• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 13
  • 6
  • Tagged with
  • 58
  • 58
  • 20
  • 18
  • 18
  • 15
  • 14
  • 14
  • 14
  • 14
  • 12
  • 11
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Localisation de la lumière dans des rugosités de taille nanométrique de surfaces métalliques traitée par les équations intégrales et les ondelettes

Maxime, Camille 27 January 2012 (has links) (PDF)
Le cadre de cette thèse est la simulation numérique de l'interaction de la lumière avec des surfaces métalliques rugueuses pouvant être à l'origine de fortes localisation du champ électromagnétique du à des résonances plasmoniques. Les profils accidentés de ces surfaces ont des tailles caractéristiques de quelques nanomètres de largeur et de quelques dizaines de nanomètres de hauteur. La principale difficulté dans la simulation de tels phénomènes réside dans la diff'erence d'échelle entre la longueur d'onde de l'onde incidente et la taille des rugosités ainsi que les variations brutales du champ magnétique à la surface. Une méthode de simulation adaptée est la résolution numérique d'équations intégrales de surface ayant un profil périodique. Cette méthode a été implémentée en C++ et la part principale de ce travail a été le calcul de la fonction de Green pseudo-périodique. L'intensité du faisceau réfracté ainsi que les cartes de champ proche peuvent être calculées rigoureusement à partir de la solution obtenue. A l'aide de cette méthode, on a montré que des résonances plasmoniques situées dans les cavités d'un réseaux ayant des rainures de forme Gaussienne de taille nanométrique ont un comportement électrostatique similaire à celles des cavités rectangulaires, notamment une réflectivité spéculaire très faible en condition de résonance. Les performances actuelles des ordinateurs limitent cependant les études à des réseaux de petite période. Afin de dépasser ces limitations, on a fait appel à des bases de fonctions permettant de décomposer une fonction en ses parties de résolutions différentes: les ondelettes. Ce travail se conclue par une discussion sur le potentiel de deux utilisations différentes des ondelettes pour la résolution d'équation intégrales.
42

Analyse mathématique et numérique de problèmes d'ondes apparaissant dans les plasmas magnétiques

Imbert-Gérard, Lise-Marie 09 September 2013 (has links) (PDF)
Cette thèse étudie les aspects mathématiques et numériques de phénomènes d'ondes dans les plasmas magnétiques. La réflectométrie, une technique de sonde des plasmas de fusion, est modélisée par les équations de Maxwell. Le tenseur de permittivité présente dans ce modèle des valeurs propres ainsi que des termes diagonaux qui s'annulent. La relation de dispersion met en évidence deux phénomènes cruciaux : coupures et résonances, lorsque le nombre d'onde s'annule ou tend vers l'infini. La partie I rassemble les résultats numériques. La grande nouveauté réside dans la définition d'une solution résonante. En effet, à cause des coefficients s'annulant continument en changeant de signe, la solution peut être singulière, i.e. avoir une composante non intégrable. Cependant, grâce au principe d'absorption limite, une solution résonante est explicitement définie comme la limite de solutions intégrables du problème régularisé. L'expression théorique de la singularité est validée par des tests numériques du passage à la limite. La partie II concerne l'approximation numérique. Elle comprend la mise en place d'une nouvelle méthode numérique adaptée aux coefficients réguliers. Celle-ci est basée sur la formulation variationnelle Ultra Faible mais nécessite des fonctions de base spécifiques, construites comme approximations locales du problème adjoint. L'analyse de convergence est effectuée en dimension un, en dimension deux la construction des fonctions de base et leur propriété d'interpolation sont détaillées. La méthode d'ordre élevé obtenue permet de simuler le phénomène de coupure tandis que simuler le phénomène de résonance en dimension deux reste un défi.
43

Localisation de la lumière dans des rugosités de taille nanométrique de surfaces métalliques traitée par les équations intégrales et les ondelettes / Light localization within nano-scale roughness of metallic surfaces treated by surface integrals and wavelets

Maxime, Camille 27 January 2012 (has links)
Le cadre de cette thèse est la simulation numérique de l'interaction de la lumière avec des surfaces métalliques rugueuses pouvant être à l'origine de fortes localisation du champ électromagnétique du à des résonances plasmoniques. Les profils accidentés de ces surfaces ont des tailles caractéristiques de quelques nanomètres de largeur et de quelques dizaines de nanomètres de hauteur. La principale difficulté dans la simulation de tels phénomènes réside dans la diff'erence d'échelle entre la longueur d'onde de l'onde incidente et la taille des rugosités ainsi que les variations brutales du champ magnétique à la surface. Une méthode de simulation adaptée est la résolution numérique d'équations intégrales de surface ayant un profil périodique. Cette méthode a été implémentée en C++ et la part principale de ce travail a été le calcul de la fonction de Green pseudo-périodique. L'intensité du faisceau réfracté ainsi que les cartes de champ proche peuvent être calculées rigoureusement à partir de la solution obtenue. A l'aide de cette méthode, on a montré que des résonances plasmoniques situées dans les cavités d'un réseaux ayant des rainures de forme Gaussienne de taille nanométrique ont un comportement électrostatique similaire à celles des cavités rectangulaires, notamment une réflectivité spéculaire très faible en condition de résonance. Les performances actuelles des ordinateurs limitent cependant les études à des réseaux de petite période. Afin de dépasser ces limitations, on a fait appel à des bases de fonctions permettant de décomposer une fonction en ses parties de résolutions différentes: les ondelettes. Ce travail se conclue par une discussion sur le potentiel de deux utilisations différentes des ondelettes pour la résolution d'équation intégrales. / The framework of this thesis is the numerical simulation of the interaction of light with rough metallic surfaces which can be the origin of giant enhancements of the electromagnetic field due to plasmonic resonances. The abrupt profile of these surfaces have characteristic sizes of a few nanometers of width and a few tens of nanometers of height. The main difficulty in the simulation of such phenomena is in the scale difference of the wavelength of the incident wave and the size of the roughness as well as the abrupt variations of the magnetic field at the surface. A suited method of simulation is the numerical resolution of surface integral equations for periodic profile of the surface. This method was implemented in C++ and the main part of this work was the calculation of the pseudo-periodic Green function. The intensity of the refracted beam and that of the electromagnetic field maps are rigorously calculated from the obtained solution. We showed by applying this method that plasmonic resonances situated in the cavity of gratings with Gaussian shaped grooves of nanometric sizes have an electrostatic behaviour similar to that of the rectangular grooves, in particular, a very low specular reflectivity at the resonance. The current performances of computers limit the studies to gratings with a small period. In order to overcome these limitations, we considered a function basis enabling to decompose a functions into its components of different resolutions: the wavelets. This work ends with a discussion on the potential of two different applications of the wavelets to the resolution of integral equations.
44

Méthode d'éléments finis d'ordre élevé et d'équations intégrales pour la résolution de problème de furtivité radar d'objets à symétrie de révolution / High order finite element methods and integral equations to solve scattering problems by axisymmetric bodies

Cambon, Sebastien 02 July 2012 (has links)
Dans ce travail de thèse, nous nous sommes intéressés à la modélisation des phénomènes de diffraction d’ondes électromagnétiques par des objets à symétrie de révolution complexes et fortement hétérogènes. La méthode que nous développons ici consiste en un couplage entre équations aux dérivées partielles (EDP) et équations intégrales (EI). Cette idée est essentiellement connue pour avoir deux avantages. Le premier est que les hétérogénéités de l’objet sont prises en compte naturellement dans la formulation du problème. Le deuxième est dû à l’utilisation des équations intégrales qui donnent une représentation exacte des solutions dans le milieu extérieur en fonction des courants surfaciques. Le domaine de simulation peut ainsi être ramené à l’objet lui-même. L’utilisation de développements en séries de Fourier combinés à la propriété d’invariance par rotation de l’objet permet alors la réduction du problème global 3D à un ensemble dénombrable de problème 2D.L’étude de ces problèmes nous a conduit à décomposer notre analyse en plusieurs parties,chacune ayant à traiter une partie du problème complet ou les méthodes d’intégrations numériques. Ces dernières étant difficiles à réaliser dans le cas des équations intégrales.Nous avons tout d’abord étudié un problème de Maxwell intérieur pour lequel nous avons développé une nouvelle méthode d’éléments finis d’ordre élevé dont nous avons montré l’efficacité et la précision sur de multiples exemples. Puis, nous avons étudié le problème de diffraction d’ondes planes pour des objets parfaitement conducteurs. La méthode d’éléments finis de frontière employée est alors construite par extension de la méthode précédente via l’opérateur de trace tangentielle. En combinant ces deux études, nous avons résolu le problème couplé en introduisant la propriété de symétrie de révolution dans une formulation variationnelle bien choisie. Par construction, les éléments finis qui y sont utilisés sont alors naturellement adaptées. L’algorithme de parallélisation de la méthode de couplage est finalement présentée et des comparaisons entre notre code AxiMax et un code 3D sont illustrées. Dans tous les cas, nous montrons que la méthode d’éléments finis d’ordre élevé permet d’obtenir des résultats d’une grande précision en fonction de la qualité des paramètres de simulation. / In this thesis, we are interested in modeling diffraction of electromagnetic waves by axisymmetric and highly heterogeneous objects. Our method consists in a coupling between partial differential equations and integral equations. This idea is mainly interesting for two reasons : heterogeneities are handled naturally in the formulation and integral equations give an analytical representation of solutions outside the object based on surface currents.These advantages allow us to limit the domain of simulation to the object itself. In addition,using Fourier series combined with the rotational invariance property of the object, the 3D problem is reduced to a countable set of 2D problems. The study of these problems is split into several parts. Each part has to deal with aspecific problem as for example the numerical integration of singular integrals which is difficult to achieve. As a first step, we study time-harmonic Maxwell’s equations in a bounded domain for which we develop a new high-order finite element method and present its efficiency and accuracy on many examples. Secondly, we consider the diffraction of plane waves by perfect electric conductors to analyse integral equations for these kind of object.The boundary finite element method applied is defined by extension of the previous one via tangential trace operator. Then, we solve the coupled problem using a well chosen formulation based on the previous studies for which our finite element method is naturally adapted by construction. In order to evaluate its efficiency, a comparison is performed between our program « AxiMax » and one based on a purely 3D model. To conclude, in the last two chapters, we present the numerical integration method and the multi-processing algorithm developed in AxiMax. In all cases, we put forward the fact that our finite element method provides accurate results depending on the quality of the simulation parameters.
45

Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique

Duruflé, Marc 07 February 2006 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la résolution des <br />équations de Maxwell en régime fréquentiel, afin de calculer<br />précisément la signature radar de cibles diverses. Pour avoir<br />une grande précision nécessaire pour des expérience de grande taille,<br /> nous utilisons des méthodes d'ordre élevé.<br /><br />Dans le cas scalaire, les éléments finis spectraux hexaédriques<br />avec condensation de masse, permettent d'obtenir un produit matrice vecteur <br />rapide et peux coûteux en stockage. Dans le cas vectoriel, les hexaèdres<br />de la première famille ne réalisent pas la condensation de masse, mais on peut<br />écrire un algorithme rapide de produit matrice-vecteur. Des résultats<br />numériques 3-D montrent la performance de l'algorithme proposé.<br /><br />Nous traitons également le cas où la géométrie présente<br />une symétrie de révolution. On est alors ramenés à une succession<br />de problèmes 2-D indépendants.<br />Nous proposons une méthode éléments finis d'ordre élevé <br />couplée à des équations intégrales d'ordre élevé.
46

Préconditionnement de méthodes de décomposition de domaine pour les problèmes de diffraction d'ondes électromagnétiques impliquant une cavité profonde / Preconditioning domain decomposition methods for electromagnetic scattering problems involving a deep cavity

Bourguignon-Mirebeau, Jennifer 12 December 2011 (has links)
Cette thèse est dédiée à la résolution numérique tridimensionnelle des équations de Maxwell harmoniques, par des méthodes de décomposition de domaine couplant des résolutions par équations intégrales entre elles. Pour traiter les problèmes de diffraction d'ondes, la méthode des équations intégrales est un outil précieux. Elle consiste à paramétrer le champ électromagnétique solution par une source définie sur la surface de l'objet diffractant, solution d'une nouvelle équation linéaire (l'équation intégrale). Pour des applications à haute fréquence, le grand nombre d'inconnues (de l'ordre du million) nous oblige à utiliser un solveur itératif pour résoudre l'équation intégrale. Le problème du conditionnement des systèmes linéaires est alors crucial. De récents développements ont permis de construire une équation intégrale performante (la GCSIE) et de conditionnement stable avec la montée en fréquence. Cependant, la présence d'une cavité large et résonnante dans l'objet diffractant (telle que la cavité moteur d'un avion) dégrade le conditionnement de cette équation. Nous proposons deux méthodes de décomposition de domaine (DDM) afin de découpler le problème de la cavité du problème extérieur. La première (DDM en Y) s'exprime en fonction des opérateurs Dirichlet-to-Neumann Y, qui sont synthétisés via la résolution de problèmes métalliques par équations intégrales dans chaque sous-domaine. La seconde (DDM en S) s'exprime en fonction des opérateurs de scattering S, synthétisés par résolution de problèmes de type métal-impédant, donc bien posés à toute fréquence. La DDM en S permet ainsi de se débarrasser des phénomènes de résonance dans les cavités. Nous proposons dans un premier temps un préconditionneur analytique pour la DDM en Y, basé sur l'opérateur électromagnétique de simple couche. Nous calculons ensuite les modes guidés le long d'un cylindre infini tangent à la cavité près de l'interface, et nous diagonalisons les opérateurs Dirichlet-to-Neumann et scattering dans la base des traces de modes guidés sur l'interface. On extrait de cette étude deux préconditionneurs spectraux respectivement pour la DDM en Y et la DDM en S. Les résultats numériques confirment l'efficacité des préconditionneurs proposés / This work is dedicated to the numerical solution of the tridimensional harmonic Maxwell equations, using domain decomposition methods coupling integral equations between them. To deal with scattering problems, integral equations methods are a precious tool. They allow to look for the electromagnetic field by parameterizing it with a source only defined on the boundary of the scattering object, solution of a new linear equation (the integral equation). For applications at high frequency, the great number of unknowns forces the use of iterative methods. To accelerate the solution of integral equations, one moreover has to ensure the good condition number of the linear systems, or to propose well-suited preconditioners. An efficient method, the GCSIE, was developed in Onera. It is an intrinsically well-conditioned integral equation whose condition number remains stable whith the frequency increase. However, the existence of large and resonant cavities (such as air intakes) deteriorates the condition number. In order to circumvent this problem, we propose two domain decomposition methods (DDM) allowing to decouple the exterior problem from the problem of the cavities. The first one (Y-DDM) is based on Dirichlet-to-Neumann operators Y, which are built through the solution of metallic problems using integral equations in each subdomain. The second one (S-DDM) is based on scattering operators S, built through the solution of problems of metallic-impedant type, which are well-posed at any frequency. The S-DDM allows to avoid the resonance phenomena inside the cavities. First, we propose an analytic preconditioner for the Y-DDM, based on the electromagnetic single layer operator. We then calculate the modes guided along an artificial infinite cylinder, that is tangent to the cavity near the interface. We diagonalize the Dirichlet-to-Neumann and scattering operators in the basis of the traces of the guided modes on the interface. We deduce from this study two spectral preconditioners for the Y-DDM and the S-DDM. The numerical results confirm the efficiency of the employed preconditioners.
47

Thermal Barrier Effect, Non-Fourier Effect and Inertia Effect on a Cracked Plate under Thermal Shock Loading / Effet de barrière thermique, effet non-Fourier et effet d'inertie sur une plaque fissurée sous chargement en choc thermique

Li, Wei 29 January 2016 (has links)
Les chocs thermiques provoquent, en général, l’endommagement et la fissuration des matériaux. Ces phénomènes sont observés, par exemple, dans le revêtement de barrière thermique pour les moteurs des turbines, le traitement des surfaces ou la soudure par laser etc. Plusieurs travaux de recherche ont été réalisés au cours des dernières décennies dans l’objectif d’améliorer les performances thermiques et/ou mécaniques des matériaux sous chargement thermique. L’étude des dommages et de la fissuration des matériaux provoqués par les chocs thermiques, tels que le décollement des interfaces et de décohésion de revêtements, a reçu également une attention considérable par les chercheurs. La majorité de ces travaux utilisent les théories classiques, tels que la loi de Fourier de conduction thermique et l'hypothèse de quasi-statique. Malheureusement ces théories ne sont pas adaptées dans le cas de charges extrêmes provoqués par le choc thermique et dans le cas des matériaux micro-fissurés. En conséquence, les théories conventionnelles doivent être enrichies.L'objectif de la thèse est de montrer le rôle crucial des termes non Fourier et les termes inertiels dans le cas de choc thermique sous conditions sévères et dans le cas où les fissures sont petites. Pour cela nous avons mené des études sur deux structures particulières soumises à des chocs thermiques. Chaque structure contient une fissure parallèle au bord libre de la structure située au voisinage de ce dernier. L’influence de la présence de fissure sur la conductivité thermique est prise en compte. Nous avons utilisé la théorie Hyperbolique de transfert de chaleur par conduction pour les champs thermique et mécanique à la place de la théorie traditionnelle classique de Fourier. Pour mener cette étude, nous avons utilisé les Transformées de Laplace et de Fourier aux équations de mouvement et à l’équation de transfert de chaleur. En s’intéressant en particulier aux champs de contrainte au voisinage de la pointe de fissure et aux facteurs d'intensité de contrainte dynamiques. Le problème se ramène à la résolution d’un système d'équations intégrales singulières dans l'espace de Laplace-Fourier. On utilise une méthode d'intégration numérique pour obtenir les différents champs. Nous résolvons ensuite un système d'équations algébriques linéaires. En effectuant des inversions numériques des transformées, nous obtenons les champs de contrainte de température et les facteurs d'intensité de contrainte dynamiques dans le domaine temporel.Les résultats numériques montrent que la conductivité thermique du milieu est affectée par l’ouverture de la fissure ce qui perturberait fortement le champ de température ainsi que l'amplitude des facteurs d'intensité de contrainte dynamiques. Les amplitudes sont supérieures à celles obtenues à partir de la théorie classique de Fourier ainsi que dans le cadre de l'hypothèse quasi-statique. On constate également qu’elles oscillent au cours du temps. La prise en compte simultanément de l’influence de la fissure sur la conductivité thermique, de l'effet non-Fourier ainsi que les effetsIVd'inertie induit un couplage entre les trois phénomènes qui rendrait le problème de choc thermique très complexe. L'effet de barrière thermique induit par la fissure affecte d’une manière significative les champs de température et des contraintes. Les effets d’inertie, et des termes non-Fourier joueraient également un rôle non négligeable lorsque la longueur de la fissure est petite. Comme dans de nombreux problèmes d'ingénierie, l'initiation et la propagation des micro-fissures sont des mécanismes dont il faut tenir compte dans les prévisions de la rupture des structures. Ces effets non conventionnels ne sont plus négligeables et doivent être inclus dans l'analyse de la fracture des structures soumises à des chocs thermiques. / Thermal shock problems occur in many engineering materials and elements, which are used in high temperature applications such as thermal barrier coatings (TBCs), solid propellant of rocket-engine, pulsed-laser processing of materials, and so on. The thermal shock resistance performances and the thermal shock damages of materials, especially the interface debonding and spallation of coatings, have received considerable attention in both analysis and design. Some conventional theories, such as the Fourier’s law of thermal conduction and the quasi-static assumption of the thermoelastic body, may no longer be appropriate because of the extreme loads provoked by the thermal shock. Therefore, these conventional theories need to be enriched or revised.The objective of this thesis is to develop the solutions of the transient temperature field and thermal stresses around a partially insulated crack in a thermoelastic strip under thermal shock loading. The crack lies parallel to the heated traction free surface. The thermal conductivity of the crack gap is taken into account. Hyperbolic heat conduction theory is used in solving the temperature field instead of the traditional Fourier thermal conduction theory. Equations of motion are applied to obtain the stress fields and the dynamic stress intensity factors of the crack. The Laplace and Fourier transforms are applied to solve the thermal-elastic governing equations such that the mixed boundary value problems are reduced to solving a singular integral equations system in Laplace-Fourier space. The numerical integration method is applied to get the temperature field and stress fields, respectively. The problems are then solved numerically by converting the singular integral equations to a linear algebraic equations system. Finally, numerical inversions of the Laplace transform are performed to obtain the temperature field and dynamic stress intensity factors in the time domain.Numerical results show that the thermal conductivity of the crack gap strongly affects the uniformity of the temperature field and consequently, the magnitude of the dynamic stress intensity factors of the crack. The stress intensity factors would have higher amplitude and oscillating feature comparing to those obtained under the conventional Fourier thermal conduction and quasi-static hypotheses. It is also observed that the interactions of the thermal conductivity of the crack gap, the non-Fourier effect and the inertia effects would make the dynamic thermal shock problem more complex. The magnitude of the thermal barrier, non-Fourier and inertia effects is estimated for some practical cases.
48

Développement d’un outil de simulation du procédé de contrôle non destructif des tubes ferromagnétiques par un capteur à flux de fuite / Development of a simulation of the process of non-destructive testing of ferromagnetic tubes by a magnetic flux leakage sensor

Fnaiech, Emna Amira 04 June 2012 (has links)
Le principe du contrôle par flux de fuite magnétique (Magnetic Flux Leakage MFL) consiste à aimanter la pièce à contrôler par un champ magnétique et à détecter à l'aide d'un capteur magnétique les fuites des lignes du champ qui résultent de la présence d'un défaut dans la pièce. Dans le but d'améliorer les performances d'un dispositif de détection, le CEA et la société Vallourec collaborent pour développer un modèle numérique dédié au contrôle virtuel des défauts longitudinaux dans les tubes ferromagnétiques. Le dispositif expérimental comprend un circuit magnétique tournant à une vitesse constante autour du tube qui défile. Dans le cadre de cette thèse, on débute le problème de la modélisation sans tenir compte des effets de la vitesse de rotation, il s'agit donc de résoudre un problème d'électromagnétisme en régime magnétostatique.Pour résoudre ce problème, on propose de comparer une approche semi-analytique basée sur le formalisme des équations intégrales (EI) et une approche purement numérique utilisant les éléments finis (EF).Dans la première partie de cette thèse, après avoir établi le formalisme théorique par EI, un premier modèle considérant des matériaux ferromagnétiques à perméabilité magnétique constante (régime linéaire) a été mis en œuvre en 2D. Ce modèle a été appliqué pour un exemple de système extrait de la littérature et validé numériquement par une comparaison des résultats EI/EF. Pour une meilleure détection, il est opportun de saturer magnétiquement la pièce. Le matériau ferromagnétique est alors caractérisé par une courbe B(H) non-linéaire. Par conséquent, la deuxième partie de la thèse a été consacrée à la mise en œuvre du modèle en régime non linéaire qui tient compte de cette caractéristique.Différentes méthodes de discrétisation ont été étudiées afin de réduire le nombre d'inconnues et le temps de calcul. L'originalité de la thèse réside dans l'utilisation des fonctions d'interpolation d'ordre élevé (polynôme de Legendre) pour une discrétisation des équations intégrales par une approche de type Galerkin. Les premiers essais de validation numérique de ce modèle ont été effectués sur un système MFL simplifié. Des premiers essais de validation expérimentale pour des données obtenues par EF ont été effectués en deux phases : La première a consisté à vérifier le distribution du champ magnétique pour un tube sain et en régime magnétostatique. La deuxième phase a consisté à calculer la réponse d'un défaut dans le tube ferromagnétique en tenant en compte les effets éventuels de la rotation du circuit magnétique par rapport au tube. / The principle of the non destructive testing by magnetic flux leakage (MFL) is to magnetize the part to be inspected by a magnetic field and to detect a flaw thanks to magnetic leakage field lines due to the strong decreasing of the magnetic permeability in the flawed region. In order to improve the performance of detection, the CEA and the Vallourec society collaborate to develop a numerical model dedicated to the virtual NDT of longitudinal defects in ferromagnetic tubes. The experimental system includes a magnetic circuit rotating at a constant speed around the tube to be inspected. The modeling task is started without considering the effects of the rotational speed, so the magnetostatic regime is considered to solve the modeling problem. In the framework of this thesis, we propose to compare a semi-analytical approach based on the formalism of integral equations method (IEM) and a purely numerical approach using finite element method (FEM).In the first part of this thesis, the theoretical formalism was established. A first simple discretization scheme is been implemented in the linear regime considering a constant magnetic permeability. This first numerical model has been validated for a simplified MFL configuration extracted and modified from the literature.For better detection, it is wishable to magnetically saturate the piece under-test. The ferromagnetic material is then characterized by a B(H) curve. Therefore, the second part of the thesis was devoted to the implementation of the model in the non-linear regime that takes into account this non-linear characteristic. Different discretization schemes have been studied in order to reduce the number of unknowns and the computational time. The originality of the thesis lies in the use of basis function of high order (Legendre polynomials) associated to a Galerkin approach for the discretization of integral equations. The first numerical result has been validated on a simplified MFL system. The first results of the experimental validation based on simulated data obtain by FEM have been performed in two steps. The first one consists to verify the distribution of the magnetic field for a ferromagnetic tube without any defect and in the magnetostatic regime. The objective of the second one was to compute the response of the flaw and to evaluate the effects of the rotational speed of the magnetic circuit around the tube.
49

Etude de la propagation des ondes sismiques dans les milieux fissurés : atténuation, anisotropie et migration de fluide induite par un séisme

Kelner, Sylvie 18 December 1997 (has links) (PDF)
La diffraction des ondes sismiques par des milieux fissurés en deux dimensions (2D) est étudiée par une méthode d'équations intégrales aux frontières où les fonctions de Green sont calculées par la méthode des nombres d'ondes discrets (DWBIEM: "Discrete Wavenumber Boundary Integral Equations Method"). Cette méthode semi-analytique est particulièrement bien adaptée aux problèmes de la propagation des ondes sismiques dans un milieu homogène contenant des fissures vides ou remplies de fluide. Toutes les conversions d'ondes sont modélisées en appliquant la DWBIEM. En premier lieu, nous avons étudié, par simulations numériques, comment des milieux fissurés pouvaient être caractérisés sismiquement. Nous avons ainsi pu observer des phénomènes d'atténuation et d'anisotropie, selon que la longueur d'onde du champ d'ondes incident est du même ordre de grandeur ou qu'elle est plus grande que la longueur des fissures. Nous avons retrouvé un résultat déjà connu qui concerne l'atténuation des ondes élastiques lorsqu'elles traversent un milieu fissuré: l'atténuation est maximale lorsque la longueur d'oncle incidente est proche de la longueur des fissures . Par ailleurs, nous avons modélisé la couche de granite fissurée du site de Garner Valley, en Californie, en nous basant sur la théorie des milieux homogènes équivalents. Plusieurs modèles de milieux fissurés restituent bien le taux d'anisotropie observé à Garner Valley. Une étude comparative de l'atténuation d'ondes S enregistrées là-bas et d'ondes S synthétiques permet de conel ure que l'anisotropie s'explique par la présence de fissures verticales (et non horizontales) mais ne permet pas de privilégier un modèle plus qu'un autre. Enfin, nous avons simulé numériquement la réponse hydro-mécanique d'un massif fracturé à un séisme. Les déformations des fissures et les variations de pression dues au champ d'ondes rayonné par une faille en glissement permettent de connaître les zones d'expulsion de fluide.
50

Modélisation de stratégies d'introduction de populations, effets Allee et stochasticité / Modelling populations introduction strategies, Allee effects and stochasticity

Bajeux, Nicolas 07 July 2017 (has links)
Cette thèse s'intéresse à l'étude des stratégies d'introduction de populations dans l'environnement. Les deux principaux contextes présentés sont la lutte biologique et la réintroduction d'espèces. Si ces deux types d'introduction diffèrent, des processus biotiques et abiotiques les influencent de manière similaire. En particulier les populations introduites, souvent de petite taille, peuvent être sensibles à diverses formes de stochasticité, voire subir une baisse de leur taux de croissance à faible effectif, ce qu'on appelle « effet Allee ». Ces processus peuvent interagir avec les stratégies d'introduction des organismes et moduler leur efficacité. Dans un premier temps, nous modélisons le processus d'introduction à l'aide de systèmes dynamiques impulsionnels : la dynamique de la population est décrite par des équations différentielles ordinaires qui, à des instants donnés, sont perturbées par des augmentations soudaines de la taille de la population. Cette approche se concentre sur l'influence des effets Allee sur les populations isolées (réintroduction) ou dans un cadre proie-prédateur (lutte biologique). Dans un second temps, en nous concentrant sur l'aspect réintroduction, nous étendons ce cadre de modélisation pour prendre en compte des aspects stochastiques liés à l'environnement ou aux introductions elles-mêmes. Finalement, nous considérons un modèle individu centré pour étudier l'effet de la stochasticité démographique inhérente aux petites populations. Ces différentes approches permettent d'analyser l'influence de la distribution temporelle des introductions et ainsi déterminer les stratégies qui maximisent les chances de succès des introductions. / This thesis investigates introduction strategies of populations in the environment. Two main situations are considered: biological control and species reintroduction. Although these two kinds of introductions are different, many biotic and abiotic processes influence them in a similar way. Introduced populations are often small and may be sensitive to various stochastic factors. Further, small populations may suffer from a decrease of their growth rate when the population is small, a feature called "Allee effect". These processes may interact with introduction strategies and modulate their efficiency. First, we represent the introduction process using impulsive dynamical systems: population dynamics are described by ordinary differential equations that are disrupted at some instants by instantaneous increases of the population size. This approach focuses on the influence of Allee effects on single-species (reintroduction) or predator-prey interactions (biological control). Then, we concentrate on the reintroduction approach and extend the previous deterministic framework to take into consideration stochastic factors arising from the environment or from introductions themselves. Finally, we consider an individual-based model to study the effects of demographic stochasticity which is inherent to small populations. These different approaches allow to investigate the temporal distribution of introductions and determine which introduction strategies maximize the probability of success of introductions.

Page generated in 0.1335 seconds