLICADA A ACTITUTES DO CONSUMIDOR / [en] COHORTS APROACH IN BRAZIL AND NOSTALGIC TREND A MARKETING PERSPECTIVEJOAO RENATO DE SOUZA COELHO BENAZZI 05 March 2001 (has links)
[pt] Esta dissertação aborda o marketing de gerações. As
recentes alterações na estrutura e dinâmica populacional no
Brasil salientam a necessidade de melhor caracterização de
seus segmentos etários. Para marketing, uma questão
relevante é entender como envelhecerá a população no que
diz respeito aos seus hábitos de consumo. Observar esse
processo a partir da perspectiva dos coortes pode trazer
luz à compreensão dos comportamentos de consumo a partir
dos valores sedimentados em determinada época do ciclo de
vida dos consumidores. Conhecendo tais valores pode-se
melhor avaliar compostos de serviço e produto para cada
coorte e, sobretudo, como melhor implementar estratégias de
comunicação e abordagem do mercado.
No processo de envelhecimento três efeitos interagem:
efeitos coorte, idade e período. A tendência nostálgica
também interfere no processo, especialmente na manifestação
do efeito coorte.
Os resultados desta pesquisa apontam para a nostalgia como
característica psicográfica ou de estilo de vida. Não foram
encontrados indícios de que se trata de característica
ligada à idade. Os resultados apontam que a tendência
nostálgica parece sofrer influências marcantes de acordo
com o sexo e a classe social (ou nível de renda). A
influência do efeito coorte, de acordo com classificação
proposta por Motta, Rossi e Schewe (1999), sobre a
tendência nostálgica parece também relevante, embora os
dados apontem efeitos de menor intensidade quando
comparados aos ligados ao sexo e classe social.
Os resultados apontam para a relevância do efeito coorte
nas atitudes dos consumidores. A partir de classificação da
população brasileira em 6 coortes, foram testados vários
valores ligados a essas atitudes e propostas diretrizes
genéricas de abordagem de Marketing a tais segmentos. / [en] This dissertation approaches the marketing of generations.
The recent alterations in the structure and population
dynamics in Brazil point out the necessity of better
characterisation of its age segments.
For marketing, a relevant question is to understand how
this population will age in respect to its habits of
consumption. Observing this process from the perspective of
cohorts can bring light to the understanding of consumption
behaviours, as this point of view is based on values
sedimented in determined time of the cycle of life of the
consumers. Knowing such values may favor better evaluation
of product and service Marketing-mixes for each cohort and,
over all, improve implementation of communication and
market penetration strategies.
In the aging process three main effects interact: cohort,
age and period. The nostalgic trend also intervenes in the
process, especially in the manifestation of the cohort
effect.
The results of this research support the supposition that
nostalgia is a psicografic or life-style characteristic.
There had not been found indications that relate nostalgia
to the age effect. The results point that the nostalgic
trend seems to experience remarkable influences from sex
and social class (or income level). The influence of the
cohort effect, in accordance with classification of the
Brazilian population proposed by Motta, Rossi and Schewe
(1999), on the nostalgic trend also seems relevant; even
so, the data point effect of lesser intensity when compared
with those of sex and social class.
The results suggest that the cohort effect is relevant in
the effort of better understanding consumers attitudes.
Employing classification of the Brazilian population in 6
cohorts, several values related to consumers attitudes had
been tested and generic Marketing-based approaching
guidelines to such age-segments were proposed. / [es] Esta disertación aborda el marketing de generaciones. Las recientes alteraciones en la extructura y dinámica
populacional en Brasil señalan la necesidad de una mejor caracterización de sus segmentos etários. Para
marketing, entender como envejecerá la población en lo que respecta a sus hábitos de consumo constituye una
cuestión relevante. Observar este proceso a partir de la perspectiva de los cohortes puede ayudar en la
comprensión de los comportamientos de consumo a partir de los valores sedimentados en determinada época del
ciclo de vida de los consumidores. Conociendo tales valores, pueden ser evaluados compuestos de servicio y
productos para cada cohorte y, sobretodo, se pueden implementar estrategias de comunicación y abordaje de
mercado. En el proceso de envejecimento tres efectos interactuan: efectos cohorte, edad y período. La tendencia
nostálgica también interfiere en el proceso, especialmente en la manifestación del efecto cohorte. Los resultados
de esta investigación apuntan a la nostalgia como característica psicográfica o de estilo de vida. No fueron
encontrados indicios de que se trate de una característica vinculada a edad. Los resultados indican que la
tendencia nostálgica parece sufrir influencias marcantes de acuerdo al sexo y la clase social (o nível de renta). La
influencia del efecto cohorte, de acuerdo con la clasificación propuesta por Motta, Rossi e Schewe (1999), sobre la
tendencia nostálgica aparece también como relevante, aunque los datos indiquen efectos de menor intensidad
comparados a los vinculados a sexo y clase social. Los resultados apuntan para la relevancia del efecto cohorte
en las actitudes de los consumidores. A partir de la clasificación de la populación brasilera en 6 cohortes, se
experimentaron varios valores vinculados a esas actitudes y se propusieron directrizes genéricas de abordajem de
Marketing a tales segmentos.
|
44 |
[pt] SEGMENTAÇÃO DE FALHAS SÍSMICAS USANDO ADAPTAÇÃO DE DOMÍNIO NÃO SUPERVISIONADA / [en] SEISMIC FAULT SEGMENTATION USING UNSUPERVISED DOMAIN ADAPTATIONMAYKOL JIAMPIERS CAMPOS TRINIDAD 28 November 2023 (has links)
[pt] A segmentação de falhas sísmicas apresenta uma tarefa desafiadora edemorada na geofísica, especialmente na exploração e extração de petróleo egás natural. Métodos de Aprendizado Profundo (Deep Learning) têm mostradoum grande potencial para enfrentar esses desafios e oferecem vantagens emcomparação com métodos tradicionais. No entanto, abordagens baseadas emAprendizado Profundo geralmente requerem uma quantidade substancial dedados rotulados, o que contradiz o cenário atual de disponibilidade limitadade dados sísmicos rotulados. Para lidar com essa limitação, pesquisadores têmexplorado a geração de dados sintéticos como uma solução potencial paradados reais não rotulados. Essa abordagem envolve treinar um modelo emdados sintéticos rotulados e, posteriormente, aplicar diretamente ao conjuntode dados real. No entanto, a geração de dados sintéticos encontra o problemade deslocamento de domínio devido à complexidade das situações geológicasdo mundo real, resultando em diferenças na distribuição entre conjuntosde dados sintéticos e reais. Para mitigar o problema de deslocamento dedomínio na detecção de falhas sísmicas, propomos uma nova abordagem queutiliza técnicas de Adaptação de Domínio Não Supervisionada ou UnsupervisedDomain Adaptation (UDA). Nossa proposta envolve o uso de um conjunto dedados sintéticos para treinamento do modelo e sua adaptação a dois conjuntosde dados reais disponíveis publicamente na literatura. As técnicas de UDAescolhidas incluem Maximum Mean Discrepancy (MMD), Domain-AdversarialNeural Networks (DANN) e Fourier Domain Adaptation (FDA). MMD eDANN visam alinhar características em um espaço de características comumde n dimensões, minimizando discrepâncias e aumentando a confusão dedomínio por meio do treinamento adversarial, respectivamente. Por outro lado,FDA transfere o estilo de amostras reais para sintéticas usando TransformadaRápida de Fourier. Para os experimentos, utilizamos uma versão menor doUNet e sua variante Atrous UNet, que incorpora camadas convolucionaisdilatadas em seu gargalo. Além disso, o DexiNed (Dense Extreme InceptionNetwork), um modelo do estado da arte para detecção de bordas, foi empregadopara fornecer uma análise mais abrangente. Além disso, estudamos a aplicaçãode ajuste fino ou fine-tuning em conjuntos de dados rotulados para investigarseu impacto no desempenho, pois muitos estudos o têm utilizado para reduziro deslocamento de domínio.Os resultados finais demonstraram melhorias significativas no desempenho de detecção de falhas ao aplicar técnicas de UDA, com aumento médio deaté 13 por cento em métricas de avaliação como Intersection over Union e F1-score.Além disso, a abordagem proposta obteve detecções mais consistentes de falhassísmicas com menos falsos positivos, indicando seu potencial para aplicações nomundo real. Por outro lado, a aplicação de ajuste fino não demonstrou ganhossignificativos no desempenho, mas reduziu o tempo de treinamento. / [en] Seismic fault segmentation presents a challenging and time-consuming
task in geophysics, particularly in the exploration and extraction of oil and
natural gas. Deep Learning (DL) methods have shown significant potential to
address these challenges and offer advantages compared to traditional methods.
However, DL-based approaches typically require a substantial amount of labeled data, which contradicts the current scenario of limited availability of labeled
seismic data. To address this limitation, researchers have explored synthetic
data generation as a potential solution for unlabeled real data. This approach
involves training a model on labeled synthetic data and subsequently applying
it directly to the real dataset. However, synthetic data generation encounters
the domain shift problem due to the complexity of real-world geological situations, resulting in differences in distribution between synthetic and real datasets.
To mitigate the domain shift issue in seismic fault detection, we propose a novel
approach utilizing Unsupervised Domain Adaptation (UDA) techniques. Our
proposal involves using a synthetic dataset for model training and adapting it
to two publicly available real datasets found in the literature. The chosen UDA
techniques include Maximum Mean Discrepancy (MMD), Domain-Adversarial
Neural Networks (DANN), and Fourier Domain Adaptation (FDA). MMD
and DANN aim to align features in a common n-dimensional feature space by
minimizing discrepancy and increasing domain confusion through adversarial
training, respectively. On the other hand, FDA transfers the style from real to
synthetic samples using Fast Fourier Transform. For the experiments, we utilized a smaller version of UNet and its variant Atrous UNet, which incorporates
Dilated Convolutional layers in its bottleneck. Furthermore, DexiNed (Dense
Extreme Inception Network), a state-of-the-art model for edge detection, was
employed to provide a more comprehensive analysis. Additionally, we studied
the application of fine-tuning on labeled datasets to investigate its impact on
performance, as many studies have employed it to reduce domain shift.
The final results demonstrated significant improvements in fault detection performance by applying UDA techniques, with up to a 13 percent increase
in evaluation metrics such as Intersection over Union and F1-score on average. Moreover, the proposed approach achieved more consistent detections
of seismic faults with fewer false positives, indicating its potential for realworld applications. Conversely, the application of fine-tuning did not show a
significant gain in performance but did reduce the training time.
|
45 |
[pt] APLICAÇÕES DE APRENDIZADO PROFUNDO NO MONITORAMENTO DE CULTURAS: CLASSIFICAÇÃO DE TIPO, SAÚDE E AMADURECIMENTO DE CULTURAS / [en] APPLICATIONS OF DEEP LEARNING FOR CROP MONITORING: CLASSIFICATION OF CROP TYPE, HEALTH AND MATURITYGABRIEL LINS TENORIO 18 May 2020 (has links)
[pt] A eficiência de culturas pode ser aprimorada monitorando-se suas condições de forma contínua e tomando-se decisões baseadas em suas análises. Os dados para análise podem ser obtidos através de sensores de imagens e o processo de monitoramento pode ser automatizado utilizando-se algoritmos de reconhecimento de imagem com diferentes níveis de complexidade. Alguns dos algoritmos de maior êxito estão relacionados a abordagens supervisionadas de aprendizagem profunda (Deep Learning) as quais utilizam formas de Redes Neurais de Convolucionais (CNNs). Nesta dissertação de mestrado, empregaram-se modelos de aprendizagem profunda supervisionados para classificação, regressão, detecção de objetos e segmentação semântica em tarefas de monitoramento de culturas, utilizando-se amostras de imagens obtidas através de três níveis distintos: Satélites, Veículos Aéreos Não Tripulados (UAVs) e Robôs Terrestres Móveis (MLRs). Ambos satélites e UAVs envolvem o uso de imagens multiespectrais. Para o primeiro nível, implementou-se um modelo CNN baseado em Transfer Learning para a classificação de espécies vegetativas. Aprimorou-se o desempenho de aprendizagem do transfer learning através de um método de análise estatística recentemente proposto. Na sequência, para o segundo nível, implementou-se um algoritmo segmentação semântica multitarefa para a detecção de lavouras de cana-de-açúcar e identificação de seus estados (por exemplo, saúde e idade da cultura). O algoritmo também detecta a vegetação ao redor das lavouras, sendo relevante na busca por ervas daninhas. No terceiro nível, implementou-se um algoritmo Single Shot Multibox Detector para detecção de cachos de tomate. De forma a avaliar o estado dos cachos, utilizaram-se duas abordagens diferentes: uma implementação baseada em segmentação de imagens e uma CNN supervisionada adaptada para cálculos de regressão
capaz de estimar a maturação dos cachos de tomate. De forma a quantificar cachos de tomate em vídeos para diferentes estágios de maturação, empregou-se uma implementação de Região de Interesse e propôs-se um sistema de rastreamento o qual utiliza informações temporais. Para todos os
três níveis, apresentaram-se soluções e resultados os quais superam as linhas de base do estado da arte. / [en] Crop efficiency can be improved by continually monitoring their state and making decisions based on their analysis. The data for analysis can be obtained through images sensors and the monitoring process can be automated by using image recognition algorithms with different levels of complexity. Some of the most successful algorithms are related to supervised Deep Learning approaches which use a form of Convolutional Neural Networks (CNNs). In this master s dissertation, we employ supervised deep learning models for classification, regression, object detection, and semantic segmentation in crop monitoring tasks, using image samples obtained through three different levels: Satellites, Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs). Both satellites and UAVs levels involve the use of multispectral images. For the first level, we implement a CNN model based on transfer learning to classify vegetative species. We also improve the transfer learning performance by a newly proposed statistical analysis method. Next, for the second level, we implement a multi-task semantic segmentation algorithm to detect sugarcane crops and infer their state (e.g. crop health and age). The algorithm also detects the surrounding vegetation, being relevant in the search for weeds. In the third level, we implement a Single Shot Multibox detector algorithm to detect tomato clusters. To evaluate the cluster s state, we use two different approaches: an implementation based on image segmentation and a supervised CNN regressor capable of estimating their maturity. In order to quantify the tomato clusters in videos at different maturation stages, we employ a Region of Interest implementation and also a proposed tracking system which uses temporal information. For all the three levels, we present solutions and results that outperform state-of-the art baselines.
|
46 |
[pt] DESENVOLVIMENTO DE UMA METODOLOGIA PARA CARACTERIZAÇÃO DE FASES NO PELLET FEED UTILIZANDO MICROSCOPIA DIGITAL E APRENDIZAGEM PROFUNDA / [en] DEVELOPMENT OF A METHODOLOGY FOR PHASE CHARACTERIZATION IN PELLET FEED USING DIGITAL MICROSCOPY AND DEEP LEARNINGTHALITA DIAS PINHEIRO CALDAS 09 November 2023 (has links)
[pt] O minério de ferro é encontrado na natureza como agregado de minerais,
dentre os principais minerais presentes em sua composição estão: hematita,
magnetita, goethita e quartzo. Dada a importância do minério de ferro para a
indústria, há um crescente interesse por sua caracterização com o objetivo de avaliar
a qualidade do material. Com o avanço de pesquisas na área de análise de imagens
e microscopia, rotinas de caracterização foram desenvolvidas utilizando
ferramentas de Microscopia Digital e Processamento e Análise Digital de Imagens
capazes de automatizar grande parte do processo. Porém esbarrava-se em algumas
dificuldades, como por exemplo identificar e classificar as diferentes texturas das
partículas de hematita, as diferentes formas de seus cristais ou discriminar quartzo
e resina em imagens de microscopia ótica de luz refletida. Desta forma, a partir da
necessidade de se construir sistemas capazes de aprender e se adaptar a possíveis
variações das imagens deste material, surgiu a possibilidade de estudar a utilização
de ferramentas de Deep Learning para esta função. Este trabalho propõe o
desenvolvimento de uma nova metodologia de caracterização mineral baseada em
Deep Learning utilizando o algoritmo Mask R-CNN. Através do qual é possível
realizar segmentação de instâncias, ou seja, desenvolver sistemas capazes de
identificar, classificar e segmentar objetos nas imagens. Neste trabalho, foram
desenvolvidos dois modelos: Modelo 1 que realiza segmentação de instâncias para
as classes compacta, porosa, martita e goethita em imagens obtidas em Campo
Claro e o Modelo 2 que utiliza imagens adquiridas em Luz Polarizada
Circularmente para segmentar as classes monocristalina, policristalina e martita.
Para o Modelo 1 foi obtido F1-score em torno de 80 por cento e para o Modelo 2 em torno
de 90 por cento. A partir da segmentação das classes foi possível extrair atributos
importantes de cada partícula, como distribuição de quantidade, medidas de forma,
tamanho e fração de área. Os resultados obtidos foram muito promissores e indicam
que a metodologia desenvolvida pode ser viável para tal caracterização. / [en] Iron ore is found in nature as an aggregate of minerals. Among the main
minerals in its composition are hematite, magnetite, goethite, and quartz. Given the
importance of iron ore for the industry, there is a growing interest in its
characterization to assess the material s quality. With the advancement of image
analysis and microscopy research, characterization routines were developed using
Digital Microscopy and Digital Image Processing and Analysis tools capable of
automating a large part of the process. However, it encountered some difficulties,
such as identifying and classifying the different textures of hematite particles, the
different shapes of its crystals, or discriminating between quartz and resin in optical
microscopy images of reflected light. Therefore, from the need to build systems
capable of learning and adapting to possible variations of the images of this
material, the possibility of studying the use of Deep Learning tools for this function
arose. This work proposes developing a new mineral characterization methodology
based on Deep Learning using the Mask R-CNN algorithm. Through this, it is
possible to perform instance segmentation, that is, to develop systems capable of
identifying, classifying, and segmenting objects in images. In this work, two models
were developed: Model 1 performs segmentation of instances for the compact,
porous, martite, and goethite classes in images obtained in Bright Field, and Model
2 uses images acquired in Circularly Polarized Light to segment the classes
monocrystalline, polycrystalline and martite. For Model 1, F1-score was obtained
around 80 percent, and for Model 2, around 90 percent. From the class segmentation, it was possible to extract important attributes of each particle, such as quantity
distribution, shape measurements, size, and area fraction. The obtained results were
very promising and indicated that the developed methodology could be viable for
such characterization.
|
47 |
[pt] MONITORAMENTO DE MORANGOS: DETECÇÃO, CLASSIFICAÇÃO E SERVOVISÃO / [en] STRAWBERRY MONITORING: DETECTION, CLASSIFICATION, AND VISUAL SERVOINGGABRIEL LINS TENORIO 27 August 2024 (has links)
[pt] O presente trabalho inicia com uma investigação sobre o uso de modelos
de Aprendizado Profundo 3D para a detecção aprimorada de morangos em
túneis de cultivo. Focou-se em duas tarefas principais: primeiramente, a
detecção de frutas, comparando o modelo original MaskRCNN com uma
versão adaptada que integra informações de profundidade (MaskRCNN-D).
Ambos os modelos são capazes de classificar morangos baseados em sua
maturidade (maduro, não maduro) e estado de saúde (afetados por doença
ou fungo). Em segundo lugar, focou-se em identificar a região mais ampla
dos morangos, cumprindo um requisito para um sistema de espectrômetro
capaz de medir o conteúdo de açúcar das frutas. Nesta tarefa, comparouse um algoritmo baseado em contorno com uma versão aprimorada do
modelo VGG-16. Os resultados demonstram que a integração de dados
de profundidade no MaskRCNN-D resulta em até 13.7 por cento de melhoria no
mAP através de diversos conjuntos de teste de morangos, incluindo os
simulados, enfatizando a eficácia do modelo em cenários agrícolas reais e
simulados. Além disso, nossa abordagem de solução ponta-a-ponta, que
combina a detecção de frutas (MaskRCNN-D) e os modelos de identificação
da região mais ampla (VGG-16 aprimorado), mostra um erro de localização
notavelmente baixo, alcançando até 11.3 pixels de RMSE em uma imagem
de morango cortada de 224 × 224. Finalmente, explorou-se o desafio de
aprimorar a qualidade das leituras de dados do espectrômetro através do
posicionamento automático do sensor. Para tal, projetou-se e treinou-se um
modelo de Aprendizado Profundo com dados simulados, capaz de prever
a acurácia do sensor com base em uma imagem dada de um morango e o
deslocamento desejado da posição do sensor. Usando este modelo, calcula-se
o gradiente da saída de acurácia em relação à entrada de deslocamento. Isso
resulta em um vetor indicando a direção e magnitude com que o sensor deve
ser movido para melhorar a acurácia do sinal do sensor. Propôs-se então
uma solução de Servo Visão baseada neste vetor, obtendo um aumento
significativo na acurácia média do sensor e melhoria na consistência em
novas iterações simuladas. / [en] The present work begins with an investigation into the use of 3D Deep
Learning models for enhanced strawberry detection in polytunnels. We
focus on two main tasks: firstly, fruit detection, comparing the standard
MaskRCNN with an adapted version that integrates depth information
(MaskRCNN-D). Both models are capable of classifying strawberries based
on their maturity (ripe, unripe) and health status (affected by disease or
fungus). Secondly, we focus on identifying the widest region of strawberries,
fulfilling a requirement for a spectrometer system capable of measuring
their sugar content. In this task, we compare a contour-based algorithm
with an enhanced version of the VGG-16 model. Our findings demonstrate
that integrating depth data into the MaskRCNN-D results in up to a
13.7 percent improvement in mAP across various strawberry test sets, including
simulated ones, emphasizing the model s effectiveness in both real-world
and simulated agricultural scenarios. Furthermore, our end-to-end pipeline
approach, which combines the fruit detection (MaskRCNN-D) and widest
region identification models (enhanced VGG-16), shows a remarkably low
localization error, achieving down to 11.3 pixels of RMSE in a 224 × 224
strawberry cropped image. Finally, we explore the challenge of enhancing
the quality of the data readings from the spectrometer through automatic
sensor positioning. To this end, we designed and trained a Deep Learning
model with simulated data, capable of predicting the sensor accuracy based
on a given image of the strawberry and the subsequent displacement of
the sensor s position. Using this model, we calculate the gradient of the
accuracy output with respect to the displacement input. This results in a
vector indicating the direction and magnitude with which the sensor should
be moved to improve the sensor signal accuracy. A Visual Servoing solution
based on this vector provided a significant increase in the average sensor
accuracy and improvement in consistency across new simulated iterations.
|
48 |
[pt] MAPEAMENTO DA DISTRIBUIÇÃO POPULACIONAL ATRAVÉS DA DETECÇÃO DE ÁREAS EDIFICADAS EM IMAGENS DE REGIÕES HETEROGÊNEAS DO GOOGLE EARTH USANDO DEEP LEARNING / [en] POPULATION DISTRIBUTION MAPPING THROUGH THE DETECTION OF BUILDING AREAS IN GOOGLE EARTH IMAGES OF HETEROGENEOUS REGIONS USING DEEP LEARNINGCASSIO FREITAS PEREIRA DE ALMEIDA 08 February 2018 (has links)
[pt] Informações precisas sobre a distribuição da população são reconhecidamente importantes. A fonte de informação mais completa sobre a população é o censo, cujos os dados são disponibilizados de forma
agregada em setores censitários. Esses setores são unidades operacionais de tamanho e formas irregulares, que dificulta a análise espacial dos dados associados. Assim, a mudança de setores censitários para um conjunto de células regulares com estimativas adequadas facilitaria a análise. Uma metodologia a ser utilizada para essa mudança poderia ser baseada na classificação de imagens de sensoriamento remoto para a identificação de domicílios, que é a base das pesquisas envolvendo a população. A detecção de áreas edificadas é uma tarefa complexa devido a grande variabilidade de características de construção e de imagens. Os métodos usuais são complexos e muito dependentes de especialistas. Os processos automáticos dependem de grandes bases de imagens para treinamento e são sensíveis à variação de qualidade de imagens e características das construções e de ambiente. Nesta tese propomos a utilização de um método automatizado para detecção de edificações em imagens Google Earth que mostrou bons
resultados utilizando um conjunto de imagens relativamente pequeno e com grande variabilidade, superando as limitações dos processos existentes. Este resultado foi obtido com uma aplicação prática. Foi construído um conjunto de imagens com anotação de áreas construídas para 12 regiões do Brasil. Estas imagens, além de diferentes na qualidade, apresentam grande variabilidade nas características das edificações e no ambiente geográfico. Uma prova de conceito será feita na utilização da classificação de área construída nos métodos dasimétrico para a estimação de população em gride. Ela mostrou um resultado promissor quando comparado com o método usual, possibilitando a melhoria da qualidade das estimativas. / [en] The importance of precise information about the population distribution is widely acknowledged. The census is considered the most reliable and complete source of this information, and its data are delivered
in an aggregated form in sectors. These sectors are operational units with irregular shapes, which hinder the spatial analysis of the data. Thus, the transformation of sectors onto a regular grid would facilitate such analysis. A methodology to achieve this transformation could be based on remote sensing image classification to identify building where the population lives. The building detection is considered a complex task since there is a great variability of building characteristics and on the images quality themselves. The majority of methods are complex and very specialist dependent. The automatic methods require a large annotated dataset for training and they are sensitive to the image quality, to the building characteristics, and to the environment. In this thesis, we propose an automatic method for building detection based on a deep learning architecture that uses a relative small dataset with a large variability. The proposed method shows good results when compared to the state of the art. An annotated dataset has been built that covers 12 cities distributed in different regions of Brazil. Such images not only have different qualities, but also shows a large variability on the building characteristics and geographic environments. A very important application of this method is the use of the building area classification in the dasimetric methods for the population estimation into grid. The concept proof in this application showed a promising result when compared to the usual method allowing the improvement of the quality of the estimates.
|
49 |
[pt] CARACTERIZAÇÃO DE COMPÓSITOS CIMENTÍCIOS REFORÇADOS COM FIBRAS: APRENDIZAGEM PROFUNDA, MICROTC DE RAIO X INSITU, CORRELAÇÃO DIGITAL DE VOLUME / [en] CHARACTERIZATION OF STRAIN-HARDENING CEMENT-BASED COMPOSITES: DEEP LEARNING, IN-SITU X-RAY MICROCT AND DIGITAL VOLUME CORRELATIONRENATA LORENZONI 29 December 2021 (has links)
[pt] entendimento do macro comportamento dos materiais, este trabalho apresenta
soluções inovadoras para a análise de imagens 3D obtidas por microtomografia
computadorizada de raios-X (microCT). O material estudado conhecido
pelo termo em inglês “strain-hardening cement-based composites”
ou pela abreviação SHCC é um compósito cimentício reforçado com fibras
que atinge deformações significativas através da formação de múltiplas fissuras,
estabelecendo um material cimentício com característica pseudo-dúctil.
O primeiro desafio deste trabalho foi reconhecer e quantificar as fases constituintes
nas imagens 3D de SHCC obtidas por microCT. Materiais com
estruturas complexas podem apresentar imagens em que as fases internas
não podem ser distinguidas pela técnica de limiarização clássica, exigindo
o uso de outra técnica como a segmentação por Deep Learning (DL). Portanto,
este trabalho utilizou DL como solução para esta tarefa. Desta forma,
as características de cada fases puderam ser correlacionadas ao comportamento
mecânico macro do material em ensaios de microCT in-situ. Outro
método moderno de análise de imagens 3D utilizado foi a correlação digital
de volume (em inglês, digital volume correlation - DVC). O DVC é uma
técnica que estima o campo de deformação sobre todo o volume da amostra,
correlacionando as imagens 3D nos estados descarregado e carregado.
Assim, as imagens obtidas nos ensaios de tração e compressão in-situ puderam
ter seus deslocamentos internos medidos e deformações calculadas. Em
síntese, este trabalho trouxe avanços ao campo do processamento digital e
análise de imagens 3D, aplicadas a materiais cimentícios, mas que também
podem se adaptar à análise de diversos materiais. / [en] Considering the importance of micro and mesoscale analyses to understand
the macro behavior of materials, this work brings innovative solutions
for analyzing 3D images obtained by X-ray micro-computed tomography
(microCT). The studied material was the strain-hardening cement-based
composites (SHCC), a fiber reinforced cementitious composite that achieves
significant deformations through multiple cracks formation, resulting in a
cementitious material with pseudo ductile features. The first challenge of
this work was to recognize and quantify the constituent phases in the 3D
images of SHCC obtained by microCT. Materials with complex structures
may present images in which the internal phases cannot be distinguished by
the classical thresholding technique, requiring the use of another technique
such as segmentation by Deep Learning (DL). Therefore, this work used
DL as a solution for this task. Then, the features of each phase could
be correlated to the macro mechanical behavior of the material in in-situ
microCT tests. Another modern method for analyzing 3D images used was
the digital volume correlation (DVC). DVC is a technique that estimates
full-field strain in 3D over the entire volume of the specimen by correlating
imaging volumes of the specimen in unloaded and loaded states. Thus,
the images obtained from tensile and compression in-situ tests could have
their internal displacements measured and strain calculated. In summary,
this work brought advances to the 3D image processing and analysis field,
applied to cementitious materials, but which could also adapt for the
analysis of various materials.
|
50 |
[en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION / [es] MINERACIÓN DE DATOS PARA LA SOLUCIÓN DE PROBLEMAS DE MARKETING DIRECTO Y SEGMENTACIÓN DE MERCADO / [pt] MINERAÇÃO DE DADOS APLICADA NA SOLUÇÃO DE PROBLEMAS DE MARKETING DIRETO E SEGMENTAÇÃO DE MERCADOHUGO LEONARDO COSTA DE AZEVEDO 28 August 2001 (has links)
[pt] Devido à quantidade cada vez maior de dados armazenada
pelas instituições, a área de mineração de dados tem se
tornado cada vez mais relevante e vários métodos e métodos
têm sido propostos de maneira a aumentar sua aplicabilidade
e desempenho. Esta dissertação investiga o uso de diversos
métodos e técnicas de mineração de dados na modelagem e
solução de problemas de Marketing. O objetivo do trabalho
foi fazer um levantamento de alguns métodos e técnicas de
mineração, avaliar seus desempenhos e procurar integrá-los
na solução de problemas de marketing que envolvessem
tarefas de agrupamento ou classificação. O trabalho
consistiu de quatro etapas principais: estudo sobre o
processo de descoberta de conhecimento em bancos de dados
(KDD - Knowledge Discovery in Databases); estudo sobre
Marketing e alguns problemas de Marketing de Banco de Dados
(DBM - Database Marketing) que envolvessem tarefas de
agrupamento e classificação; levantamento e estudo de
métodos e técnicas de Inteligência Computacional e
Estatística que pudessem ser empregados na solução de
alguns desses problemas; e estudos de caso. A primeira
etapa do trabalho envolveu um estudo detalhado das diversas
fases do processo de KDD: limpeza dos dados; seleção;
codificação e transformação; redução de dimensionalidade;
mineração; e pós-processamento. Na segunda etapa foram
estudados os principais conceitos de Marketing e de DBM e a
relação entre eles e o processo de KDD. Pesquisaram-se
alguns dos tipos de problemas comuns na área e escolheram-
se para análise dois que fossem suficientemente complexos e
tivessem a possibilidade de se ter acesso a alguma empresa
que fornecesse os dados e validasse a solução
posteriormente. Os casos selecionados foram um de marketing
direto e outro de segmentação de mercado. Na terceira
etapa, foram estudados os métodos de Inteligência
Computacional e Estatística usualmente empregados em
tarefas de agrupamento e classificação de dados. Foram
estudados: Redes Perceptron Multi-Camadas, Mapas Auto-
Organizáveis, Fuzzy C-Means, K-means, sistemas Neuro-Fuzzy,
Árvores de Decisão, métodos Hierárquicos de agrupamento,
Regressão Logística, Fuções Discriminantes de Fisher, entre
outros. Por fim, na última etapa, procurou-se integrar
todos os métodos e técnicas estudados na solução de dois
estudos de caso, propostos inicialmente na segunda etapa do
trabalho. Uma vez proposta a solução para os estudos de
caso, elas foram levadas aos especialistas em Marketing das
empresas para serem validadas no âmbito do negócio. Os
estudos de caso mostraram a grande utilidade e
aplicabilidade dos métodos e técnicas estudadas em
problemas de marketing direto e segmentação de mercado. Sem
o emprego dos mesmos, a solução para muitos desses
problemas tornar-se-ia extremamente imprecisa ou até mesmo
inviável. Mostraram também a grande importância das fases
iniciais de pré-processamento dos dados no processo de KDD.
Muitos desafios persistem ainda na área de mineração de
dados, como a dificuldade de modelar dados não lineares e
de manipular quantidades muito grande de dados, o que
garante um vasto campo para pesquisa nos próximos anos. / [en] The Data Mining field has received great attention lately,
due to the increasing amount of data stored by companies
and institutions. A great number of Data Mining methods
have been proposed so far, which is good but sometimes
leads to confusion. This dissertation investigates the
performance of many different methods and techniques of
Data Mining used to model and solve Marketing problems. The
goal of this research was to look for and study some data
mining methods, compare them, and try to integrate them to
solve Marketing problems involving clustering and
classification tasks. This research can be divided in four
stages: a study of the process of Knowledge Discovery in
Databases (KDD); a study about Marketing problems involving
clustering and classification; a study of some methods and
techniques of Statistics and Computational Intelligence
that could be used to solve some of those problems; and
case studies. On the first stage of the research, the
different tasks (clustering, classification, modeling, etc)
and phases (data cleansing, data selection, data
transformation, Data Mining, etc) of a KDD process were
studied in detail. The second stage involved a study of the
main concepts of Marketing and Database Marketing and their
relation to the KDD process. The most common types of
problems in the field were studied and, among them, two
were selected to be furthered analyzed as case studies. One
case was related to Direct Marketing and the other to
Market Segmentation. These two cases were chosen because
they were complex enough and it was possible to find a
company to provide data to the problem and access to their
marketing department. On the third stage, many different
methods for clustering and classification were studied and
compared. Among those methods, there were: Multilayer
Perceptrons, Self Organizing Maps, Fuzzy C-Means, K-Means,
Neuro-Fuzzy systems, Decision Trees, Hierarquical
Clustering Methods, Logistic Regression, Fisher`s Linear
Discriminants, etc Finally, on the last stage, all the
methods and techniques studied were put together to solve
the two case studies proposed earlier. Once they were
solved, their solutions were submitted to the Marketing
Department of the company who provided the data, so that
they could validate the results in the context of their
business. The case studies were able to show the large
potential of applicability of the methods and techniques
studied on problems of Market Segmentation and Direct
Marketing. Without employing those methods, it would
be very hard or even impossible to solve those problems.
The case studies also helped verify the very important
role of the data pre-processing phase on the KDD process.
Many challenges persist in the data mining field. One could
mention, for example, the difficulty to model non-linear
data and to manipulate larges amounts of data. These and
many other challenges provide a vast field of research to
be done in the next years. / [es] Debido a la cantidad cada vez mayor de datos almacenados
por las instituiciones, el área de mineración de datos há
ganado relevancia y varios métodos han sido propuestos para
aumentar su aplicabilidad y desempeño. Esta disertación
investiga el uso de diversos métodos y técnicas de
mineración de datos en la modelación y solución de
problemas de Marketing. EL objetivo del trabajo fue hacer
un levantamiento de algunos métodos y técnicas de
mineración, evaluar su desempeño e integrarlos en la
solución de problemas de marketing que involucran tareas de
agrupamiento y clasificación. EL trabajo consta de cuatro
etapas principales: estudio sobre el proceso de
descubrimiento de conocimientos en bancos de datos (KDD -
Knowledge Discovery in Databases); estudio sobre Marketing
y algunos problemas de Marketing de Banco de Datos (DBM -
Database Marketing) que incluyen tareas de agrupamientoy
clasificación; levantamiento y estudio de métodos y
técnicas de Inteligencia Computacional y Estadística que
pueden ser empleados en la solución de algunos problemas; y
por último, estudios de casos. La primera etapa del trabajo
contiene un estudio detallado de las diversas fases del
proceso de KDD: limpeza de datos; selección; codificación y
transformación; reducción de dimensionalidad; mineración; y
posprocesamento. En la segunda etapa fueron estudados los
principales conceptos de Marketing y de DBM y la relación
entre ellos y el proceso de KDD. Algunos de los tipos de
problemas comunes en la área fueron investigados,
seleccionando dos de ellos, por ser suficientemente
complejos y tener posibilidad de acceso a alguna empresa
que suministrase los datos y evaluase posteriormente la
solución. Los casos selecionados fueron uno de marketing
directo y otro de segmentación de mercado. En la tercera
etapa, se estudiaron los métodos de Inteligencia
Computacional y Estadística que son empleados usualmente en
tareas de agrupamiento y clasificación de datos. Éstos
fueron: Redes Perceptron Multicamada, Mapas
Autoorganizables, Fuzzy C-Means, K-means, sistemas Neuro-
Fuzzy, Árboles de Decisión, métodos Jerárquicos de
agrupamiento, Regresión Logística, Fuciones Discriminantes
de Fisher, entre otros. En la última etapa, se integraron
todos los métodos y técnicas estudiados en la solución de
dos estudios de casos, propuestos inicialmente en la
segunda etapa del trabajo. Una vez proposta la solución
para el estudios de casos, éstas fueron evaluadas por los
especialistas en Marketing de las empresas. Los estudios de
casos mostraron la grande utilidad y aplicabilidad de los
métodos y técnicas estudiadas en problemas de marketing
directo y segmentación de mercado. Sin el empleo de dichos
métodos, la solución para muchos de esos problemas sería
extremadamente imprecisa o hasta incluso inviáble. Se
comprobó también la gran importancia de las fases iniciales
de preprocesamiento de datos en el proceso de KDD. Existen
todavía muchos desafíos en el área de mineración de datos,
como la dificuldad de modelar datos no lineales y de
manipular cantidades muy grandes de datos, lo que garantiza
un vasto campo de investigación
|
Page generated in 0.0434 seconds