Spelling suggestions: "subject:"algebras"" "subject:"álgebras""
51 |
Álgebras de Lukasiewicz-Moisil Θ-valuadasPascual, Inés Beatriz 24 February 2016 (has links)
En esta tesis investigamos la clase de las álgebras de Lukasiewicz–Moisil −valuadas, siendo el tipo de orden de un conjunto totalmente ordenado. Al trabajo lo hemos organizado en cinco capítulos. El Capítulo 1 consta de cuatro secciones y los resultados indicados en ellas son conocidos. Los hemos incluído tanto para facilitar la lectura posterior, como para fijar las definiciones de las álgebras y las dualidades topológicas que utilizamos en los capítulos siguientes. En el Capítulo 2 consta de dos secciones. En la primera sección, determinamos una dualidad topológica para las álgebras de Lukasiewicz–Moisil −valuadas sin negación
(LM −álgebras), equivalente a la dada por A. Filipoiu en 1980 para arbitrario. Además, consideramos el caso particular de las LM −álgebras en las que es un entero n, n 2 (LMn−´algebras). En la segunda sección, extendemos a las ´algebras de Lukasiewicz–Moisil −valuadas con negaci´on (nLM −álgebras) la dualidad anteriormente obtenida para las LM −álgebras y la dualidad de las álgebras de De Morgan determinada por W. Cornish y P. Fowler en [22]. También analizamos el caso particular en el que es un entero n, n 2 (nLMn−álgebras). Es un hecho conocido que debido a que el álgebra cociente de una LM −algebra por una congruencia de la misma, en el sentido del ´algebra universal, no necesariamente satisface el principio de determinaci´on de Moisil, se introduce un concepto más fuerte de congruencia sobre estas álgebras, a las que se las llama −congruencias. En las dos secciones de este capítulo, no solamente caracterizamos el retículo de las congruencias y el de las −congruencias de estas álgebras, sino que también describimos las álgebras simples y subdirectamente irreducibles de cada una de esta clase de ´algebras con respecto
a ambas congruencias y tambi´en afirmamos que las álgebras antes mencionados coinciden. Es más determinamos que el espacio asociado a cada una de estas álgebras es un conjunto
totalmente ordenado. A partir de este resultado y usando técnicas topológicas obtenemos estas álgebras, arrivando así, por medio de un razonamiento diferente, a los resultados indicados por R. Cignoli en [15], en el caso de las nLMn−álgebras y los de V. Boicescu y
otros en [13], en otro caso. A partir de la caracterizaci´on obtenida de las conguencias maximales probamos que las LM −álgebras y las nLM −álgebras son semisimples. Además establecemos, tanto para las LM −álgebras como para las nLM −álgebras, una correspondencia entre la familia de las −congruencias y la familia de ciertos filtros especiales de estas álgebras, a los que se les llama −filtros. Finalizamos este capítulo determinando, a través de las dualidades de estas álgebras, condiciones necesarias y suficientes para que las nociones de LMn−álgebra y nLMn−álgebra sean equivalentes. La mayoría de los resultados que se detallan en este capítulo se publicaron en A.V. Figallo, I. Pascual and A. Ziliani, A Duality for −Valued Lukasiewicz–Moisil
Algebras and Applications. Journal of Multiple Valued Logic & Soft Computing.
Vol. 16 (2010), pp. 303-322.
Estos resultados se expusieron previamente en XIV Latin American Symposium on Mathematical Logic, Parati, Brasil en 2008.
El Caíıtulo 3 est´s organizado en cuatro secciones y en él nos dedicamos a estudiar las congruencias y las −congruencias de las LM −álgebras y las nLM −álgebras, teniendo en cuenta las dualidades topológicas obtenidas en el Capítulo 2. En la primera sección, logramos una caracterización de las congruencias principales y otra de las −congruencias principales. Por medio de esta última caracterización probamos que la intersección de
dos −congruencias principales de una LM −algebra es una −congruencia principal. Además, cuando es un entero n, n 2, obtenemos los filtros que determinan las congruencias
principales sobre una LMn−algebra, y a partir de este resultado demostramos que la intersecci´on de dos congruencias principales de dicha álgebra es tambi´en una congruencia principal. En los otros casos damos condiciones suficientes para que la intersección de dos congruencias principales de una LM −álgebra no sea principal. En la segunda sección, centramos nuestra atenci´on en las congruencias y las −congruencias booleanas delas LM −álgebras. En primer lugar, las caracterizamos por medio de ciertos subconjuntos cerrados y abiertos de su espacio asociado. Usando estas caracterizaciones demostramos que estas congruencias coinciden, y también que son las congruencias principales determinadas por los filtros generados por elementos booleanos de estas álgebras. Este último resultado nos permite establecer condiciones necesarias y suficientes para que una congruencia
principal sea booleana, y también determinar que las congruencias booleanas son conmutativas, regulares y uniformes. Además, analizamos el caso particular de las LM −algebras completas.
La mayor parte de los resultados que se indican en las dos primeras secciones de este capítulo se publicaron en
A.V. Figallo, I. Pascual and A. Ziliani, Principal and Boolean Congruences on −valued Lukasiewicz–Moisil algebras. Logic withouth frontiers. Festschrift for Walter Alexandre Carnielli on the occasion of his 60 th Birthday, 17 (2012), pp. 215-237.
Algunos de estos resultados se expusieron previamente en XIII Latin American Symposium on Mathematical Logic, Oaxaca, Méjico, en 2006 y otros de estos resultados, en la Reunión Anual de la Unión Matemática Argentina en 2007. En la tercera sección de este capítulo, estudiamos las congruencias y las −congruencias
principales y booleanas de las LM −álgebras que son producto de una familia finita
de LM −álgebras totalmente ordenadas. Como consecuencia de ello obtenemos que las congruencias sobre estas álgebras son −congruencias y además que son principales y booleanas. A partir de este hecho probamos que el cardinal del álgebra booleana de las congruencias de un álgebra de esta subclase, está dado por el cardinal del álgebra booleana de los elementos complementados de dicha álgebra. Estos resultados se expusieron en la Reunión Anual de la Unión Matemática Argentina en 2006.
En la última secci´on caracterizamos y analizamos las congruencias y −congruencias principales y booleanas de las nLM −álgebras. En todas las secciones consideramos en forma particular el caso en el que es un entero n, n 2. El Capítulo 4 está organizado en cuatro secciones. En la primera sección, comenzamos definiendo las álgebras de Lukasiewicz–Moisil −valuadas sin negación monádicas
o mLM −álgebras y las álgebras de Lukasiewicz −valuadas sin negación monádicas fuertes o smLM −álgebras para arbitrario y consideramos el caso particular en el que es un entero n, n 2, a las que las denotamos por mLMn−álgebras y smLMn−álgebras,
respectivamente. Luego, nos dedicamos a determinar una dualidad topológica para cada una de estas clases de álgebras, extendiendo las dualidades topol´ogicas para los M−retículos y sM−retículos, descriptas en el Capítulo 1 y la dualidad determinada en el Capítulo
2 para las LM −álgebras. A trav´es de estas dualidades obtenemos propiedades de las mLM −álgebras, de las que resulta que toda mLM −álgebra es una smLM −álgebra y consecuentemente que los conceptos de mLM −álgebra y smLM −´algebra son equivalentes.
En la segunda sección, tambi´en por medio de la dualidad, caracterizamos las congruencias y las −congruencias y las congruencias y las −congruencias maximales y booleanas sobre una mLM −álgebra, y a partir de estas caracterizaciones realizamos
un estudio detallado de las mismas. Luego, en la tercera sección, abordamos el problema de determinar las álgebras subdirectamente irreducibles de esta clase de álgebras con
respecto a las congruencias y a las −congruencias. En primer lugar, las caracterizaciones anteriores nos permiten afirmar que estas álgebras coinciden y que son también las mLM −álgebras simples con respecto a ambas congruencias. Luego, por medio del espacio topológico cociente por la relaci´on de equivalencia definida en los espacios asociados a las mLM −álgebras, probamos que la imagen del cuantificador de una mLM −álgebra simple
es una LM −álgebra simple. Finalmente, a partir de este último resultado y usando conceptos de topología general, determinamos todas las mLM −álgebras simples. Cabe mencionar que algunos de los temas que se presentan en este capítulo fueron aceptados en el XVI Latin American Symposium on Mathematical Logic, Buenos Aires en 2014. El Capítulo 5 consta de tres secciones. En la primera sección, desarrollamos una dualidad topológica para las álgebras de Lukasiewicz–Moisil −valuadas con negación monádicas o qnLM −álgebras, con infinito y finito. Estas álgebras fueron introducidas por G. Georgescu y C. Vraciu en [42], e investigadas por M. Abad en [1] cuando es un entero
n, n 2 (qnLMn−álgebras). Cuando nos restringimos a la categoría de los Q−retículos distributivos y Q−homomorfismos, esta dualidad coincide con la obtenida por R. Cigx noli en [18]. En la segunda sección, por medio de la dualidad obtenida, logramos una
nueva caracterización de las congruencias, las −congruencias y de las congruencias y −congruencias maximales y booleanas sobre estas álgebras. A partir de la caracterización de las congruencias maximales probamos que las qnLM −álgebras son semisimples.
En la tercera sección, usando los resultados de la Sección 2, establecemos que las qnLM −álgebras simples y subdirectamente irreducibles con respecto a ambas congruencias coinciden. Además en esta sección, empleando el mismo método topológico que el que se utilizó para las mLM −álgebras, determinamos todas las qnLM −álgebras simples, las que se caracterizan por el hecho de que la imagen del cuantificador, definido en cada una de estas álgebras, es una nLM −álgebra simple; obteniendo así, de un modo diferente, los resultados establecidos por M. Abad en [1], para el caso en que es un entero n, n 2. La dualidad para las qnLMn−álgebras y sus aplicaciones se publicaron en Figallo, A. V.; Pascual, I.; Ziliani, A. Notes On Monadic n-valued Lukasiewicz Algebras. Math. Bohem. 129 (2004), no. 3, 255–271.
Algunos de los resultados de la dualidad de las qnLM −álgebras, infinito, se presentaron y discutieron en la Reunión Anual de la Unión Matemática Argentina en 2005. Varios de los resultados de esta tesis que todavía no se han publicado, están en vías
de publicación ([29], [32]).
Finalizamos este trabajo dando una breve enumeración de los posibles desarrollos futuros. / In this thesis, we investigate the class of −valued Lukasiewicz–Moisil algebras, where is the order type of a totally ordered set. We have organized this volume in five chapters. Chapter 1 consists of four sections and the results reported in them are well-known.
We have included them both to facilitate the subsequent reading and to set the definitions of algebras and topological dualities that we use in the remainder chapters.
Chapter 2 is organized in two sections. In the first one, we determine a topological duality for −valued Lukasiewicz–Moisil algebras without negation (LM −algebras) equivalent to the one given by A. Filipoiu in [40]. Furthermore, we consider the particular
case of LM −algebras where is an integer n, n 2 (LMn−algebras). In the second section, we extend the above duality and the one obtained by W. Cornish and P. Fowler in [22] for De Morgan algebras to the case of −valued Lukasiewicz–Moisil algebras with
negation (nLM −algebras); and we also analyze the particular case in which is an integer n, n 2 (nLMn−algebras). It is well-known that there are congruences in the classes of LM −algebras and nLM −algebras, that the quotient algebra by these congruences,
in the sense of universal algebra, does not satisfy the determination principle. That is the reason why the stronger concept of −congruence is introduced on these algebras. In
these two sections of this chapter, we do not only characterize the lattice of congruences and the lattice of −congruences on these algebras, but we also describe the simple and subdirectly irreducible LM −algebras and nLM −algebras regarding both congruences; and we also assert that in each class of these algebras, the above mentioned algebras coincide. What is more, we determine that the space associated with each of these algebras
is a totally ordered set. From this last result and using topological techniques, we obtain all these algebras; and so we arrive, through a different reasoning, at the results indicated by R. Cignoli in [15] in the case of nLMn−algebras and by V. Boicescu et al in
[13], in another case. From the characterization of the maximal congruences, we can set that the LM −algebras and the nLM −algebras are semisimple. In addition to the latter
mentioned, we establish for both LM −algebras and nLM −algebras, a correspondence between the family of −congruences and the family of certain special filters of these algebras,
which are called −filters. Bearing in mind the above dualities for these algebras, we conclude this chapter by determining necessary and sufficient conditions so that the notions of LMn−algebra and nLMn−algebra are equivalent. Most of the results obtained in this chapter were published in A.V. Figallo, I. Pascual and A. Ziliani, A Duality for −Valued Lukasiewicz–Moisil Algebras and Applications. Journal of Multiple Valued Logic & Soft Computing. Vol. 16 (2010), pp. 303-322. They were previously presented and discussed in XIII Latin American Symposium on Mathematical Logic, Parati, Brasil in 2008.
Chapter 3 is organized into four sections and in within this chapter our main interest is to research on the principal and Boolean congruences and −congruences on LM −algebras and nLM −algebras. In order to do this, we take into account the topological
dualities for these algebras obtained in Chapter 2. In the first section, we achieve a characterization of principal congruences and another of principal −congruences on LM −algebras. These last results allow us to prove that the intersection of two principal
−congruences on an LM −algebra is a principal −congruence. Furthermore, whenever is an integer n, n 2, we obtain the filters which determine principal congruences on an LMn−algebra and, we are also in a position to show that the intersection of two principal
congruences on an LMn−algebra is a principal one. In other cases, we give sufficient conditions so that the intersection of two principal congruences on an LM −algebra is not a principal one. In Section 2, our attention is focused on Boolean congruences on LM −algebras. Firstly, we characterize them by means of certain closed and open subsets of their associated spaces. Using this characterization, we prove that these congruences are −congruences, and also that they are principal congruences associated with filters
generated by the complemented elements of these algebras. This last result allows us to set necessary and sufficient conditions so that a principal congruence is a Boolean one, and also to determine that the Boolean congruences are commutative, regular and uniform. Besides, we analyze the particular case of the complete LM −algebras. Most of the achieved results in the two first sections of this chapter were published in A.V. Figallo, I. Pascual and A. Ziliani, Principal and Boolean Congruences on −valued Lukasiewicz–Moisil algebras. Logic withouth frontiers. Festschrift for Walter Alexandre Carnielli on the occasion of his 60 th Birthday, 17 (2012), pp. 215-237. Some of these results were also presented and discussed previously in XIII Latin American Symposium on Mathematical Logic, Oaxaca, Mexico, in 2006 and other of these results, in the Annual Meeting of the Uni´on Matem´atica Argentina in 2007.
In Section 3 of this chapter, we study the principal and Boolean congruences on LM −algebras, which are a product of a finite family of totally ordered LM −algebras.
As a result, we obtain that the congruences on these algebras are −congruences and that they also are principal and Boolean congruences and −congruences. From this fact, we prove that the cardinal of the lattice of congruences on an algebra of this subclass
is given by the cardinal of the Boolean algebra of the complemented elements of this algebra. These results were presented and discussed in the Annual Meeting of the Uni´on
Matem´atica Argentina in 2006. In the last section, we characterize and analyze the principal and Boolean congruences
and −congruences on nLM −algebra. In all sections, we consider the particular case that is an integer n, n 2.
Chapter 4 is organized in three sections. In the first section, we start by defining the monadic −valued Lukasiewicz–Moisil algebras without negation or mLM −algebras and the strong monadic −valued Lukasiewicz–Moisil algebras without negation or smLM −
algebras, for arbitrary. Also we consider the particular case in which is an integer n, n 2, and we denote these algebras by mLMn−algebras and smLMn−algebras, respectively.
Then, we dedicate ourselves to determine a topology duality for each of these classes of algebras. To do this, we extend to these algebras the topological dualities for
M−lattices and sM−lattices, described in Chapter 1, and the duality that we determined in Chapter 2 for LM −algebras respectively. By means of these dualities, we obtain
properties of the mLM −algebras, from which it arises the fact that every mLM −algebra is an smLM −algebra and consequently that the concepts of mLM −algebra and smLM −algebra are equivalent. In order to obtain more information about the latter mentioned
algebras, in the second section, we characterize congruences and −congruences, maximal and Boolean congruences and −congruences on an mLM −algebra, taking into account the duality mentioined above; and from these characterizations, we
carry out a detailed study of them. Then, in the third section, we deal with the problem of determining the subdirectly irreducible algebras of this class, concerning congruences
and −congruences. Firstly, the previous characterizationes allow us to assert that these algebras coincide and that they are also the simple mLM −algebras regarding both congruences.
Then, through the topological quotient space by the equivalence relation defined in the spaces associated with the mLM −algebras, we prove that the image of the quantifier of a simple mLM −algebra is a simple LM −algebra. Finally, from this last result and
while using general topological concepts, we determine all the simple mLM −algebras. It is worth mentioning that some of the topics presented in this chapter were submitted and accepted at XVI Latin American Symposium on Mathematical Logic, Buenos Aires
in 2014. Chapter 5 consists of three sections. In the first section, we develop a topological duality for monadic −valued Lukasiewicz–Moisil algebras with negation or qnLM −algebras, which were introduced by G. Georgescu and C. Vraciu in [42] and they were researched by M. Abad in [1] in the particular case that is an integer n, n 2 (qnLMn−algebra). When restricted to the category of Q−distributive lattices and Q−homomorphisms, this duality
coincides with the one obtained by R. Cignoli in [18]. In the second section, a new characterization of the congruences and another one of the −congruences on a qnLM −algebra by means of certain closed and involutive subsets of the associated space are also obtained.
Besides, in the second section, we characterize the maximal and Boolean congruences and −congruences on these algebras. The results obtained in this Section allow us, in the third section, to establish that simple and subdirectly irreducible qnLM −algebras regarding congruences and −congruences coincide. The characterization of the maximal congruences
enables us to prove that every qnLM −algebra is semisimple. Furthermore, in the third section, employing the same topological method as the one used for mLM −algebras, we obtain all the subdirectly irreducible qnLM −algebras, which are characterized by
the fact that the image of the quantifier, defined on each of these algebras, is a simple nLM −algebra. And so, we arrive at the results established by M. Abad in [1], in the case
of qnLMn−algebra, n 2, by a different method.
The duality for qnLMn−algebras and its applications were published in Figallo, A. V.; Pascual, I.; Ziliani, A. Notes On Monadic n-valued Lukasiewicz Algebras. Math. Bohem. 129 (2004), no. 3, 255–271.
Some of the results of the duality for qnLM −algebras, infinite, were presented and discussed in the Annual Meeting of the Uni´on Matem´atica Argentina in 2005.
Several of the results achieved in this thesis that have not been published yet will be submitted for publication ([29], [32]).
We conclude this study by giving a brief enumeration of possible future developments.
|
52 |
Nilálgebras comutativas de potências associativas e o problema de Albert / Commutative power-associative nilalgebras and Albert\'s problemVanegas, Elkin Oveimar Quintero 12 September 2016 (has links)
Neste trabalho será provado que as álgebras comutativas de potências associativas de dimensão n e nilíndice n-3, assim como, álgebras de dimensão 9 sobre C, são solúveis, estendendo os resultados conhecidos ao famoso Problema de Albert. Logo depois de estudar o problema de Albert, será dada uma descrição das tabelas de multiplicação para as álgebras comutativas de potências associativas de dimensão n maior do que 12 e nilíndice n-1 sobre um corpo de característica diferente de 2,3 e 5. / We will prove that commutative power-associative nilalgebras both of dimension n and nilindex n-3, or of dimension 9 over C, are solvable. This solve an specific case of famous Albert\'s problem. After that, we will make a description about multiplications of commutative power-associative nilalgebras of dimension n (greater or igual that 12) and nilindex n-1 over a field of characteristic diferent from 2,3 and 5.
|
53 |
R-álgebras de dimensão finitaOliveira, Sóstenes Souza de 24 March 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study the notion of R-algebra. Roughly, they are structures that
generalize some arithmetic properties of the body of complex numbers. The ?exibi-
lity in this generalization is the non-requirement of properties such as commutativity,
associativity and identity element existence. We focus primarily on the ?nite dimen-
sional division R-algebras. As is well known, modulo isomorphisms exist exactly four
of those R-algebras. In the development of the dissertation we will discuss in detail
its main algebraic and geometric properties. / Nesse trabalho estudamos a noção de R-álgebra. A grosso modo, elas são es-
truturas que generalizam algumas propriedades aritméticas do corpo dos números
complexos. A ?exibilidade nessa generalização é a não exigência de propriedades
como comutatividade, associatividade e existência de elemento identidade. Focamos
principalmente nas R-álgebras de divisão de dimensão ?nita. Como é bem conhe-
cido, módulo isomor?smos existem exatamente quatro dessas R-álgebras. No desen-
volvimento da dissertação discutiremos detalhadamente suas principais propriedades
algébricas e geométricas.
|
54 |
Nilálgebras comutativas de potências associativas e o problema de Albert / Commutative power-associative nilalgebras and Albert\'s problemElkin Oveimar Quintero Vanegas 12 September 2016 (has links)
Neste trabalho será provado que as álgebras comutativas de potências associativas de dimensão n e nilíndice n-3, assim como, álgebras de dimensão 9 sobre C, são solúveis, estendendo os resultados conhecidos ao famoso Problema de Albert. Logo depois de estudar o problema de Albert, será dada uma descrição das tabelas de multiplicação para as álgebras comutativas de potências associativas de dimensão n maior do que 12 e nilíndice n-1 sobre um corpo de característica diferente de 2,3 e 5. / We will prove that commutative power-associative nilalgebras both of dimension n and nilindex n-3, or of dimension 9 over C, are solvable. This solve an specific case of famous Albert\'s problem. After that, we will make a description about multiplications of commutative power-associative nilalgebras of dimension n (greater or igual that 12) and nilindex n-1 over a field of characteristic diferent from 2,3 and 5.
|
55 |
Estruturas livres em anéis de divisão / Free structures in division ringsFehlberg Junior, Renato 12 April 2013 (has links)
A conjectura de Makar-Limanov arma que se um anel de divisão D e finitamente gerado e de dimensão infinita sobre seu centro k, então D contém uma k-subálgebra livre de posto 2. Neste trabalho, investigaremos a existência de tais estruturas no anel de divisão de frações do anel de polinômios skew L[t; \'\\sigma\' ], onde t é uma variável e \'\\sigma\' é um k-automorfismo de L. Mais especificamente, assumindo o que chamamos de Hipótese do Delta 3.3.1, provaremos esse resultado para L / k uma extensão de corpos, mesmo quando L não é finitamente gerado sobre k. Finalmente, provaremos a Hipótese do Delta e a conjectura, quando L é o corpo de funções de uma variedade abeliana ou o corpo de funções do espaço projetivo n-dimensional / Makar-Limanov\'s conjecture states that if a division ring D is finitely generated and infinite dimensional over its center k then D contains a free k-subalgebra of rank 2. In this work, we will investigate the existence of such structures in the division ring of fractions of the skew polynomial ring L[t; \'\\sigma\' ], where t is a variable and \'\\sigma\' is an k-automorphism of L. More specifically, assuming what we called Delta\'s Hipothesis 3.3.1, we prove this result for L / k a field extension, even when L isn\'t finitely generated over k. Finally, we prove Delta\'s Hipothesis and the conjecture when either L is the function field of an abelian variety or the function field of the n-dimensional projective space
|
56 |
Cadeias quânticas de spin: alguns estudos numéricos e analíticos / Quantum spin chains: some numerical and analytical studiesNakamura, Gilberto Medeiros 09 March 2006 (has links)
Nesta dissertação, realizamos um estudo sobre cadeias unidimensionais quânticas de spin meio e spin um exatamente integráveis. Estudamos as propriedades do espectro de energia e efeitos produzidos no mesmo devido à finitude da cadeia. Para tal fim, exploramos as propriedades advindas da invariância por transformações conforme dos modelos em seus respectivos pontos críticos. Como apreciação dessa abordagem, estudamos o modelo exatamente integrável NDF, proposto por Alcaraz e Bariev, para partículas de spin 1. Verificamos em tal modelo uma transição de fase quântica. / In this dissertation, we have studied exactly integrable unidimensional quantum spin chains of spin 1/2 and spin 1. Special atention was given to the properties of the energy eigenspectra of these chains and particularly to their finite size effects. To achieve this goal, we have explored the invariance by conformal transformations of the models in their critical points. As an appreciation of these studies, we have studied the exactly integrable model NDF of spin 1, proposed by Alcaraz e Bariev. We verified that such model possess a quantum phase transition.
|
57 |
Transformaciones lineales con geogebra: una propuesta para profesores en formación continuaPalomino Hernández, José Alonso 28 August 2017 (has links)
En este trabajo de investigación detallamos la elaboración, experimentación y análisis
de los resultados de dos actividades dirigidas a la experimentación que tienen los
alumnos de maestría en Enseñanza de las Matemáticas de la Pontificia Universidad
Católica del Perú, estos alumnos son profesores en formación continua, al enfrentar el
formalismo con el que suelen enseñarse las transformaciones lineales, al estudiar su
definición, propiedades, algunos problemas que contienen este objeto matemático como
pueden ser la matriz de una transformación lineal, relativa a una base, a la imagen y
núcleo de una transformación lineal.
Las actividades fueron diseñadas teniendo como marco teórico la Teoría de Registros de
Representación Semiótica, de modo que estas debían exigir cambios de registros de
representación (del algebraico al leguaje natural, del gráfico al algebraico, etc) y
tratamientos en el mismo registro para que los docentes en formación continua logren
las conversiones y tratamientos, y finalmente respondan lo pedido en cada pregunta de
las actividades.
Como proceso metodológico utilizamos la Ingeniería Didáctica, que se ubica en el
registro de estudio de casos, y sirvió para la creación, aplicación, observación y análisis
de las actividades, al confrontar los resultados esperados en la experimentación con los
resultados obtenidos de las actividades. El GeoGebra fue la herramienta de suma
importancia para la creación de las actividades y los alumnos la usaron de manera
directa para el desarrollo de las mismas, el cual les ayudó en promover específicamente
el registro gráfico. La investigación muestra que los alumnos han logrado realizar
conversiones del registro gráfico al algebraico, del registro algebraico al de lenguaje
natural, del registro algebraico al matricial y del registro algebraico al gráfico. / Tesis
|
58 |
Deformações e isotopias de álgebras de Jordan / Deformations and isotopies of Jordan algebrasMartin, Maria Eugenia 04 September 2013 (has links)
Neste trabalho apresentamos a classificação algébrica e geométrica das álgebras de Jordan de dimensões pequenas sobre um corpo $k$ algebricamente fechado de $char k eq 2$ e sobre o corpo dos números reais. A classificação algébrica foi realizada de duas maneiras: a menos de isomorfismos e a menos de isotopias. Enquanto que a classificação geométrica foi feita estudando as variedades de álgebras de Jordan $Jor_$ para $n \\leq 4$ e $JorR_$ para $n\\leq 3$. Provamos que $Jor_$ tem 73 órbitas sob a ação de $GL(V)$ e que é a união dos fechos de Zariski das órbitas de 10 álgebras rígidas, cada um dos quais corresponde a uma componente irredutível. Analogamente, mostramos que $JorR_$ tem 26 órbitas e é a união dos fechos de Zariski das órbitas de 8 álgebras rígidas. Também obtivemos que o número de componentes irredutíveis em $Jor_$ é $\\geq 26$. Construímos ainda três famílias de álgebras rígidas não associativas, não semisimples e indecomponíveis as quais correspondem a componentes irredutíveis de $Jor_$ e $JorR_$ para todo $n\\geq 5$. / In this work we present the algebraic and geometric classification of Jordan algebras of small dimensions over an algebraically closed field $k$ of $char k eq 2$ and over the field of real numbers. The algebraic classification was accomplished in two ways: up to isomorphism and up to isotopy. On the other hand, the geometric classification was obtained studying the varieties of Jordan algebras $Jor_$ for $n\\leq4$ and $JorR_$ for $n\\leq3$. We prove that $Jor_$ has 73 orbits under the action of $GL(V)$ and it is the union of Zariski closures of the orbits of 10 rigid algebras, each of which corresponds to one irreducible component. Analogously, we show that $JorR_$ has 26 orbits and is the union of Zariski closures of the orbits of 8 rigid algebras. Also we obtain that the number of irreducible components in $Jor_$ is $\\geq26$. We construct three families of indecomposable non-semisimple, non-associative rigid algebras which for any $n\\geq5$, correspond to irreducible components of $Jor_$ and $JorR_$.
|
59 |
Representación y clasificación de productos tensoriales torcidosArce Flores, Jack Denne 25 January 2018 (has links)
Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de
espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B.
En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos
de investigación y establecemos como primer resultado propio, la dualidad que existe entre las
aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado
parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna
prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicación de torcimiento de A con B es equivalente a definir un par de representaciones matriciales (p , ph), una de B y otra de Aop. La primera tiene coeficientes en A y la segunda tiene coeficientes en Endk(B). Además, obtenemos una representación matricial el del producto tensorial torcidos en Mn(B). Estas representaciones constituyen el resultado principal propio en el segundo capítulo. Como aplicación describimos los productos tensoriales torcidos estudiados por Cibils, Jara et al. y Guccione et al. en términos del par de representaciones (p , ph) y deducimos las condiciones que permiten a los autores en cada uno de los casos lograr una clasificación (parcial o total). A continuación nos enfocamos en las aplicaciones de torcimiento de Kn con Km. Establecemos una caracterización de estas aplicaciones de torcimiento en términos de matrices con coeficientes en K, la cual se debe a que ambas álgebras son conmutativas y de dimensión finita. Tal caracterización nos permite clasificar completamente las aplicaciones de torcimiento de rango reducido 1 que en nuestro lenguaje se ve muy diferente de la clasificación alcanzada por Jara et al.. Luego desarrollamos herramientas para el estudio de dos familias de productos tensoriales torcidos: las estándar y las casi-estándar. Estas herramientas permiten estudiar la relación entre las aplicaciones de torcimiento estándar, y casi-estándar, con las álgebras de camino de Quivers, y establecen una generalización del resultado obtenido por Cibils para n = 2. Para analizar utilizamos todos de los resultados obtenidos para clasificar los productos tensoriales torcidos en el caso de dimensiones bajas, incluyendo todas las aplicaciones de torcimiento de K3 con K3. / Tesis
|
60 |
Espinores clássicos, algébricos e conjugação de carga no formalismo das álgebras de CliffordCavalcanti, Rogério Teixeira January 2013 (has links)
Orientador: Roldão da Rocha Junior / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Matemática, 2013
|
Page generated in 0.0309 seconds