Spelling suggestions: "subject:"¿¿¿¿¿¿lite""
331 |
Ανάλυση της απόδοσης του Forward Error Correction σε κινητά δίκτυα επικοινωνιών τεχνολογίας Long Term EvolutionΚανάκης, Νικόλοας 06 October 2011 (has links)
Long Term Evolution (LTE) είναι το όνομα που έδωσε το 3GPP στο πρόγραμμα εξέλιξης των κινητών συστημάτων επικοινωνιών τρίτης γενιάς UMTS, με στόχο την αντιμετώπιση των μελλοντικών απαιτήσεων της αγοράς των κινητών δικτύων. Βασικοί στόχοι του νέου προτύπου LTE αποτελούν η αυξημένη απόδοση, το μικρότερο κόστος υλοποίησης, η μείωση της πολυπλοκότητας λειτουργίας και η παροχή νέων εξελιγμένων υπηρεσιών, κάνοντας χρήση νέων φασμάτων λειτουργίας. Οι προσδοκίες από το LTE είναι ιδιαίτερα υψηλές και βασίζονται στην παροχή υπηρεσιών απαλλαγμένων από τις απώλειες. Συνεπώς, η επιτυχία του LTE θα καθοριστεί από την ικανότητα παροχής κινητών συσκευών και ασύρματης υποδομής που θα ανταποκρίνονται στα πρότυπα του 3GPP και θα είναι ιδιαίτερα ανθεκτικά στις απώλειες της ασύρματης μετάδοσης, ώστε να προσφέρονται βελτιωμένες υπηρεσίες υψηλής απόδοσης.
Μία βασική πτυχή των προδιαγραφών του συστήματος LTE είναι η ενίσχυση της υπηρεσίας Multimedia Broadcast/Multicast Services, όπου το ίδιο περιεχόμενο μεταδίδεται σε πολλαπλούς χρήστες που βρίσκονται σε μία συγκεκριμένη περιοχή μετάδοσης της υπηρεσίας. Η υπηρεσία MBMS πρωτοπαρουσιάστηκε σαν ένα νέο χαρακτηριστικό στην έκδοση 6 του 3GPP, ώστε να προσφέρει broadcast και multicast μετάδοση πολυμεσικού περιεχομένου σε κινητούς χρήστες μέσω MBMS ασύρματων φορέων μετάδοσης. Η υπηρεσία MBMS παρέχει δύο διαφορετικές μεθόδους διανομής περιεχομένου, τη μέθοδο download και τη μέθοδο streaming. Για να υποστηρίξει την αποδοτική διανομή MBMS περιεχομένου, το 3GPP συμπεριέλαβε ένα μηχανισμό Forward Error Correction στο επίπεδο εφαρμογών (AL-FEC).
Το FEC είναι μία μέθοδος που προσφέρει έλεγχο λαθών κατά τη μετάδοση δεδομένων, η οποία χρησιμοποιείται για να υποστηρίξει ή να αντικαταστήσει άλλες μεθόδους παροχής αξιοπιστίας. Στο FEC, ο αποστολέας εισάγει πλεονάζουσα πληροφορία στη μετάδοση δεδομένων. Αυτή η πληροφορία επιτρέπει στο δέκτη να ανακατασκευάσει τα αρχικά δεδομένα. Τέτοια σχήματα αναπόφευκτα προσθέτουν ένα σταθερό overhead στα μεταδιδόμενα δεδομένα με αποτέλεσμα να είναι υπολογιστικά ακριβά. Παρόλα αυτά στα multicast πρωτόκολλα, η χρήση FEC τεχνικών προσφέρει πολύ ισχυρά κίνητρα. Η κωδικοποίηση μπορεί να εξαλείψει τις ανεξάρτητες απώλειες στους διαφορετικούς δέκτες. Επιπρόσθετα, η δραματική μείωση του ρυθμού απώλειας πακέτων μειώνει κατά ένα μεγάλο μέρος την ανάγκη επαναποστολής των χαμένων πακέτων από τον αποστολέα. Επομένως, οι FEC τεχνικές είναι πολύ εύκολο να εκπληρώσουν έναν πρωταρχικό σκοπό των multicast κινητών υπηρεσιών, που είναι η προσαρμοστικότητα σε εφαρμογές με μεγάλο αριθμό δεκτών. Αυτός είναι ο λόγος που το 3GPP συνιστά τη χρήση του AL-FEC για την υπηρεσία MBMS και πιο συγκεκριμένα, υιοθετεί τη χρήση των συστηματικών κωδίκων Raptor.
Λαμβάνοντας υπόψιν τα παραπάνω, στόχος της παρούσας μεταπτυχιακής διπλωματικής εργασίας είναι η μελέτη της απόδοσης του AL-FEC πάνω σε υπηρεσίες MBMS, εστιάζοντας στην υπηρεσία της streaming μεθόδου παράδοσης δεδομένων.
Προς αυτή την κατεύθυνση, στην παρούσα εργασία μελετάμε την εφαρμογή του μηχανισμού AL-FEC πάνω σε multicast streaming υπηρεσίες των LTE, διερευνώντας πως το ποσό της πλεονάζουσας πληροφορίας ποικίλλει σε πολλαπλούς χρήστες χρησιμοποιώντας ρεαλιστικά περιβάλλοντα προσομοίωσης. Επίσης, εξετάζουμε την απόδοση του AL-FEC για διάφορες διατάξεις του δικτύου ασύρματης πρόσβασης, διάφορα μοντέλα κινητικότητας των χρηστών καθώς και διάφορες παραμέτρους της FEC κωδικοποίησης. / Long Term Evolution (LTE) is the name given to a project within the Third Generation Partnership Project (3GPP) to improve the UMTS 3G mobile system standard to cope with future requirements. Goals include improving efficiency, lowering cost, reducing complexity and improving services, making use of new spectrum opportunities. Expectations are high for LTE and are based on the premise of fault-free performance. Therefore, LTE’s initial success will be determined by the ability of handset and radio infrastructure manufacturers to deliver products that conform to 3GPP standards and are robust enough to allow operators to introduce improved services.
A key aspect of LTE specifications is the enhancement of Multimedia Broadcast/Multicast Services (MBMS), where the same content is transmitted to multiple users located in a specific service area. MBMS was firstly standardized as a new feature in 3GPP Release 6, in order to broadcast and multicast multimedia content to mobile terminals via MBMS radio bearer. The MBMS provides two different delivery methods, the download delivery and the streaming delivery method. To support efficient download and streaming delivery, 3GPP has included Application Layer Forward Error Correction (AL-FEC) in the MBMS standard.
FEC is a method for error control for data transmission that is used to augment or replace other reliability methods. In FEC, the sender introduces redundant information in the data transmitted. This information allows the receiver to reconstruct the source data. Such schemes inevitably add a constant overhead in the transmitted data and are computationally expensive. In multicast protocols however, the use of FEC techniques has very strong motivations. The encoding eliminates the effect of independent losses at different receivers. This makes these schemes able to scale irrespectively of the actual loss pattern at each receiver. Additionally, the dramatic reduction in the packet loss rate largely reduces the need for retransmission of lost data from the sender. FEC schemes are therefore so simple as to meet a prime objective for mobile multicast services, which is scalability to applications with thousands of receivers. This is the reason why 3GPP recommends the use of AL-FEC for MBMS and, more specifically, adopts the use of systematic Raptor code.
After taking into account the above analysis, objective of this master thesis is the study of AL-FEC in MBMS, focusing on the streaming delivery method.
To this direction, in this work we study the application of AL-FEC for the streaming delivery method over LTE networks. We investigate how the amount of FEC overhead varies at multiple receivers using realistic simulation scenarios and we investigate the performance of AL-FEC overhead considering different cell deployments, user mobility models and FEC encoding parameters.
|
332 |
High Slew-Rate Adaptive Biasing Hybrid Envelope Tracking Supply Modulator for LTE ApplicationsJanuary 2017 (has links)
abstract: As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration (EER) and envelope tracking (ET). However, state of the art ET supply modulators failed to address high efficiency, high slew rate, and accurate tracking concurrently.
In this dissertation, a linear-switch mode hybrid ET supply modulator utilizing adaptive biasing and gain enhanced current mirror operational transconductance amplifier (OTA) with class-AB output stage in parallel with a switching regulator is presented. In comparison to a conventional OTA design with similar quiescent current consumption, proposed approach improves positive and negative slew rate from 50 V/µs to 93.4 V/µs and -87 V/µs to -152.5 V/µs respectively, dc gain from 45 dB to 67 dB while consuming same amount of quiescent current. The proposed hybrid supply modulator achieves 83% peak efficiency, power added efficiency (PAE) of 42.3% at 26.2 dBm for a 10 MHz 7.24 dB peak-to-average power ratio (PAPR) LTE signal and improves PAE by 8% at 6 dB back off from 26.2 dBm power amplifier (PA) output power with respect to fixed supply. With a 10 MHz 7.24 dB PAPR QPSK LTE signal the ET PA system achieves adjacent channel leakage ratio (ACLR) of -37.7 dBc and error vector magnitude (EVM) of 4.5% at 26.2 dBm PA output power, while with a 10 MHz 8.15 dB PAPR 64QAM LTE signal the ET PA system achieves ACLR of -35.6 dBc and EVM of 6% at 26 dBm PA output power without digital pre-distortion (DPD). The proposed supply modulator core circuit occupies 1.1 mm2 die area, and is fabricated in a 0.18 µm CMOS technology. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
333 |
Inovações tecnológicas no setor de telecomunicações no Brasil: desafios e oportunidades do LTE para expansão da telefonia móvelCornélio, José Bruno Maciel 03 1900 (has links)
Submitted by Estagiário SPT BMHS (spt@fgv.br) on 2013-08-08T12:44:57Z
No. of bitstreams: 1
Dissetação José Bruno Maciel Cornélio.pdf: 1072962 bytes, checksum: 898b1529472aef1d9b5f96cc4677ba46 (MD5) / Approved for entry into archive by Estagiário SPT BMHS (spt@fgv.br) on 2013-08-08T12:45:28Z (GMT) No. of bitstreams: 1
Dissetação José Bruno Maciel Cornélio.pdf: 1072962 bytes, checksum: 898b1529472aef1d9b5f96cc4677ba46 (MD5) / Approved for entry into archive by Estagiário SPT BMHS (spt@fgv.br) on 2013-08-08T12:45:50Z (GMT) No. of bitstreams: 1
Dissetação José Bruno Maciel Cornélio.pdf: 1072962 bytes, checksum: 898b1529472aef1d9b5f96cc4677ba46 (MD5) / Made available in DSpace on 2013-08-08T12:46:07Z (GMT). No. of bitstreams: 1
Dissetação José Bruno Maciel Cornélio.pdf: 1072962 bytes, checksum: 898b1529472aef1d9b5f96cc4677ba46 (MD5)
Previous issue date: 2011-03 / O telefone celular teve uma grande evolução nos últimos anos, o que antes era utilizado exclusivamente para transmissão de voz, hoje tem características avançadíssimas incluindo várias evoluções tecnológicas. Dentro deste aspecto, a inovação que o LTE (Long Term Evolution) vem demonstrando em suas características realmente se destacam em relação as tecnologias que a antecederam e representa grande evolução se comparada com as outras. Foi desenvolvida no âmbito do projeto 3GPP e (3rd Generation Partners Project) promovido pelo Instituto Europeu de Normalização na área de Telecomunicações ETSI (European Telecommunications Standard Institute). As operadoras que demonstram interesse em disponibilizar esta tecnologia buscam introduzir a flexibilidade do LTE para ir ao encontro dos objetivos de suas redes existentes, espectro e negócios para banda larga móvel e serviços multimídia. O LTE promete taxas de download de 326,4Mbps, taxas de upload de 86,4Mbps, RTT ( ROUND TRIP TIME ) menos de 10 mile segundos e raio das células podendo atingir até 100km. O sistema 4G (LTE) é um sistema integrado completamente baseado em IP, que é resultado de tecnologias conectadas por fios e sem fios disponibilizando um custo acessível, atendendo as exigências de uma rede de comunicação (Wireless), serviços de transferência de mensagens multimídias, conversa com vídeo, televisão móvel de alta definição, serviços mínimos como voz e dados entre outras vantagens. Desta forma, este estudo tem por objetivo analisar quais são as oportunidades e os desafios no mercado de telefonia móvel de Telecomunicações ao implantar o sistema de tecnologia LTE demonstrando o benefício dos fabricantes e operadoras no sentido econômico e tecnológico. / The mobile phone has a great development in recent years, which was previously used exclusively for transmission of voice, now has highly advanced features including many technological developments. Within this aspect, the innovation that LTE (Long Term Evolution) has demonstrated that its features really stand out in relation to the technologies that preceded it and which represents a great development compared to the others. It was developed under the project 3GPP (Third Generation Partnership Project) sponsored by European standards institute in telecommunications, ETSI (European Telecommunications Standards Institute). Operators who show interest in seeking to introduce this technology available LTE flexibly to meet the goals of their existing networks, and business spectrum for mobile broadband and multimedia services. LTE promises download rates of 326.4 Mbits / s and upload rates of 86.4 Mbits /s, RTT ( ROUND TRIP TIME ) of less than 10 miles per second and radius of the cells could reach up to 100km. The system 4G (LTE) is a fully integrated system based on IP, which is the result of technologies connected by wired or wireless providing affordable meeting the requirements of wireless network services, multimedia messaging, video conversation, mobile TV, high definition, minimum services such as voice and data among other advantages. Thus, this study aims to examine the impacts and opportunities in Brazil in the telecommunication Market to deploy the LTE system demonstrating the benefit of manufacturers and operators in the economic and technological sense.
|
334 |
QoS Performance Evaluation of Video Conferencing over LTE / QoS Performance Evaluation of Video Conferencing over LTEHossen, Md.Showket, Islam, Md.Neharul January 2012 (has links)
Mobile data usage has been on the rise in relation to the streaming media such as video conferencing and online multimedia gaming. As a result, Long-Term Evolution (LTE) has earned a rapid rise in popularity during the past few years. The aim of this master’s thesis is to analyze the quality of service (QoS) performance and its effects when video is streamed over a GBR (Guaranteed bit rate) and non-GBR bearers over LTE. Using OPNET (Optimized Network Engineering Tool), the performance can be simulated having Downlink (DL) and Uplink (UL) scenarios for video conferencing including web traffic. Further we also measured the performance of packet End-to-End (E2E) delay, packet loss and packet delay variation (PDV). This thesis work is an empirical work, which can be followed up by further research propositions.
|
335 |
VLSI Implementation of Key Components in A Mobile Broadband ReceiverHuang, Yulin January 2009 (has links)
Digital front-end and Turbo decoder are the two key components in the digital wireless communication system. This thesis will discuss the implementation issues of both digital front-end and Turbo decoder.The structure of digital front-end for multi-standard radio supporting wireless standards such as IEEE802.11n, WiMAX, 3GPP LTE is investigated in the thesis. A top-to-down design methods. 802.11n digital down-converter is designed from Matlab model to VHDL implementation. Both simulation and FPGA prototyping are carried out.As another significant part of the thesis, a parallel Turbo decoder is designed and implemented for 3GPPLTE. The block size supported ranges from 40 to 6144 and the maximum number of iteration is eight.The Turbo decoder will use eight parallel SISO units to reach a throughput up to 150Mits.
|
336 |
Performance Evaluation of LTE Physical Layer Using SC-FDMA & OFDMAShaikh, Abdul Samad, Kumar, Khatri Chandan January 2011 (has links)
Since past few decades different types of cellular networks were launched and went successful on the radio links such as WiMAX, that became very popular because of its high data rate (70Mbps) and support for providing wireless internet services over 50km distance. The UMTS Long Term Evolution (LTE) is an emerging technology in the evolution of 3G cellular services. LTE runs on an evolution of the existing UMTS infrastructure already used by over 80 percent of mobile subscribers globally. We have very limited resources in cellular technologies and it is important to utilize them with high efficiency. Single Carrier Frequency Division Multiple Access (SC-FDMA) & Orthogonal Division Multiple Access (OFDMA) are major part of LTE. OFDMA was well utilized for achieving high spectral efficiency in communication system. SC-FDMA is introduced recently and it became handy candidate for uplink multiple access scheme in LTE system that is a project of Third Generation Partnership Project (3GPP). The Multiple Access Scheme in Advanced Mobile radio system has to meet the challenging requirements for example high throughput, good robustness, efficient Bit Error Rate (BER), high spectral efficiency, low delays, low computational complexity, low Peak to Average Power Ratio (PAPR), low error probability etc. Error probability is playing vital role in channel estimation and there are many ways to do channel estimation, like Wiener Channel Estimation, Bayesian Demodulation etc. In our thesis, we investigate the performance of SC-FDMA and OFDMA of LTE physical layer by considering different modulation schemes (BPSK, QPSK, 16QAM and 64QAM) on the basis of PAPR, BER, power spectral density (PSD) and error probability by simulating the model of SC-FDMA & OFDMA. We use Additive White Gaussian Noise (AWGN) channel and introduce frequency selective (multipath) fading in the channel by using Rayleigh Fading model to evaluate the performance in presence of noise and fading. A set of conclusions is derived from our results describing the effect of higher order modulation schemes on BER and error probability for both OFDMA and SC-FDMA. The power spectral densities of both the multiple access techniques (OFDMA and SC-FDMA) are calculated and result shows that the OFDMA has high power spectral density. The considered modulation schemes also have a significant impact on the PAPR of both OFDMA and SC-FDMA such that the higher order modulations increase PAPR in SC-FDMA and decrease PAPR in OFDMA. However, the overall value of PAPR is minimum in SC-FDMA for all modulation schemes. The PSD calculation results also support the remarks given on PAPR. / Author 01: Abdul Samad Shaikh, Phone # 0046-760915236 Author 02 : Khatri Chandan Kumar, Phone # 0046-762649745
|
337 |
LTE SYSTEM ARCHITECTURE FOR COVERAGE AND DOPPLER REDUCTION IN RANGE TELEMETRYKogiantis, Achilles, Rege, Kiran, Triolo, Anthony A. 10 1900 (has links)
A novel approach employing 4G LTE Cellular Technology for Test Range Telemetry is presented. Providing aeronautical mobile telemetry using commercial off the shelf (COTS) cellular equipment poses many challenges, including: Three-dimensional (3D) coverage, need for uninterrupted high data throughputs, and very high Doppler speeds of the Test Articles (TA). Each of these requirements is difficult to meet with a standard cellular approach. We present a novel architecture that provides 3D coverage over the span of a test range, allowing the TA to establish a radio link with base stations that have a manageable Doppler due to the reduced projected TA speed on the radio link line. Preliminary results illustrate that a variety of flight plans can be accommodated with commercial LTE technology by employing LTE’s mobility mechanisms and adding centralized control. The resulting network architecture and Radio Access Network topology allow very high throughputs to be delivered throughout the test range with a judicious placement of base stations.
|
338 |
Vývoj a výhled mobilního připojení v ČR / Development and Future Prospects of Mobile Internet Connection in the Czech RepublicBičík, Petr January 2008 (has links)
Mobile telecommunications belong to one of the fields which still evolves and it is expected that in the future they are going to offer great benefit to the whole world. This work focuses on current and future development of mobile Internet connection in the Czech Republic. At first the technologies used to provide mobile Internet connection are described and compared and then the situation (in terms of technologies and mobile operators) in the Czech market is outlined and its possible evolution in the near future is presented. Furthermore, the tarifs of mobile operators are compared with those in place two years ago. The strengths and weaknesses of the current mobile Internet connection are evaluated based on the conducted questionnaire survey. The latest results are then analyzed and compared with the results from a previous survey conducted in 2007 as part of a bachelor's thesis, which has been further extended in this mater's thesis.
|
339 |
HARQ Systems: Resource Allocation, Feedback Error Protection, and Bits-to-Symbol MappingsTumula V. K., Chaitanya January 2013 (has links)
Reliability of data transmission is a fundamental problem in wireless communications. Fading in wireless channels causes the signal strength to vary at the receiver and this results in loss of data packets. To improve the reliability, automatic repeat request (ARQ) schemes were introduced. However these ARQ schemes suffer from a reduction in the throughput. To address the throughput reduction, conventional ARQ schemes were combined with forward error correction (FEC) schemes to develop hybrid-ARQ (HARQ) schemes. For improving the reliability of data transmission, HARQ schemes are included in the present wireless standards like LTE, LTE-Advanced and WiMAX. Conventional HARQ systems use the same transmission power and the same number of channel uses in different ARQ rounds. However this is not optimal in terms of minimizing the average transmit power or the average energy spent for successful transmission of a data packet. We address this issue in the first part of the dissertation, where we consider optimal resource allocation in HARQ systems with a limit on the maximum number of allowed transmissions for a data packet. Specifically, we consider the problem of minimizing the packet drop probability (PDP) under an average transmit power constraint or equivalently minimizing the average transmit power under a fixed PDP constraint. We consider both incremental redundancy (IR)-based and Chase combining (CC)-based HARQ systems in our work. For an IR-HARQ system, for the special case of two allowed transmissions for each packet, we provide a solution for the optimal number of channel uses and the optimal power to be used in each ARQ round. For a CC-HARQ system, we solve the problem of optimal power allocation in i.i.d. Rayleigh fading channels as well as correlated Rayleigh fading channels. For the CC-HARQ case, we also provide a low complexity geometric programming (GP) solution using an approximation of the outage probability expression. HARQ systems conventionally use one bit acknowledgement (ACK)/negative ACK (NACK) feedback from the receiver to the transmitter. In the 3GPP-LTE systems, one method for sending these HARQ acknowledgement bits is to jointly code them with the other control signaling information using a specified Reed-Muller code consisting of 20 coded bits. Even though the resources used for sending this control signaling information can inherently provide a diversity gain, the Reed-Muller code with such a short block size is not good at extracting all of the available diversity. To address this issue, in the second part of this dissertation, we propose two new methods: i) based on complex-field coding (CFC), and ii) using repetition across frequency bands, to extract the inherent diversity available in the channel resources and improve the error protection for the HARQ acknowledgement bits along with the other control signaling information. In the second part of the dissertation, we also propose a new signal space diversity (SSD) scheme, which results in transmit signals having constant envelope (CE). The proposed CE-SSD scheme results in a better overall power efficiency due to the reduced back-off requirements on the radio frequency power amplifier. Moreover, the proposed CE-SSD technique can be useful for application scenarios involving transmission of small number of information bits, such as in the case of control signaling information transmission. In conventional HARQ systems, during the retransmission phase, the channel resources are exclusively used for the retransmitted data packet. This is not optimal in terms of efficient resource utilization. For efficient utilization of channel resources during the retransmissions, a superposition coding (SPC) based HARQ scheme was proposed in the literature. In an SPC based HARQ system, an erroneous packet is transmitted together with a new data packet by superposition in the Euclidean space. In the final part of this dissertation, we study performance of different bits-to-symbol mappings for such an SPC based HARQ system.
|
340 |
Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) FemtocellsSawant, Uttara 12 1900 (has links)
The demand for higher data rates for indoor and cell-edge users led to evolution of small cells. LTE femtocells, one of the small cell categories, are low-power low-cost mobile base stations, which are deployed within the coverage area of the traditional macro base station. The cross-tier and co-tier interferences occur only when the macrocell and femtocell share the same frequency channels. Open access (OSG), closed access (CSG), and hybrid access are the three existing access-control methods that decide users' connectivity to the femtocell access point (FAP). We define a network performance function, network productivity, to measure the traffic that is carried successfully. In this dissertation, we evaluate call mobility in LTE integrated network and determine optimized network productivity with variable call arrival rate in given LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells. In the second scenario, we evaluate call mobility in LTE integrated network with increasing femtocells and maximize network productivity with variable femtocells distribution per macrocell with constant call arrival rate in uniform LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells for network deployment where peak productivity is identified. We analyze the effects of call mobility on network productivity by simulating low, high, and no mobility scenarios and study the impact based on offered load, handover traffic and blocking probabilities. Finally, we evaluate and optimize performance of fractional frequency reuse (FFR) mechanism and study the impact of proposed metric weighted user satisfaction with sectorized FFR configuration.
|
Page generated in 0.051 seconds