1 |
購屋決策者的個人特質與購屋行為關係之探討 / The Study of The Relationship Between Consumer's Personality and Decision-Making Process for Housing Purchase李炳漢 Unknown Date (has links)
在資訊較不對稱的不動產市場中,購屋者往往無法有效的利用資訊正確預期房價走勢,而過去的研究多半是以總體經濟變數或是市場環境因素探討購屋者實際的預期,並沒有太多購屋者預期的個體研究。近年來行為財務學的文獻中已經發現個人特質以及身分背景將影響投資人的決策模式,故本研究希望從個體角度出發,研究購屋者是否因個人特質、身分背景或是從業性質影響房價預期的正確性?而在台灣的主要城市中,影響的程度與方向有何不同?
由於購屋者對房價預期正確與否為一機率變數,因此本研究使用二元羅吉特模型估計之。實證結果顯示,當購屋者最高學歷為碩士或碩士以上畢業時,其購屋時對於房價預期的正確機率顯著較高;另外每當購屋決策者之家庭月收入越高時,其預測房價的正確機率也顯著較高。
|
2 |
台鐵車路分離下員工選擇行為模式分析之研究趙國裕 Unknown Date (has links)
台灣社會經濟環境變遷,連帶影響內陸運輸市場,台鐵百年老店,因受政府法令及公營企業僵化思想影響,以至於在組織及經營管理上,無法跟隨社會脈動,導致客貨運輸業務佔有率節節衰退,財務惡化;加以員額過於龐大,恩給制退休給付沉重,使惡化的財務無異雪上加霜。然鐵路經營虧損各國皆然,非獨台鐵經營不善;惟各國鐵路均肩負國家經濟發展命脈,莫不積極輔導,想盡辦法協助其變革,冀望其起死回生;而各國國鐵變革方向均朝車路分離方式,將鐵路事業一分為二,一為站車調度與經營之「車」部門;另一為路線建設及維修之路部門。台鐵車路分離後,原有資產和負債可由路部門承受,減輕車部門財務負擔,並逐步民營化,惟面對如此重大變革員工態度實是變革能否成功之關鍵因素,為此本論文採二元邏輯特方法來作員選擇行為分析,以探究其態度作為車路分離變革策略之參考。
關鍵詞:組織、變革、策略、民營化、「車路分離」,二元羅吉特分析
|
3 |
育成中心經營效率之研究曾宏昌 Unknown Date (has links)
本研究從經營效率的觀點,以國內接受政府補助的62所育成中心為對象,採用資料包絡分析法(DEA)、單因子變異數分析、二元羅吉特斯迴歸分析及Tobit迴歸分析進行評估,以探討不同組織型態及所在地區之育成中心經營效率之差異及影響育成中心經營效率之因子並探討育成中心經營效率與進駐企業之關連性。DEA部分以投入面導向衡量,並以單因子變異數分析檢視育成中心地理區位與育成中心母體組織類型的經營效率差別,二元羅吉特斯部分以將育成中心效率值進一步分類為「經營無效率」及「經營有效率」,並納入資金取得及企業回饋變項,以探討不同組織型態及所在地區之育成中心經營效率之差異。Tobit迴歸分析則分別以育成中心整體效率值及純技術效率值為應變項,測試企業獲獎數、企業獲得補助之金額、企業回饋金額對效率的影響。實證的結果顯示,不同母體組織類型及不同地理區位的育成中心其效率表現並無顯著差異,而且資金取得及企業回饋亦未能證明影響育成中心之經營效率,但育成中心可藉由企業獲獎數及企業回饋金額的增加,來提升其純技術效率或藉由企業回饋金額的增加,來提升其整體技術效率。
|
4 |
投資型購屋者機率預測模型之建立 / The Probability predictive model of housing investors邱于修, Chiou,Yu Shiou Unknown Date (has links)
住宅為兼具消費及投資之雙重功能財貨,因此若從購屋動機劃分購屋族群,可以分為自住者及投資者,近年來受到國內房市呈現生氣蓬勃之景象及利率持續走低等總體經濟因素影響之下,出現越來越多以投資為主要目的之投資型購屋者,對於金融機構之購屋貸款業務來說,投資者之還款行為相較於自住者是比較不穩定的。故本文之研究目的即藉由探討自住者及投資者之購屋特徵異同,建立投資者之機率預測模型,預測某購屋者成為投資者之機率,提供一較為客觀之機率預測模型,供作金融機構放貸參考準則。接著進一步探討在不同機率界限(cutoff point)下之預測準確率,找出預測準確率最高之機率界限值,提高本模型之預測準確度;並探討金融機構在不同經營方針下之較適機率界限值。 / 本文使用台灣住宅需求動向季報之已購屋者問卷,建立二元羅吉特模型。研究結果顯示,區位在中心都市、高單價、小面積產品及大面積產品、預售屋及拍賣屋市場屬於投資型產品,而搜尋時間短、搜尋間數少、年齡較長、男性、無固定職業及家庭平均月收入較高者成為投資者之機率較高。接著,運用貝氏定理計算出預測準確率最高之機率界限值,結果當機率界限值為0.70時預測準確率最高,投資者達72.22%,自住者達80.07%。此外,並使用2007Q4的資料作樣本外驗證,投資者命中率為65.52%,自住者命中率為84.51%。最後,為提供金融機構運用,本文模擬兩種預測誤差在不同權重下對於金融機構所造成的損失,找出損失最少的機率界限值,結果皆是以0.70為最適機率界限值。 / Housing is dual function goods, consumption and investment, so if we separate the home buyers by their motives, they can be defined as two groups, owner-occupiers and investors. Recently, because the housing market is vigorous inland and the rates are fairly low, there are more and more home buyers buying houses for investment. To financial institutions, their payment behaviors are more instable, compare to owner-occupiers. So this article is aim to build a probability predictive model of housing investors by discussing the different home buying characters between owner-occupiers and investors. Therefore we can provide financing institutions a more objective method evaluating if they should lend money to the home buyers. Then we discuss the predictive accuracy with different cutoff points, finding the cutoff point with highest predictive accuracy, therefore we can elevate the model`s predictive accuracy. Besides, we also discuss the most optimal cutoff point for financial institutions under different administration principles. / This article builds binary logit model by the data of “Housing Demand Survey in Taiwan”. Our results suggests that if the houses in downtown、high unit price、big and small acreage、presale and court auction housing market belong to investing houses. And short search duration、few search items、older、male、non-constant job、higher income are getting higher probability to be housing investors. Then, we use Bayesian Theorem to figure out the cutoff point with highest predictive accuracy, and Our results suggests that 0.70 cutoff point with highest predictive accuracy , at that time, investor predictive accuracy is 72.22%, owner-occupier is 80.07%. Besides, we also do the out-sample test by the 2007Q4 data, the investor`s hit-rate is65.52%, the owner-occupier`s hit-rate is 84.51%. At the end, in order to provide financial institution to use, we give two predictive deviation different weights, to find the smallest loss cutoff point, the result all suggest that 0.70 is the most optimal cutoff point.
|
5 |
跨界投資與在地再投資區位選擇研究 / A study on location selection of trans-border investment and reinvestment in home country王冠斐 Unknown Date (has links)
本研究著眼於台灣經濟轉型、中國經濟的崛起與台灣企業組織的變化,從台灣企業集團的總部設立、跨界投資的區位選擇及在地再投資三個面向進行討論,期望在既有的研究基礎上,就台灣廠商在兩岸投資區位佈點的考量提出完整性的觀察,並強化既有的研究。
首先,以台灣1000大製造業為研究樣本,選擇包括純辦公室使用、研發設計、台商一千大、跨國生產網絡、外資企業、員工人數、資本總額、知識密集型、傳統型製造業等變項分別代表總部功能、跨界治理能力及企業屬性三大類變數,透過二元羅吉特模型以及集群分析方法,探討台灣企業在首都、都會區以及生產性服務業及創新氛圍同質性地區的總部設立區位選擇行為。實證的結果發現,代表企業屬性變數的資產總額、員工人數和產業別明顯影響台灣製造業廠商在首都設立總部的區位選擇,而總部功能為純辦公室使用或設有研發機構者更傾向將總部設立於首都或都會區,跨界治理能力的影響則未能獲得證實。另外,過去國內在研究企業總部地點選擇研究上較少從創新氛圍角度出發,而本研究實證的結果發現,台灣製造業廠商企業總部的區位選擇不僅受到地區生產性服務業的影響,也受到地區創新氛圍的影響。
在跨界投資區位選擇部分,本研究以台灣250大企業集團中的知識密集型製造業集團為研究對象,以台灣、環渤海地區、長江三角洲地區、珠江三角洲地區為研究場域,選擇企業特性與投資區位條件變數,並以多項羅吉特模型進行實證分析。其中,企業特性變數為產業類別、投資經驗、投資時間等三項因子,而投資區位條件則有勞工薪資、市場規模、區域創新強度及外資投資強度等因子。實證結果發現,代表經濟發展階段的投資時間變項確實會影響企業集團的區位選擇行為,產業的類別不同其區位選擇也會不同,先前的投資經驗雖然影響區位選擇。但是與過去研究不同的是,本次實證發現對台灣企業來說面對相似而且鄰近的市場,進入新市場的動機可能比過去的投資經驗來得重要的多,同時投資區位條件亦會影響區位選擇行為。另外,過去較少直接連結廠商生產面的區域創新能力亦明顯影響企業集團的區位選擇,因此本研究認為區域創新活動對於跨國企業在地化取得知識及技術亦具有相當重要的意義。
在地再投資部分以台灣製造業1000大廠商中知識密集型製造業為研究對象,並以工業地域觀點所劃分的台灣地區北、中、南三大區域為研究場域,選擇包括在台投資經驗、總部區位、第一次投資決策、路徑依循等企業廠商組織決策之屬性變數,以及包含區域中科學園區的設立、產業專業化係數、雜異化指標等區域環境變數,透過多項羅吉特模型進行實證分析。實證的結果發現,總部區位確實影響後續再投資的工廠區位選擇,第一次的投資決策經驗對於第二次投資的區位選擇行為影響比總部區位的影響明顯,代表時間演進而產生路徑相依的地區經濟型態差異變項也確實會影響區位選擇行為。而當區域內科學園區的發展相較未臻成熟時,其區域的賦能仍不足以吸引企業廠商進駐,至於台灣企業的再投資區位選擇基於對區域特性的了解較偏好區域內工業地域的地方化經濟,而不偏好區域內工業地域的都市化經濟。 / Stressed on the Taiwanese economical transition, the up-rising of Chinese economy and the change of Taiwanese enterprise organization as well as based on the past research, this study explores the factors affecting location selection behavior of Taiwanese firms across Taiwan Strait from three aspects including the establishment of enterprise headquarter, cross-border investment and local re-investment.
On the establishment of enterprise headquarter, the top 1000 manufacturing firms in Taiwan were sampled and some factors were analyzed including office type, R&D, multinational production network, foreign enterprise, number of employee, total asset, knowledge-intensive business, and traditional manufacturing firms. However, these factors could be classed into three fields: headquarter function, cross-border management ability and firm characteristics. Then, the location selection behavior of Taiwanese enterprise headquarter was examined by the techniques of binary logit model and cluster analysis technique among capital area, urban area and homogenous area with productive service industry and innovation-based cluster.
The results of empirical analysis show that the factors represented firm characteristics including total asset, number of employee and enterprise type significantly affected the location selection of Taiwanese enterprise headquarter. Furthermore, it is also verified that the enterprise headquarter had been established in capital or urban area if the headquarter was provided with R&D or simply used as office, but the effect of cross-border management upon headquarter establishment is insignificant. The effect of innovation-based cluster upon location selection of enterprise headquarter is seldom studied in the past. However, according to empirical results in this study, they show that location selection of Taiwanese enterprise headquarter is affected not only by local Productive Service industry but also by regional innovation-based cluster.
On the location selection of cross-border investment, this study focused on the area of Taiwan, Bohai Economic Rim, Yangtze River Delta and Pearl River Delta. The top 250 Taiwanese enterprise groups were taken into consideration, and the multinomial Logit model was adopted for empirical analysis in which firm characteristics and location conditions were chosen as research variables. Where, firm characteristics contained industrial type, investing experience and investment time, and location conditions included labor cost, market scale, regional innovation intensity and foreign investment intensity.
The empirical results indicate that industrial type and investment time significantly affect the selection of investment locations. In contrast, investment experience only slightly influences the selection of investment locations. In addition, we find that entrepreneurial motivation to enter new markets may be much more influential than prior location investment experiences for Taiwanese enterprises functioning within similar markets. Regional differences shaping investment conditions in Taiwan and mainland China also affect the selection of investment locations. Our analysis shows a particularly strong linkage between regional innovation capacity and the selection of investment locations. This implies that regional innovation capacity plays a very important role in the selection of investment locations for multinational enterprises
On local re-investment, the top 1000 knowledge-intensive manufacturers in Taiwan were the samples divided by region into the northern, central and southern Taiwan groups by administrative region. The factors affecting organizational decisions were the attribute variables, including Taiwan investment experience, headquarters location, first investment experience and path dependence; and the factors affecting location selection were the regional environment variables, including regional science park status, industry specialization coefficient and Hirschman-Herfindahl index (HHI). The multinomial Logit model was used for empirical analysis, and the results show that the headquarters location affects plant location selection in re-investment, and the first investment experience has a more significant effect on the plant location selection in the second investment than the headquarters location, suggesting that the path-dependent heterogeneity in regional economic style developed over time affects location selection. Also, the immaturity of regional science parks affects plant location selection when regional empowerment cannot attract enterprises. Lastly, Taiwanese enterprises prefer regions with localized economies to regions with urbanized economies for plant location selection.
|
Page generated in 0.0143 seconds