• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 4
  • Tagged with
  • 25
  • 25
  • 25
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Détection non destructive d'un atome unique par interaction dispersive avec un champ mésoscopique dans une cavité

Maioli, Paolo 09 July 2004 (has links) (PDF)
La détection des états d'un qubit est un élément essentiel dans la réalisation d'expériences d'information quantique. Dans le système étudié, le bit quantique est codé dans les états d'énergie interne d'un atome de Rydberg circulaire à deux niveaux. Dans ce mémoire nous présentons une nouvelle technique de détection des atomes de Rydberg circulaires basée sur l'interaction dispersive d'un atome avec un champ micro-onde mésoscopique à l'intérieur d'une cavité supraconductrice de très grand facteur de qualité. L'indice de réfraction de l'atome, dépendant de son niveau d'énergie interne, déphase le champ micro-onde, et une procédure de détection homodyne transforme l'information codée dans la phase du champ en une information d'intensité. L'intensité finale du champ est lue par un échantillon mésoscopique d'atomes. Il s'agit d'une technique de détection non destructive, puisque le processus de détection n'ionise pas l'atome, mais le projette simplement dans l'état mesuré. De plus, le processus de détection intrique l'état interne d'un atome au niveau d'excitation d'un ensemble de plusieurs atomes, permettant de créer des superpositions cohérentes d'états atomiques mésoscopiques et ouvrant de nouvelles perspectives pour des tests de décohérence Nous présentons le principe de la technique et de nombreux résultats expérimentaux, ainsi que de possibles schémas d'application.
12

Micro-cavité Fabry Perot fibrée : une nouvelle approche pour l'étude des polaritons dans des hétérostructures semi-conductrices

Besga, Benjamin 06 June 2013 (has links) (PDF)
L'interaction entre la lumière et la matière est au coeur de la physique quantique depuis ses origines. Nous nous intéressons ici à l'interaction entre les excitations élémentaires d'une hétérostructure semi-conductrice (excitons de boîtes et de puits quantiques) et le mode du champ d'une cavité Fabry Perot fibrée. Nous présentons une caractérisation des propriétés géométriques et spectrales des modes de la micro-cavité fibrée plan-concave. Cette dernière est entièrement ajustable et cette nouvelle approche nous permet d'étudier plusieurs régimes de l'électrodynamique quantique d'émetteurs solides en cavité. Pour une boîte quantique unique dans une micro-cavité fibrée nous obtenons un couplage à la limite du régime de couplage fort et une coopérativité supérieure à l'unité, traduisant le potentiel d'un tel système pour des applications dans le domaine de l'information quantique. Pour un puits quantique dans une micro-cavité fibrée, le couplage obtenu est comparable a celui observé dans des structures intégrées et permet d'étudier plusieurs aspects de la physique des polaritons confinés optiquement. Ces derniers, issus du couplage fort d'un exciton et d'un photon, possèdent un temps de vie relativement long qui permet d'étudier les propriétés thermodynamiques du système. Le rôle du désordre dans le puits quantique est explicité. Cela nous permet d'interpréter la non-linéarité de la photoluminescence des polaritons avec la puissance de pompe en termes de transition de Dicke. Enfin, le confinement optique des polaritons, permet d'étudier le rôle des interactions entre polaritons et ouvre la voie vers un régime de blocage quantique de polariton.
13

Détection sans destruction d'un seul photon. Une expérience d'électrodynamique quantique en cavité.

Nogues, Gilles 15 December 1999 (has links) (PDF)
Les mesures habituelles en optique détruisent les photons<br />incidents pour convertir leur énergie en un signal détectable.<br />Cette destruction n'est cependant pas imposée par les lois<br />quantiques fondamentales et des stratégies de mesure quantique<br />non-destructive ont été proposées qui permettent la mesure répétée<br />de champs électromagnétiques. Nous présentons la détection sans<br />absorption d'un seul photon stocké dans une cavité micro-onde<br />supraconductrice. Nous utilisons à cette fin des atomes de Rydberg<br />circulaires, très fortement couplés au champ. Durant son<br />interaction avec le mode de la cavité, un atome est capable<br />d'absorber un photon puis de le réémettre. Il s'agit des<br />oscillations de Rabi quantiques. À la fin de ce cycle<br />absorption--émission, le photon est encore présent dans la cavité<br />mais le système atome--champ a gardé une trace de son évolution<br />dans la phase de sa fonction d'onde qui a tourné de 180°. Nous<br />détectons ce déphasage grâce à un dispositif d'interférométrie<br />atomique. Un ensemble d'expériences permet de prouver les<br />corrélations entre l'atome et l'état du champ et le caractère<br />non-destructif de la mesure. Une analyse précise des performances<br />du dispositif et de ses applications possibles pour l'optique<br />quantique est menée.
14

Electrodynamique quantique des les atomes artificiels supraconducteurs

Diniz, Igor 22 October 2012 (has links) (PDF)
This thesis focuses on two problems in circuit quantum electrodynamics. We first investigate theoretically the coupling of a resonator to a continuous distribution of inhomogeneously broadened emitters. Studying this formalism is strongly motivated by recent proposals to use collections of emitters as quantum memories for individual excitations. Such systems benefit from the collective enhancement of the interaction strength, while keeping the relaxation properties of a single emitter. We discuss the influence of the emitters inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Taking into account the inhomogeneous broadening allows to simulate with a great accuracy a number of pioneer experimental results on a ensemble of NV centers. The modeling is shown to be a powerful tool to obtain the properties of the spin ensembles coupled to a resonator. We also suggest an original Josephson qubit readout method based on a dc-SQUID with high loop inductance. This system supports a diamond-shape artificial atom where we define logical and ancilla qubits coupled through a cross-Kerr like term. Depending on the logical qubit state, the ancilla is resonantly or dispersively coupled to the resonator, leading to a large contrast in the transmitted microwave signal amplitude. Simulations show that this original method can be faster and have higher fidelity than methods currently used in circuit QED.
15

Mesure au-delà de la limite quantique standard de l'amplitude d'un champ électromagnétique dans le domaine micro-onde / Measurement of a microwave electromagnetic field amplitude beyond the standard quantum limit

Penasa, Mariane 02 December 2016 (has links)
Intermédiaire essentiel au dialogue entre théorie et vérification expérimentale, la mesure n'a de sens que si la précision des résultats est élevée. La métrologie en laboratoire s'attache à augmenter autant que possible la précision avec laquelle l'expérimentateur a accès à la valeur d'un paramètre. Le bruit quantique affectant la mesure impose une limite sur la précision maximale accessible à partir d'états quasi-classiques: la limite quantique standard (SQL). La métrologie quantique cherche à utiliser les caractéristiques propres à la mécanique quantique pour la dépasser et se rapprocher le plus possible de la limite ultime, physiquement non franchissable, appelée limite de Heisenberg. Dans ce mémoire, nous avons développé une stratégie de mesure d'un champ électromagnétique contenant moins d'un photon basée sur l'utilisation de corrélations atome-champ dans une expérience d'électrodynamique quantique en cavité. L'idée est de mesurer l'amplitude de ce petit champ en sondant la perturbation qu'il introduit sur un état intriqué atome-champ mésoscopique déjà présent dans une cavité supraconductrice. Nous avons pu démontrer que le choix de notre mesure est, en principe, optimal grâce aux outils que sont l'information de Fisher (dépendant du processus de mesure) et l'information de Fisher dite quantique (qui elle n'en dépend pas), liées à la précision sur la mesure par des inégalités de type Cramér-Rao. Expérimentalement, nous avons très largement dépassé la précision obtenue sur l'amplitude du champ électromagnétique par une mesure classique et nous nous sommes rapprochés de la limite de Heisenberg autant que les imperfections expérimentales nous le permettaient. / As an essential intermediary between theories and their experimental proofs, measurement is meaningfull if the precision of its results is high. The main emphasis of metrology in laboratories is therefore on increasing as much as possible the precision of the experimental evaluation of a parameter. Quantum noise that affects the measurement establishes a quantitative limit on the maximal precision that can be achieved with classical states: the standard quantum limit (SQL). Quantum metrology aims at using quantum features to beat this limit and to approach the physically ultimate limit called Heisenberg limit. This thesis presents a measurement strategy for an electromagnetic field containing less than one photon, which is based on the use of atom-field correlations in a cavity quantum electrodynamics experiment. The idea is to measure the amplitude of the small field by probing the disturbance caused on an entangled mesoscopic state that is already stored in the superconducting cavity. We demonstrated that our measurement strategy is in principle optimal thanks to two tools: the Fisher information (that depends on the measurement process) and the quantum Fisher information (that does not), which define the precision tanks to Cramér-Rao like equations. The measurement signal subsequently largely exceeded the level of accuracy obtained with classical states and we got as closed to the Heisenberg limit as the experimental imperfections allowed us.
16

Creation of entangled states of a set of atoms in an optical cavity / Création d'états intriqués d'un ensemble d'atomes dans une cavité optique

Haas, Florian 13 February 2014 (has links)
Dans cette thèse, nous démontrons la création et la caractérisation d'états intriqués dans un ensemble atomique à l'aide d'un résonateur optique de haute finesse. Notre dis- positif expérimental consiste en une cavité fibrée placée en dessous d'une puce à atomes. Les atomes sont tous piégés dans un seul ventre du piège dipolaire créé dans la cavité. Ainsi, ils sont également couplés au mode lumineux de la cavité. Nous présentons une méthode basée sur une mesure collective et non-destructive et une évolution conditionnelle qui sert à créer des états intriqués et symétriques puis à les analyser, avec la résolution d'une particule unique, en mesurant d'une manière directe leur fonction Husimi Q. En utilisant cette méthode, nous créons et caractérisons des états W contenant jusqu'à 41 atomes. Nous reconstituons la partie symétrique de la matrice densité à partir des données expérimentales de la fonction Husimi Q en utilisant différentes méthodes de reconstruction quantique et nous obtenons une fidélité de 0.42. Par ailleurs, nous avons établi un critère d'intrication qui consiste à comparer seulement deux populations de la matrice densité. Nous l'utilisons pour déterminer le degré d'intrication présent dans les états expérimentalement créés et nous trouvons que l'état de fidélité maximale contient au moins 13 particules intriquées. Pour finir, nous présentons des résultats préliminaires concernant des expériences de dénombrement d'atomes dans la cavité en régime de mesures non-destructives ainsi que des expériences de création d'états intriqués en se servant de la dynamique Zénon quantique. / In this thesis, we demonstrate the creation and characterization of multiparticle entangled states of neutral atoms with the help of a high finesse cavity. Our experimental setup consists of a fibre-based high finesse cavity above the surface of an atom chip. It allows us to prepare an ensemble of 87Rb atoms with well-defined atom number. The atoms are trapped in a single antinode of an intracavity standing wave dipole trap and are therefore all equally coupled to the cavity mode. We present a scheme based on a collective, quantum non-destructive (QND) measurement and conditional evolution to create symmetric entangled states and to analyze them at the single-particle level by directly measuring their Husimi Q function. We use this method to create and characterize W states of up to 41 atoms. From the tomography curve of the Q function, we reconstruct the symmetric part of the density matrix via different reconstruction techniques and obtain a fidelity of 0.42. Furthermore, we have devised an entanglement criterion which only relies on comparing two populations of the density matrix. We use it to infer the degree of multiparticle entanglement in our experimentally created states and find that the state with highest fidelity contains at least 13 entangled particles. In addition, we show preliminary results on experiments to count the atom number inside a cavity in the QND regime and to create entangled states via quantum Zeno dynamics.
17

Using optical fibre cavities to create multi-atom entanglement by quantum zeno dynamics / Création des états intriqués à n atomes par dynamique quantique zénon dans des cavités optiques fibrés

Hohmann, Leander 24 February 2015 (has links)
Nous démontrons la création d'états intriqués dans un ensemble d’atomes neutres fondée sur la dynamique Zénon quantique (QZD), à l'aide d'un microrésonateur optique. Notre dispositif expérimental combine une puce à atomes avec une cavité Fabry-Perot fibrée (FFP) et nous permet de piéger un ensemble d’atomes de Rb87 dans un seul ventre d'un piège dipolaire créé dans la cavité. Les atomes sont couplés fortement et identiquement au mode lumineux de la cavité, ce qui permet une mesure non-destructive de leur état collectif.Nous réalisons la QZD en modifiant, par des mesures fréquentes, la dynamique induite par radiation micro-ondes. Nous démontrons que la QZD créé des états intriqués multiparticules de façon déterministe et rapide. Nous caractérisons ces états à l'aide de mesures de la fonction de Husimi Q, donnant accès à la partie symétrique de la matrice densité. Nous étudions l’évolution temporelle d'états impliquant un minimum de 3 à 11 atomes intriqués, qui présentent une fidélité par rapport à l'état W à 36 atomes atteignant 0.37. Nous étudions l'influence de la force de la mesure et des imperfections expérimentales et nous montrons que notre système est bien décrit par des modèles simples sans paramètres ajustables.Nous présentons aussi un travail réalisé en vue de l’amélioration des cavités FFP. Nous discutons notamment la limitation due à l'écart en fréquence des modes propres de polarisation dans des cavités formées par deux fibres optiques microfabriquées avec un laser CO2. Nous démontrons que cet effet dépend de la symétrie des structures microfabriquées et qu'il peut être contrôlé tant au niveau de la fabrication que pendant l'assemblage de la cavité. / In this thesis, we show how an optical microcavity setup can create multiparticle entanglement in an ensemble of neutral atoms by means of quantum Zeno dynamics (QZD).Our setup combines an atom chip with a fibre Fabry-Perot (FFP) resonator and allows us to load an ensemble of Rb87 atoms into a single node of an intracavity dipole trap, coupling the atoms strongly and identically to the cavity light field which enables us to perform a quantum non-destructive measurement of their collective state.We realise QZD by modifying the dynamics of the collective state (encoded in atomic hyperfine states addressed with MW radiation) by means of frequent cavity measurements at optical frequency. This QZD is shown to create multiparticle entanglement in a fast and deterministic scheme. To analyse the created states, we reconstruct the symmetric part of the atomic density matrix from 2d measurements of the ensemble's Husimi Q-distribution. We give a time-resolved account of the creation of states with at least 3-11 entangled atoms and fidelity of up to 0.37 with respect to a W state of 36 atoms. Studying the influence of measurement strength and experimental imperfections, we show that our experiments are well described by simple models with no free parameters.This thesis also presents work towards improved FFP cavities. We discuss the problem of frequency splitting of polarisation eigenmodes in cavities made from two fibres microfabricated with a CO2 laser. We show that this effect depends on the symmetry of the microfabricated structures and demonstrate that it can be controlled both at the level of fabrication and when assembling a cavity.
18

Estimation d'état et de paramètres pour les systèmes quantiques ouverts / Estimation of state and parameters in open quantum systems

Six, Pierre 22 November 2016 (has links)
La communauté scientifique a réussi ces dernières années à bâtir des systèmes quantiques simples sur lesquels des séries de mesures sont acquises successivement le long de trajectoires quantiques et sans réinitialisation de l’état (opérateur densité) par l’expérimentateur.L’objet de cette thèse est d’adapter les méthodes de tomographie quantique (estimation d’état et de paramètres) à ce cadre pour prendre en compte la rétroaction de la mesure sur l’état, la décohérence et les imperfections expérimentales.Durant le processus de mesure, l’évolution de l’état quantique est alors gouvernée par un processus de Markov à états cachés (filtres quantiques de Belavkin). Pour des mesuresen temps continu, nous commençons par montrer comment discrétiser l’équation maîtresse stochastique tout en préservant la positivité et la trace de l’état quantique, et ainsi sera mener aux filtres quantiques en temps discret. Ensuite, nous développons, à partir de trajectoires de mesures en temps discret, des techniques d’estimation par maximum de vraisemblance pour l’état initial et les paramètres. Cette estimation est accompagnée de son intervalle de confiance. Lorsqu’elle concerne des valeurs de paramètres (tomographie de processus quantique), nous donnons un résultat de robustesse grâce au formalisme des filtres particulaires et nous proposons une méthode de maximisation fondée sur le calcul du gradient par l’adjoint et bien adaptée au cas multiparamétrique. Lorsque l’estimation porte sur l’état initial (tomographie d’état quantique), nous donnons une formulation explicite de la fonction de vraisemblance grâce aux états adjoints, montrons que son logarithme est une fonction concave de l’état initial et élaborons une expression intrinsèque de la variance grâce à des développements asymptotiques de moyennes bayésiennes et reposant sur la géométrie de l’espace des opérateurs densité.Ces méthodes d’estimation ont été appliquées et validées expérimentalement pour deux types de mesures quantiques : des mesures en temps discret non destructives de photons dans le groupe d’électrodynamique quantique en cavité du LKB au Collège de France, des mesures diffusives de la fluorescence d’un qubit supraconducteur dans le groupe d’électronique quantique du LPA à l’ENS Paris. / In recent years, the scientifical community has succeeded in experimentally building simple quantum systems on which series of measurements are successively acquired along quantum trajectories, without any reinitialization of their state (density operator) by the physicist. The subject of this thesis is to adapt the quantum tomography techniques (state and parameters estimation) to this frame, in order to take into account the feedback of the measurement on the state, the decoherence and experimental imperfections.During the measurement process, the evolution of the quantum state is then governed by a hidden-state Markov process (Belavkin quantum filters). Concerning continuous-time measurements, we begin by showing how to discretize the stochastic master equation, while preserving the positivity and the trace of the quantum state, and so reducing to discrete-time quantum filters. Then, we develop,starting from trajectories of discrete-time measurements, some maximum-likelihood estimation techniques for initial state and parameters. This estimation is coupled with its confidence interval. When it concerns the value of parameters (quantum process tomography), we provide a result of robustness using the formalism of particular filters, and we propose a maximization technique based on the calculus of gradient by adjoint method, which is well adapted to the multi-parametric case. When the estimation concerns the initial state (quantum state tomography), we give an explicit formulation of the likelihood function thanks to the adjoint states, show that its logarithm is a concave function of the initial state and build an intrinsic expression of the variance, obtained from asymptotic developments of Bayesian means, lying on the geometry of the space of density operators.These estimation techniques have been applied and experimentally validated for two types of quantum measurements: discrete-time non-destructive measurements of photons in the group of cavity quantum electro-dynamics of LKB at Collège de France, diffusive measurements of the fluorescence of a supra-conducting qubit in the quantum electronics group of LPA at ENS Paris.
19

ATOMES ET CAVITÉ : PRÉPARATION ET MANIPULATION D'ÉTATS INTRIQUÉS COMPLEXES

Rauschenbeutel, Arno 02 May 2001 (has links) (PDF)
Nous présentons ici la réalisation d'une dynamique quantique conditionnelle et la préparation d'un état intriqué à trois systèmes quantiques dans une expérience d'électrodynamique quantique en cavité. Nous couplons des atomes, préparés dans un état de Rydberg circulaire, au mode d'une cavité de très haute surtension, préparé dans l'état vide. A résonance, un échange réversible et cohérent d'un quantum d'excitation entre l'atome et le champ a lieu : l'oscillation de Rabi quantique. En fixant le temps d'interaction à un cycle complet d'absorption et d'émission, nous obtenons une dynamique conditionnelle : la phase quantique de l'état atome--champ change si le mode contient un photon et si l'état atomique est couplé au mode. En revanche, si le mode ne contient pas de photon ou si l'état atomique n'est pas<br />couplé, la phase reste inchangée. Nous démontrons ce changement de phase et nous faisons varier sa valeur en désaccordant la fréquence du mode par rapport à la transition atomique. De plus, nous vérifions que la dynamique préserve la cohérence des sous-systèmes, menant ainsi à un état intriqué si les deux sont initialement préparés dans des superpositions d'états. Nous interprétons le processus en termes d'une porte logique quantique et nous analysons ses limitations. Dans une deuxième expérience, nous préparons et analysons un état intriqué entre deux atomes et le champ en effectuant des opérations successives et réversibles. Le premier atome est intriqué avec le champ en interagissant avec ce dernier pendant un quart d'oscillation de Rabi. Le deuxième atome effectue ensuite, comme dans la première expérience, une oscillation de Rabi complète. Etant préparé dans une superposition de l'état couplé et de l'état non-couplé, il s'intrique également avec le champ, et donc avec le premier atome. Des mesures dans deux bases orthogonales sont effectuées sur l'état intriqué à trois systèmes résultant. Une analyse des signaux expérimentaux est présentée, confirmant que l'état préparé n'est effectivement pas séparable. Nous discutons des perspectives ouvertes par ces expériences pour le traitement<br />quantique de l'information.
20

Atomes et Cavité : Complémentarité et Fonctions de Wigner

Bertet, Patrice 09 October 2002 (has links) (PDF)
Le principe de complémentarité est un concept fondamental de la<br />mécanique quantique. Il prédit que, dans une expérience d'interférométrie, toute<br />tentative pour déterminer quel chemin la particule choisit entre les deux lames<br />séparatrices brouille inévitablement les franges d'interférence. Dans ce mémoire,<br />nous présentons une expérience qui illustre ce principe dans un interféromètre de<br />Ramsey. Des atomes de Rydberg circulaires sont soumis à deux impulsions micro-onde<br />résonantes sur une transition atomique, qui jouent le rôle de lames séparatrices en<br />énergie. On observe alors des franges d'interférence dans la probabilité de détecter<br />l'atome dans un état donné. Dans notre expérience, l'une des deux impulsions est<br />effectuée dans le mode d'une cavité supraconductrice. Grâce au couplage fort entre<br />l'atome et la cavité, nous avons pu effectuer l'impulsion même lorsque le champ dans<br />la cavité contient très peu de photons en moyenne (N<1, impulsion quantique). Les<br />franges ont alors un contraste réduit car l'état de la cavité mesure celui de<br />l'atome au sein de l'interféromètre. Cette mesure est de moins en moins efficace<br />lorsque N augmente. Le contraste des franges augmente donc, jusqu'à atteindre le<br />contraste intrinsèque d'un interféromètre de Ramsey classique lorsque N>>1. Un<br />modèle simple, qui ne tient compte que de l'intrication entre l'atome et la cavité,<br />reproduit quantitativement les observations. Un des intérêts majeurs du dispositif<br />d'électrodynamique quantique en cavité est de permettre la génération d'états<br />non-classiques du champ. Il est alors particulièrement intéressant de les<br />caractériser complètement. Nous présentons en dernière partie de ce mémoire une<br />méthode directe pour mesurer la fonction de Wigner d'un état quelconque de la<br />cavité, et son application à un état de Fock à un photon.

Page generated in 0.1273 seconds