• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 48
  • 10
  • 1
  • Tagged with
  • 136
  • 72
  • 68
  • 55
  • 34
  • 30
  • 30
  • 29
  • 23
  • 23
  • 22
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Adaptive Large Eddy Simulations based on discontinuous Galerkin methods / Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue

Naddei, Fabio 08 October 2019 (has links)
L'objectif principal de ce travail est d'améliorer la précision et l'efficacité des modèles LES au moyen des méthodes Galerkine discontinues (DG). Deux thématiques principales ont été étudiées: les stratégies d'adaptation spatiale et les modèles LES pour les méthodes d'ordre élevé.Concernant le premier thème, dans le cadre des méthodes DG la résolution spatiale peut être efficacement adaptée en modifiant localement soit le maillage (adaptation-h) soit le degré polynômial de la solution (adaptation-p). L'adaptation automatique de la résolution nécessite l'estimation des erreurs pour analyser la qualité de la solution locale et les exigences de résolution. L'efficacité de différentes stratégies de la littérature est comparée en effectuant des simulations h- et p-adaptatives.Sur la base de cette étude comparative, des algorithmes statiques et dynamiques p-adaptatifs pour la simulation des écoulements instationnaires sont ensuite développés et analysés. Les simulations numériques réalisées montrent que les algorithmes proposés peuvent réduire le coût de calcul des simulations des écoulements transitoires et statistiquement stationnaires.Un nouvel estimateur d'erreur est ensuite proposé. Il est local, car n'exige que des informations de l'élément et de ses voisins directs, et peut être calculé en cours de simulation pour un coût limité. Il est démontré que l'algorithme statique p-adaptatif basé sur cet estimateur d'erreur peut être utilisé pour améliorer la précision des simulations LES sur des écoulements turbulents statistiquement stationnaires.Concernant le second thème, une nouvelle méthode, consistante avec la discrétisation DG, est développée pour l'analyse a-priori des modèles DG-LES à partir des données DNS. Elle permet d'identifier le transfert d'énergie idéal entre les échelles résolues et non résolues. Cette méthode est appliquée à l'analyse de l'approche VMS (Variational Multiscale). Il est démontré que pour les résolutions fines, l'approche DG-VMS est capable de reproduire le transfert d'énergie idéal. Cependant, pour les résolutions grossières, typique de la LES à nombres de Reynolds élevés, un meilleur accord peut être obtenu en utilisant un modèle mixte Smagorinsky-VMS. / The main goal of this work is to improve the accuracy and computational efficiency of Large Eddy Simulations (LES) by means of discontinuous Galerkin (DG) methods. To this end, two main research topics have been investigated: resolution adaptation strategies and LES models for high-order methods.As regards the first topic, in the framework of DG methods the spatial resolution can be efficiently adapted by modifying either the local mesh size (h-adaptation) or the degree of the polynomial representation of the solution (p-adaptation).The automatic resolution adaptation requires the definition of an error estimation strategy to analyse the local solution quality and resolution requirements.The efficiency of several strategies derived from the literature are compared by performing p- and h-adaptive simulations. Based on this comparative study a suitable error indicator for the adaptive scale-resolving simulations is selected.Both static and dynamic p-adaptive algorithms for the simulation of unsteady flows are then developed and analysed. It is demonstrated by numerical simulations that the proposed algorithms can provide a reduction of the computational cost for the simulation of both transient and statistically steady flows.A novel error estimation strategy is then introduced. It is local, requiring only information from the element and direct neighbours, and can be computed at run-time with limited overhead. It is shown that the static p-adaptive algorithm based on this error estimator can be employed to improve the accuracy for LES of statistically steady turbulent flows.As regards the second topic, a novel framework consistent with the DG discretization is developed for the a-priori analysis of DG-LES models from DNS databases. It allows to identify the ideal energy transfer mechanism between resolved and unresolved scales.This approach is applied for the analysis of the DG Variational Multiscale (VMS) approach. It is shown that, for fine resolutions, the DG-VMS approach is able to replicate the ideal energy transfer mechanism.However, for coarse resolutions, typical of LES at high Reynolds numbers, a more accurate agreement is obtained by a mixed Smagorinsky-VMS model.
102

Molecules interacting with short and intense laser pulses : simulations of correlated ultrafast dynamics / Molécules soumises à des impulsions laser intenses et courtes : simulations de dynamiques ultrarapides corrélées

Labeye, Marie 19 July 2018 (has links)
Cette thèse porte sur différents aspects des dynamiques ultra-rapides d’atomes et de molécules soumises à des impulsions laser infrarouges courtes et intenses. Nous étudions des processus fortement non linéaires tels que l’ionisation tunnel, la génération d’harmoniques d’ordre élevé ou l’ionisation au-dessus du seuil. Deux approches différentes sont utilisées. D’un côté nous mettons au point des modèles analytiques approchés qui nous permettent de construire des interprétations physiques de ces processus. D’autre part nous appuyons les interprétations données par ces modèles avec les résultats obtenus par des simulations numériques qui résolvent explicitement l’équation de Schrödinger dépendante du temps en dimension réduite. Nous étudions également une méthode numérique basée sur l’interaction de configuration dépendante du temps afin de pouvoir des décrire des systèmes à plusieurs électrons plus gros et plus complexes. / In this thesis we study different aspects of the ultrafast dynamics of atoms and molecules triggered by intense and short infrared laser pulses. Highly non-linear processes like tunnel ionization, high order harmonic generation and above threshold ionization are investigated. Two different and complementary approaches are used. On the one hand we construct approximate analytical models to get physical insight on these processes. On the other hand, these models are supported by the results of accurate numerical simulations that explicitly solve the time dependent Schrödinger equation for simple benchmark models in reduced dimensions. A numerical method based on time dependent configuration interaction is investigated to describe larger and more more complex systems with several electrons
103

Génération d'harmoniques d'ordre élevé à deux faisceaux portant du moment angulaire / Generation of high-order harmonics from two beams carrying angular momentum

Chappuis, Céline 25 January 2019 (has links)
La génération d’harmoniques d’ordre élevé est un processus d’interaction lumière-matière hautement non-linéaire permettant la synthèse d’impulsions sub-femtosecondes, dites attosecondes (1 as = 10⁻¹⁸ s). Mes travaux de thèse portent sur l’étude du transfert de moment angulaire lors de ce processus, afin de contrôler les caractéristiques spatiales et de polarisation du rayonnement émis dans l’extrême ultraviolet. Comme pour la matière, le moment angulaire de la lumière peut être séparé en une composante de spin, associée à l’état de polarisation du faisceau, et une composante orbitale, reliée à la forme du front d’onde. La maitrise complète du moment angulaire des harmoniques nécessite de recourir à des schémas de génération à deux faisceaux non-colinéaires, créant un réseau de diffraction dans le milieu générateur. Nous avons montré que, bien que les règles de transfert obéissent à des lois de conservation du moment angulaire, la description fine du phénomène requiert une analyse précise du champ laser dans le milieu de génération. Ces travaux ouvrent des perspectives de mise en forme avancée des impulsions attosecondes. / High-order harmonic generation is a highly nonlinear laser-matter interaction process which allows the synthesis of sub-femtosecond pulses, also called attosecond (1 as = 10⁻¹⁸ s) pulses. My PhD is centered around the study of angular momentum transfer during this process, in order to control spatial and polarization features of the radiation which is emitted in the extreme ultraviolet. As for matter, the angular momentum of light can be divided into a spin component, associated with the beam’s polarization, and an orbital component, related to the shape of the wavefront. The control of high harmonics’ angular momentum requires generating schemes involving two crossing beams, thus creating a diffraction grating in the generating medium.We have shown that, although the transfer rules obey conservation laws of the angular momentum, the fine description of the phenomenon requires an accurate analysis of the laser field in the generation medium. This work opens the road for advanced shaping of attosecond pulses.
104

Physique attoseconde relativiste sur miroirs plasmas / Relativistic attosecond physics on plasma mirrors

Chopineau, Ludovic 13 September 2019 (has links)
Lors de la réflexion d’un laser femtoseconde ultra-intense [Iʟ > 10¹⁶ W/cm²] sur une cible solide, celle-ci est ionisée dès les premiers cycles de l’impulsion. Un plasma se détend alors vers le vide avec un profil exponentiel de longueur caractéristique Lg. Pour de faibles longueurs de gradient Lg < λʟ, le gradient plasma est considéré comme raide, il réfléchit spéculairement l’impulsion incidente : c’est un miroir plasma. De tels plasmas, réfléchissant pour la lumière, sont aujourd’hui exploités dans différentes applications scientifiques, comme l’accélération de particules par laser ou encore la génération d’harmoniques d’ordre élevé, associées dans le domaine temporel à un train d’impulsions attosecondes. Néanmoins, pour favoriser ces émissions de lumière ou de particules, le transfert d’énergie entre l’impulsion laser incidente et le plasma est essentiel. L’objectif de cette thèse est de mieux comprendre ces interactions à l’aide de la caractérisation de ces deux observables physiques qui en sont issues : les émissions d’électrons relativistes et d’harmoniques d’ordre élevé. Tout d’abord, nous reportons dans ce manuscrit la première étude expérimentale et numérique détaillée des mécanismes de couplage laser-plasma dense impliqués en régime relativiste [Iʟ > 10¹⁸ W/cm²] en fonction notamment de la longueur caractéristique de gradient Lg. Cette étude a notamment permis d’identifier deux régimes distincts en fonction des conditions d’interaction, éclaircissant ainsi la physique régissant ces systèmes. Par ailleurs, au delà de cet aspect fondamental, le contrôle de ces sources est également essentiel pour de futures expériences. Pour cela, différentes approches permettant de mettre en forme spatialement et temporellement ces impulsions de lumière ultra-brèves ont été étudiées au cours de ce doctorat, ouvrant ainsi de nouvelles perspectives pour l’utilisation de ces sources. En particulier, nous démontrons qu’il est possible d’introduire un moment angulaire orbital aux impulsions XUV attosecondes via la mise en forme spatiale du faisceau IR femtoseconde incident ou bien de plasma dense créé à la surface de la cible mais également de contrôler la dynamique des électrons de surface du plasma à l’échelle attoseconde à l’aide d’un champ incident à deux couleurs. Finalement, une méthode novatrice basée sur des mesures de ptychographie dynamique a été développée afin de caractériser spatio-temporellement ces impulsions de lumière ultra-brèves, constituant un enjeu majeur pour la communauté. / When an ultra-intense femtosecond laser beam [Iʟ > 10¹⁶ W/cm²] is focused on a solid target, the surface becomes completely ionized during the first optical cycles of the laser pulse. Due to their solid-like density and to their limited expansion into the vacuum such plasmas specularly reflect these pulses, just like ordinary mirrors do for low intensity. These plasmas are now used in many scientific applications like particle acceleration by laser light as well as high-order harmonic generation, associated to a train of attosecond pulses in the time domain. Nevertheless, to favor these emissions of light or particle, the energy transfert between the incident field and the dense plasma is crucial. The aim of this thesis is to better understand these interactions through the characterization of high-order harmonics and relativistic electron beams generated on plasma mirrors. We reported in this manuscript the first detailed experimental and numerical study of the coupling mechanisms involved between an ultra-intense laser light [Iʟ > 10¹⁸ W/cm²] and a dense plasma, and more specifically as a function of the gradient scale length Lg. These results enabled to identify two different regimes, clarifying some physical issues. Furthermore, beyond these fondamental aspects, the control of these sources is essential, particularly for futures pump-probe experiments or new spectroscopies. For that, several approaches have been studied to temporally and spatially shape these ultra-short light pulses, thus opening up new perspectives for these sources. We demonstrate in particular the generation of intense XUV vortex beam either by spatially shaping the incident IR field or the dense plasma created at the target surface as well as controlling the electron dynamics on the attosecond time scale with relativistic two-color waveforms. Finally, an innovative method based on in-situ ptychographic measurements has been developed to simultaneously characterize in time and space these ultrashort XUV light pulses, constituting one of the major challenges of the community.
105

Spatial and temporal metrology of coherent ultrashort pulses inthe extreme-ultraviolet domain / Métrologie spatiale et temporelle des impulsions cohérentes et ultra-brèves dans le domaine ultraviolet extrême

Dacasa Pereira, Hugo 29 September 2017 (has links)
Les impulsions ultra-brèves de rayonnement ultraviolet extrême (UVX) ont un grand champ d’application dans les domaines tels que le diagnostic de plasmas, la spectroscopie ou l’étude de la dynamique ultrarapide dans les atomes et les molécules.Aujourd’hui, il existe trois sources délivrant ce genre d’impulsions. Les harmoniques d’ordre élevé (HHG, en anglais) générés dans les gaz rares ou sur les solides peuvent fournir des impulsions attosecondes. Cependant, leur énergie, le plus souvent de l’ordre du nanojoule, limite les applications. L’amplification des impulsions harmoniques dans les plasmas créés par laser (SXRL, en anglais) a démontré pouvoir fournir des énergies de plusieurs dizaines de microjoules. Des énergies plus élevées peuvent être obtenues avec les lasers à électrons libres (LEL) UVX injectés, mais ce sont des Très Grandes Infrastructures ayant un accès limité.Ces dernières années, des progrès significatifs ont été réalisé avec chacune des ces sources, avec pour objectif la génération d’impulsions plus brèves. Il est devenu nécessaire de développer des nouvelles techniques de métrologie temporelle des impulsions UVX ultra-brèves. De plus, beaucoup d’expériences, comme ceux impliquant des phénomènes non-linéaires, nécessitent de hautes intensités UVX. La focalisation efficace des impulsions de faibles énergies peut significativement augmenter le domaine d’application. De bons fronts d’onde sont nécessaires pour focaliser les impulsions UVX à haute intensité, et les optiques doivent aussi être de bonne qualité et alignées avec précision.Dans cette thèse, les propriétés spatiales des harmoniques d’ordre élevé ont été extensivement étudiées grâce à un senseur de front d’onde UVX. Cet appareil couplé à une source HHG a démontré être utile pour la caractérisation de table et à la longueur d’onde ainsi que pour l’optimisation de systèmes optiques UVX.Le problème de la mise en place de la complète caractérisation temporelle d’impulsions UVX est aussi discuté en détail, et deux nouveaux schémas pour la reconstruction d’impulsions de LEL injectés et de lasers X à plasma sont présentés. Finalement, la première implantation d’un système d’amplification à dérive de fréquence (CPA, en anglais) sur un LEL UVX est présentée et son implantation pour les lasers X à plasmas est aussi discutée. / Ultrashort pulses of extreme-ultraviolet (XUV) radiation have a wide range of applications in fields such as plasma probing, spectroscopy, or the study of ultrafast dynamics in atoms and molecules.Nowadays, there are three main sources of such pulses. High-order harmonic generation (HHG) in rare gases or solid surfaces is able to provide attosecond pulses. However, their limited energy, of the order of nanojoules, limits its number of applications. The amplification of high-harmonic pulses in laser-driven plasmas (SXRL) has been demonstrated to provide energies of tens of microjules. Higher pulse energies can be obtained from seeded XUV free-electron lasers (FELs), large-scale facilities with more limited accessibility.In recent years, significant progress has been made with each of these sources towards the generation of shorter pulses. It is thus necessary to develop new techniques for full temporal metrology of ultrashort XUV pulses. Additionally, many experiments, such as those involving nonlinear phenomena, require high XUV intensities. Efficient focusing of low-energy pulses can significantly increase their range of application. Good wavefronts are required in order to focus XUV pulses to high intensities, and the optics must be of high quality and precisely aligned.In this thesis, the spatial properties of high-harmonic pulses are extensively explored thanks to the use of an XUV Hartmann wavefront sensor. This device is also proven here to be useful for tabletop, at-wavelength characterization and optimization of XUV optical systems with HHG sources.The problem of performing full temporal characterization of XUV pulses is also discussed in detail, and two new schemes for complete pulse reconstruction for seeded XUV FELs and seeded SXRLs are presented. Finally, the first implementation of chirped pulse amplification (CPA) in a seeded XUV FEL is reported, and its implementation in seeded SXRLs is discussed as well.
106

Dynamique moléculaire par imagerie attoseconde

Ruf, Hartmut 06 December 2012 (has links)
Depuis sa première observation, la génération d'harmoniques d'ordre élevé (GHOE) dans les gaz a demontré son importance, ouvrant la voie à la science attoseconde. Cette technique produit un rayonnement impulsionnel XUV qui s'étend dans le domaine spectral intermédiaire entre l'ultraviolet et les rayons X. Ces impulsions attosecondes donnent accès à des résolutions temporelles extrêmes, permettant ainsi d'observer des dynamiques électroniques dans des atomes ou des molécules. En effet le processus de généneration d'harmonique repose sur l'oscillation de paquets d'électrons attosecondes issus des molécules, accélérés par le champ de laser intense et se recombinant radiativement avec leurs ions moléculaires parents. Ainsi, le rayonnement harmonique émis lors de la recombinaison permet d'encoder l'information structurale sur le ou les orbitales impliquées avec une résolution spatiale de l'ordre l'Angström et temporelle femtoseconde ou attoseconde. La génération d'harmonique peut être utilisée comme signal de sonde dans des expériences de spectroscopie pompe-sonde résolue en temps. Ces expériences de spectroscopie harmoniques permettent d'étudier la structure des orbitales et les dynamiques moléculaires ultra-rapides. L'objectif de cette thèse est d'utiliser le processus de la GHOE, pour sonder les processus fondamentaux qui interviennent dans les atomes, les molécules et la matière condensée. Tout d'abord, pour comprendre comment extraire des informations dynamiques ou structurelles sur les orbitales à partir du signal harmonique nous avons étudié un système simple et connu: l'argon. Une nouvelle approche théorique développée par Fabre et Pons a permis de reproduire fidèlement l'expérience. Nous avons continué à étudier la structure et la dynamique moléculaire dans N2 et CO2. Les molécules issues d'un jet supersonique Even-Lavie qui permettait d'obtenir des températures rotationelles de moins de 10K ont été alignées par laser avec un fort degré d'alignement. Ce type de jet permet d'améliorer la sensibilité à la structure des orbitales impliquées et d'identifier la contribution de plusieurs orbitales. Ensuite nous avons utilisé la sensibilité de la génération des harmoniques d'ordre élevé à la structure des orbitales moléculaires pour sonder la dynamique complexe du NO2 excité autour d'une intersection conique. Nous avons appliqué la méthode du réseau d'excitation transitoire qui permet d'améliorer la sensibilité aux molécules excitées. Nous avons donc mené une étude dans les agrégats. A l'aide d'une étude différentielle en température et d'une méthode de cartographie spectrale et spatiale, nous avons pu isoler la contibution des grands agrégats. Notre analyse suggère un nouveau mécanisme de génération par des agrégats et permet même une estimation de la longeur de corrélation des électrons dans les agrégats. Ce manuscrit se termine avec la présentation d'une ligne de lumière XUV. Cette technique consiste à utiliser le rayonnement XUV fs produit par la GHOE comme impulsion sonde pour ioniser des fragments de dissociation moléculaire à l'aide d'une transition à un photon. / Since the first observation of high-order harmonic spectra in gases, high harmonic generation (HHG) has demonstrated its importance, opening a door to the field of attosecond sience. The bandwidth of the emitted spectrum reaches up to the XUV. The attosecond pules reach a very high time resolution, allowing the study of electron dynamics in atoms or molecules. The generation mechanism of HHG is based on the oscillation of the attosecond electron wavepacket emitted by the atoms/molecules, accelerated by the laser field. The electron wavepacket finally recombines radiatively with its parent ion. Thus the structural information of the probed orbital is encoded in the high harmonic spectrum with a spatial resolution of one Angtröm and a temporal resolution of few femtoseconds. HHG can be used as a probe signal resolved for pump-probe spectroscopy. High harmonic spectroscopy allows the study of the orbital structure and ultra-fast molecular dynamics.In this thesis the fundamental mechanisms playing a role in atoms, molecules and condensed matter are probed using HHG. In order to understand how to extract dynamical and structural information of orbitals from a harmonic signal, we have studied an easy and well known systems: the argon atom. A new theoretical approach developped by Fabre and Pons allowed us to reproduce the experimental results in good agreement. We continued with a study of the molecular structure and dynamics of N2 and CO2. A supersonic Even-Lavie jet permitted to reach rotational temperatures lower than 10K with an excellent alignment distribution. Owing to the good alignment in such gas jet, we were able to resolve the orbital structure with a higher sensitivity and to identify the contribution of several orbitals. In the next step we used the sensitivity of HHG towards the structure of molecular orbitals in order to probe the complex dynamics of NO2 in the vicinity of a conical intersection. We applied HHG combined with transient grating spectroscopy which leads to a higher sensitivity of the excited molecules. We then continued with studying cluster. We were able to disentangle the contribution of large clusters to the harmonic signal due to a 2D spatio-spectral representation of a temperature dependent differential measurement. Our analysis suggests a new generation mechanism in clusters and allows an estimation of the electron correlation length in clusters. This thesis ends with the presentation of a XUV beamline. This technique uses the emitted fs-XUV radiation, provided by HHG, as a probe pulse for ionizing the photofragments by a one photon transition.
107

Conception et analyse de schémas d'ordre très élevé distribuant le résidu : application à la mécanique des fluides

Larat, Adam 06 November 2009 (has links)
La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallèlisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : - la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; - la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (\LxF); - la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme $\L^{\infty}$ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CLs scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma \LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. / Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to contruct discretizations yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the contruction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: - The definition of higher order polynomial representations of the solution over polygons and polyhedra; - The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accest is put on the simplest, given by a generalization of the Lax-Friedrich's (\LxF) scheme; - The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in $L^{\infty}$ norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unortunately, when employing the first order \LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thouroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions.
108

Analyse mathématique et numérique de plusieurs problèmes non linéaires / Mathematical and numerical analysis of some nonlinear problems

Peng, Shuiran 07 December 2018 (has links)
Cette thèse est consacrée à l’étude théorique et numérique de plusieurs équations aux dérivées partielles non linéaires qui apparaissent dans la modélisation de la séparation de phase et des micro-systèmes électro-mécaniques (MSEM). Dans la première partie, nous étudions des modèles d’ordre élevé en séparation de phase pour lesquels nous obtenons le caractère bien posé et la dissipativité, ainsi que l’existence de l’attracteur global et, dans certains cas, des simulations numériques. De manière plus précise, nous considérons dans cette première partie des modèles de type Allen-Cahn et Cahn-Hilliard d’ordre élevé avec un potentiel régulier et des modèles de type Allen-Cahn d’ordre élevé avec un potentiel logarithmique. En outre, nous étudions des modèles anisotropes d’ordre élevé et des généralisations d’ordre élevé de l’équation de Cahn-Hilliard avec des applications en biologie, traitement d’images, etc. Nous étudions également la relaxation hyperbolique d’équations de Cahn-Hilliard anisotropes d’ordre élevé. Dans la seconde partie, nous proposons des schémas semi-discrets semi-implicites et implicites et totalement discrétisés afin de résoudre l’équation aux dérivées partielles non linéaire décrivant à la fois les effets élastiques et électrostatiques de condensateurs MSEM. Nous faisons une analyse théorique de ces schémas et de la convergence sous certaines conditions. De plus, plusieurs simulations numériques illustrent et appuient les résultats théoriques. / This thesis is devoted to the theoretical and numerical study of several nonlinear partial differential equations, which occur in the mathematical modeling of phase separation and micro-electromechanical system (MEMS). In the first part, we study higher-order phase separation models for which we obtain well-posedness and dissipativity results, together with the existence of global attractors and, in certain cases, numerical simulations. More precisely, we consider in this first part higher-order Allen-Cahn and Cahn-Hilliard equations with a regular potential and higher-order Allen-Cahn equation with a logarithmic potential. Moreover, we study higher-order anisotropic models and higher-order generalized Cahn-Hilliard equations, which have applications in biology, image processing, etc. We also consider the hyperbolic relaxation of higher-order anisotropic Cahn-Hilliard equations. In the second part, we develop semi-implicit and implicit semi-discrete, as well as fully discrete, schemes for solving the nonlinear partial differential equation, which describes both the elastic and electrostatic effects in an idealized MEMS capacitor. We analyze theoretically the stability of these schemes and the convergence under certain assumptions. Furthermore, several numerical simulations illustrate and support the theoretical results.
109

Imagerie nanométrique ultra-rapide par diffraction cohérente de rayonnement extrême-UV produit par génération d'harmoniques d'ordre élevé / Ultrafast nanometers scale coherent diffractive imaging with extreme-UV light from high harmonics generation beamline

Gauthier, David 07 February 2012 (has links)
Ce manuscrit présente des expériences d’imagerie par diffraction réalisées en utilisant une source de rayonnement cohérent basée sur la génération d’harmoniques d’ordre élevé d’un laser Ti:Sa. Elles démontrent que cette source extrême-UV de laboratoire produit un nombre suffisant de photons par impulsion pour enregistrer une figure de diffraction d’objets tests en « simple tirs ». Le signal ainsi enregistré permet l’obtention d’une image de l’objet avec une résolution d’une centaine de nanomètres. Deux schémas sont utilisés pour reconstruire l’objet : le premier utilise un algorithme itératif de reconstruction de la phase perdue pendant la détection de la figure de diffraction ; le second utilise une configuration holographique par transformée de Fourier. Les travaux réalisés comportent deux parties. La première concerne l’optimisation de la source harmonique et inclut une étude expérimentale d’un dispositif de filtrage spatial du faisceau laser de génération par propagation dans une fibre creuse. La seconde partie présente les expériences d’imagerie par diffraction, et notamment une démonstration du schéma holographique HERALDO qui est une extension de l’holographie par transformée de Fourier à des références en forme de polygones. L’utilisation de ces références « étendues » a pour avantage d’optimiser l’enregistrement holographique tout en conservant une reconstruction directe et sans ambigüité de l’objet. Une analyse signal-sur-bruit ainsi qu’une comparaison des reconstructions d’hologramme pour différentes formes de références sont effectuées. / This manuscript presents diffraction imaging experiments performed using a source of coherent radiation based on high order harmonics generation of a Ti:Sa laser. They demonstrate that this laboratory size XUV source produces a number of photons per pulse sufficient to record the diffraction pattern of test objects in « single shot ». The signal thus recorded allows obtaining an image of the object with a resolution of around 100 nanometers. Two schemes are used to reconstruct the object: the first one uses an iterative algorithm to retrieve the phase lost during the detection of the diffraction pattern; the second uses a configuration of Fourier transform holography. The work presented here is separated in two parts. The first one concerns the optimization of the harmonic source, including an experimental study of a spatial filtering device for laser beams by propagation in a hollow core fiber. The second part deals with the diffraction imaging experiments. In particular, I present a demonstration of the holographic scheme HERALDO, which is an extension of the Fourier transform holography with polygonal references. The use of these « extended » references allows the optimization of the holographic recording while maintaining a direct and non-ambiguous reconstruction of the object. An analysis of signal-to-noise ratio and a comparison of hologram reconstructions for different types of references are performed.
110

Schémas numérique d'ordre élevé en temps et en espace pour l'équation des ondes du premier ordre. Application à la Reverse Time Migration. / High Order time and space schemes for the first order wave equation. Application to the Reverse Time Migration.

Ventimiglia, Florent 05 June 2014 (has links)
L’imagerie du sous-sol par équations d’onde est une application de l’ingénierie pétrolière qui mobilise des ressources de calcul très importantes. On dispose aujourd’hui de calculateurs puissants qui rendent accessible l’imagerie de régions complexes mais des progrès sont encore nécessaires pour réduire les coûts de calcul et améliorer la qualité des simulations. Les méthodes utilisées aujourd’hui ne permettent toujours pas d’imager correctement des régions très hétérogènes 3D parce qu’elles sont trop coûteuses et /ou pas assez précises. Les méthodes d’éléments finis sont reconnues pour leur efficacité à produire des simulations de qualité dans des milieux hétérogènes. Dans cette thèse, on a fait le choix d’utiliser une méthode de Galerkine discontinue (DG) d’ordre élevé à flux centrés pour résoudre l’équation des ondes acoustiques et on développe un schéma d’ordre élevé pour l’intégration en temps qui peut se coupler avec la technique de discrétisation en espace, sans générer des coûts de calcul plus élevés qu’avec le schéma d’ordre deux Leap-Frog qui est le plus couramment employé. Le nouveau schéma est comparé au schéma d’ordre élevé ADER qui s’avère plus coûteux car il requiert un plus grand nombre d’opérations pour un niveau de précision fixé. De plus, le schéma ADER utilise plus de mémoire, ce qui joue aussi en faveur du nouveau schéma car la production d’images du sous-sol consomme beaucoup de mémoire et justifie de développer des méthodes numériques qui utilisent la mémoire au minimum. On analyse également la précision des deux schémas intégrés dans un code industriel et appliqués à des cas test réalistes. On met en évidence des phénomènes de pollution numériques liés à la mise en oeuvre d'une source ponctuelle dans le schéma DG et on montre qu'on peut éliminer ces ondes parasites en introduisant un terme de pénalisation non dissipatif dans la formulation DG. On finit cette thèse en discutant les difficultés engendrées par l'utilisation de schémas numériques dans un contexte industriel, et en particulier l'effet des calculs en simple précision. / Oil engineering uses a wide variety of technologies including imaging wave equation which involves very large computing resources. Very powerful computers are now available that make imaging of complex areas possible, but further progress is needed both to reduce the computational cost and improve the simulation accuracy. The current methods still do not allow to image properly heterogeneous 3D regions because they are too expensive and / or not accurate enough. Finite element methods turn out to be efficient for producing good simulations in heterogeneous media. In this thesis, we thus chose to use a high order Discontinuous Galerkin (DG) method based upon centered fluxes to solve the acoustic wave equation and developed a high-order scheme for time integration which can be coupled with the space discretization technique, without generating higher computational cost than the second-order Leap Frog scheme which is the most widely used . The new scheme is compared to the high order ADER scheme which is more expensive because it requires a larger number of computations for a fixed level of accuracy. In addition, the ADER scheme uses more memory, which also works in favor of the new scheme since producing subsurface images consumes lots of memory and justifies the development of low-memory numerical methods. The accuracy of both schemes is then analyzed when they are included in an industrial code and applied to realistic problems. The comparison highlights the phenomena of numerical pollution that occur when injecting a point source in the DG scheme and shows that spurious waves can be eliminated by introducing a non-dissipative penalty term in the DG formulation. This work ends by discussing the difficulties induced by using numerical methods in an industrial framework, and in particular the effect of single precision calculations.

Page generated in 0.07 seconds