1 |
勞動逃漏稅、失業率與經濟成長 / Tax Evasion of Labor Incomes, Unemployment Rate, and Economic Growth俞秋詠, Yu, Chau Wing Unknown Date (has links)
本文結合勞動市場資訊不對稱與逃漏稅行為於一模型中,將勞動市場資訊
不對稱現象設立為模型的第一階段,而模型的第二階段則設定為勞動者逃漏
稅之決定,再以倒推法先後得出最適逃漏稅比例與均衡失業率。接著,我們
將分別以資訊不對稱、金融發展程度等變數檢視逃漏稅與失業率如何與經濟成
長產生連結;另外,更將透過比較靜態分析,探討在各外生變數變動下,如何
影響經濟體系之稅率、失業率與經濟成長率。據本研究的數值模擬以及比較靜
態分析結果發現,金融發展程度越好的國家,低能力勞動者會產生較大的意願
至廠商就業,而在均衡分離型就業契約下,失業率必須上升,以驅使低能力勞
動者無法進入廠商就業,最後,帶來經濟成長率的上升;反之對於金融發展程
度較差國家而言,此時低能力勞動者沒有意願至廠商就業,帶來了失業率下降
與經濟成長率下降的現象。
|
2 |
台灣地區失業率的時空數列分析陳雅玫, CHEN, YA-MEI Unknown Date (has links)
三十多年來,台灣經濟快速成長,由開發中國家擠身新興工業國家之列,但是經濟區域卻未能兼顧整體之均衡發展。而產業轉型時期的人力供需及失業率問題,一直為社會學者所關切。另一方面亦產生了都市化的問題,造成南北大都會區(台北市、高雄市)的人口密度激增,且勞動力亦往此少數地區移轉。
時空數列模型描述地區本身及地區與地區之間的時空動態關係。基在區域經濟及環境科學上應用極為廣泛。本文即以失業率代表勞動市場供需變數的指標,考慮台北市、高雄市與台灣省的地緣關係,應用時空數列的方法,分析台灣地區勞動市場的變動情況,最後並預測未來幾期失業率的變動趨勢。
|
3 |
醫療保健支出對台灣縣市失業率影響之實證研究 / The effects of medical expenditure on unemployment rate in Taiwan簡庭芳, Chien,Ting-Fang Unknown Date (has links)
本研究之主要研究目的為探討當一縣市的醫療保健支出較相鄰縣市完善時,是否會提升該縣市之就業率。國外已有文獻探討醫療保健支出對失業率的影響,但是,針對台灣各縣市醫療保健支出對失業率的效果,目前尚無學者加以論述。本研究利用台灣各縣市政府 2000 年至 2010 年的追蹤資料(panel data)研究此一課題。
除地方政府醫療保健支出外,本文並納入其他可能影響失業率的因素,進行實證。而衡量失業率時,除針對地方整體失業率外,並依性別、教育程度及年齡細分各個不同群組的失業率,以進一步瞭解這些因素對不同性別、不同教育程度及不同年齡層失業率的影響是否一致。實證方程式分為 A、B 兩組,以固定效果模型估計,總共十八種迴歸方程式,以捕捉台灣各縣市醫療保健支出對失業率的影響效果之全貌。
本文之主要的研究發現為台灣各縣市的醫療保健支出會影響失業率,且為負向影響,地方政府醫療保健支出增加可降低該地區失業率,亦即台灣各縣市實證結果符合本研究之假設。並且,在 A 組中,男性的邊際效果較女性大,表示醫療保健支出對男性的失業率影響較大。而 B 組只有女性失業率受到醫療保健支出占歲出比率之效果為顯著,男性不顯著。在年齡組失業率中,A、B 兩組醫療保健支出對青少年、中壯年和中高年失業率之影響皆為顯著。其中,對青少年失業率之影響又較中壯年和中高年顯著,而且影響的邊際效果也比較大。在教育程度失業率中,A、B 兩組皆只有對大專及以上程度者失業率的影響顯著,對國中及以下者和高中(職)者失業率皆不顯著。
|
4 |
總體景氣波動對政府支出之不對稱影響 / The Asymmetric Influence of Macroeconomic Business Fluctuation on Government Expenditure陳英州 Unknown Date (has links)
本文探討總體景氣波動對政府支出的不對稱性研究,以失業率作為景氣繁榮與景氣衰弱的劃分,來分析當景氣好與壞時,政府支出在這兩期間內影響的幅度是否相同。為了使模型更為完整,迴歸實證中加入了其他可能影響政府支出之變數,另外利用移動式 Chow 檢定來檢驗支出是否存在結構性斷裂,並加以考慮。由移動式 Chow 檢定檢驗出各級政府總支出在研究樣本期間內存在結構性斷裂。而在景氣波動方面,實證結果指出,各級政府總支出不論景氣狀況為何,皆會增加政府支出,而在景氣好與壞中,利用 Wald test 檢驗的結果得知,政府增加支出幅度並沒有不一致的情況,即表示總體景氣波動對各級政府總支出不具有不對稱性的現象。除了總支出外,本文另外以總支出下的一般政務支出、經濟發展支出以及總社會福利支出為研究的標的,來探討此三項支出在受到景氣波動的影響是否有不對稱性的現象。而由迴歸模型結果顯示,此三細項支出除了一般政務支出與經濟發展支出不具有不對稱性外,總社會福利支出在景氣波動下有不對稱的現象。
|
5 |
台灣失業率的預測-季節性ARIMA與介入模式的比較 / Forecasting Taiwan’s Unemployment Rate –A Comparison Between Seasonal ARIMA and the Intervention Model胡文傑 Unknown Date (has links)
本論文採用了由Box and Jenkins(1976)所提出的ARIMA模型,以及由BOX and Tiao(1975)所提出的Intervention Model,去配適台灣的失業率型態,以及比較其預測的結果。
結果顯示出台灣的失業率具有季節性的型態,亦即台灣的失業率並非僅僅受到月分之間的相關,年分之間也有所關連。是故,當本論文在預測失業率的水準時,也考慮到此一因素,加入季節性的ARIMA模型對台灣的失業率加以預測。另外,時間序列的資料常常受到外生因素的干擾。對於失業率來說,政策上的改變將會影響失業率本身的結構,因此利用介入模式預測失業率,可以得到一組較精確的預測值。介入模式的事件有以下五個,分別是解嚴、六年國建、台灣引進外勞、中共飛彈試射、新十大建設。前四個事件的確影響了失業率的結構,不過第五項,也就是新十大建設並沒有顯著影響失業率的結構。理由可能是新十大建設的內容並不能合宜的解決經濟上與社會上的問題,以及這些建設尚未完工,以致無法達到期預期的效果。
比較兩模型的預測結果時,採用了MPE、MSE、MAE、MAPE作為模型評估的準則,結果指出介入模式的預測結果比起季節性ARIMA的預測結果來的有效率。 / This article adopts the ARIMA model, which was first introduced by Box and Jenkins (1976), and the intervention model, which was developed by Box and Tiao (1975), to fit the time series data for the unemployment rate in Taiwan, and thus to compare the results of the forecasts.
The results reveal that there is a seasonal effect in the data on the unemployment rate. This indicates that the unemployment rate figures are not only related from month to month but are also related from year to year. When forecasting the level of unemployment, we should examine not only the neighboring months but also the corresponding months in the previous year.
Time series are frequently affected by certain external events. In the discussion on the unemployment rate, the policies implemented by the government as well as military threats indeed influence the structure of the series. By making a forecast using the intervention model, we can evaluate the effect of the external events which would give rise to more accurate forecasts.
In this study, there were five interventions included in relation to the unemployment rate series, which were as follows. First, the lifting of Martial Law in February 1987. Second, the Six-year National Development Plan launched in June 1991. Third, the hiring of foreign labor in Taiwan, which took effect in October 1991. Fourth, the threats of missile tests from the PRC in Feb 1996. Fifth, the ten new construction programs launched in November 2003. The first four events were indeed found to give rise to a structural change in the unemployment rate series at the moment when they occurred. This result might also have implied that not all of the actual effect of expansionary policies could have exactly decreased the unemployment rate, and therefore have solved the economic and social problems simultaneously.
When we refer to the comparison of the above two models, the ultimate choice of a model may depend on its goodness of fit, such as the residual mean square, AIC, or BIC. As the main purpose of this study is to forecast future values, the alternative criteria for model selection can be based on forecast errors. The comparison is based on statistics such as MPE, MSE, MAE and MAPE. The results indicate that the intervention model outperforms the seasonal ARIMA model.
|
6 |
勞動參與的決定因素: 以台灣中年已婚男性為例 / Determinants of labor force participation: an analysis of older married men in Taiwan邱創毅, Chiu, Chuang Yi Unknown Date (has links)
近年來台灣面臨了人口高齡化的現象,有關中高齡人口的議題成為了學者與社會大眾關注的焦點,其中,自1988以來中高齡已婚男性勞動參與率至2008年為止已下降了約十個百分點,這個現象值得我們去深入了解。本篇論文主要在探討中高齡已婚男性勞動參與的決定因素,研究的資料來源為1988至2008年的人力資源及人力運用調查。其中,我選擇了55至64歲的已婚男性為對象,而總樣本數為51,730,本論文先以probit與bivariate probit模型估計每一個變數對中高齡已婚男性勞動決策的邊際影響效果,再以Oaxaca與DiNardo, Fortin, and Lemieux (DFL)分解模式,試著拆解每一個變數對整體中高齡已婚男性勞動參與率的影響性。
此篇論文著重在兩個主要變數對中高齡已婚男性勞動參與的影響:妻子的勞動參與以及地區性的失業率。近年來越來越多已婚婦女投入職場,我想了解婦女勞動參與率的上升,對整體丈夫勞動參與率的影響;另外地區的失業率是表現出地區勞動市場的重要指標之一,過去的文獻提到失業嚴重的地區可能使當地勞工失業後找不到工作,或使想進入職場的勞工卻步。此篇論文研究結果顯示妻子的勞動參與會顯著的影響先生對勞動市場去留的決定,妻子影響個人的勞動參與機率6~18%左右,而1%地區性失業率的上升,則是對個人的勞動參與機率下降的影響約1.5%左右。在1988年至2008年整體中高齡已婚男性勞動參與率的分解中,勞動參與率下降了3.5%(占整體變化40%),可歸咎於地區失業率的升高。而若妻子的勞動參與沒有提升,仍維持1988年的水準,整體丈夫的勞動參與率將會下降1%(占整體變化10%)左右,本論文認為若政府能維持良好的就業市場環境,將有助於提高中高齡已婚男性人口勞動參與的比率,進一步能有效提高勞動生產力及降低社會負擔。 / As the proportion of the old population increases in Taiwan, issues of older individuals’ behavior attract public attention. During 1988 to 2008, labor force participation rate of older married men declined over 10 percent. What can explain this decline? This thesis tries to find out the determinants of older married men’s labor force participation in Taiwan. I use the data from Manpower Survey and Manpower Utilization Survey from 1988 to 2008, conducted by Directorate General of Budget, Accounting and Statistics (DGBAS). The sample comprise 51,730 observations of married men aged 55-64. Older married men’s labor participation decision is treated as a dependent variable and estimates are made with a probit and a bivariate probit model. Decompositions with methodology of DiNardo, Fortin, and Lemieux (1996) and Oaxaca (1973) are conducted for explaining the decline in labor participation rate of older married men between 1988 and 2008. The results indicate that the increase in wives’ labor force participation increases husband’s likelihood of participation and prevents aggregate husbands’ participation rate from declining about 1 percentage point (-8 percent of total decline). However, regional unemployment rate negatively affects husband’s likelihood of participation and can explain at least 3.5 percent (40 percent of total decline) of the decline in husband’s participation rate. This thesis suggests the labor force participation rate could be stopped from declining if the government maintains good labor market condition.
|
7 |
理性的預期和總體經濟模型之探討─台灣之實證分析包佈訓, Bao, Bu-Xun Unknown Date (has links)
第一章:緒論。第一節:前言。第二節:研究的目的與動機。第三節:本文結構。
第二章:對先前文獻的介紹與評述。第一節:理性預期與自然失業率的關係。第二節
:在近代文獻上–理性預斯的總體模型介紹。第三節:對各種有關模型的評述。
第三章:在理性預期下,總體計量經濟模型的研究。第一節:傳統總體計量經濟方法
的困難。第二節:縮寫式的理性預期模型。第三節:鄒至莊教授的計量經濟模型。第
四節:在理性預期下,經濟政策的評估與最適計劃的爭論。
第四章:在理性預期下,台灣總體經濟模型的設立:第一節:模型的架構與假定。第
二節:估計的方法。第三節:估計的結果與分析。
第五章:結論與建議。
全文共分為五立,共約三萬五千字左右,利用理性預期的假設,印證台灣總體模型,
是否只有非預期的貨幣或財政變數才能影響實質經濟變數。
|
8 |
區域差異性對失業率影響之研究 / The effect of regional differences on unemployment rate陳妍汎 Unknown Date (has links)
區域發展差異現象一直以來為國家政策所關注,而近年來台灣地區失業率有逐漸上升的趨勢,各縣市之表現亦大相逕庭,顯示各地區存在失業差異現象。過去研究較少以空間觀點觀察失業相關議題,此外,關於區域差異因素對失業率之影響鮮少納入政府規劃因素。因此,本研究以空間自相關分析方法檢測失業是否具有空間相關性及聚集性,並應用長期追蹤資料(panel data)迴歸模型,以人口、產業、所得、都市化程度及政府規劃因素,分析台灣22縣市1988至2008近二十年來各區域差異因素對失業率之影響,藉由實證結果提出相關都市及產業政策之建議。實證結果發現,台灣失業分佈具有一定程度的空間相關性,且高低失業率在各縣市間亦有聚集現象。再者,依固定效果模型實證結果發現人口數、工業及服務業就業者百分比、都市化程度、工業區面積百分比與失業率間呈現顯著正向關係;經濟發展支出百分比與失業率呈現顯著負向關係;區域固定效果,即排除自變數影響下,各縣市本身區域特質對失業率之影響,結果顯示台北縣及桃園縣之係數為負向,南投縣、嘉義縣、台東縣與花蓮縣之係數為正向;時間固定效果方面,大部分年度皆具顯著性,且係數有由負轉正之趨勢,代表特定時間衝擊會對失業率造成影響。 / Differences in regional development have been a focus on national policies. Recently, there is a increasing trend in the unemployment rate in Taiwan, and it also differs from cities and counties, indicating there exists differences in regional unemployment. Previous research rarely combined unemployment issues with spatial perspective. In addition, the effect of regional discrepant factors on the unemployment rate rarely take government planning factors into account. Therefore, this study uses spatial autocorrelation analysis to detect whether unemployment has spatial correlation and aggregation, and applies panel data regression model with population, industry, income, the degree of urbanization, and government planning factors to analyze the effect of regional discrepant factors on the unemployment rate in Taiwan's 22 cities and counties from 1988 to 2008. According to the empirical results, we come up with some urban and industrial policy proposals. Empirical results indicate that the distribution of unemployment in Taiwan has a certain degree of spatial correlation, and high or low unemployment rate also has aggregation among cities and counties. Furthermore, according to the results of the fixed effects model, population, the percentage of industrial and service sector employment, the degree of urbanization, and the percentage of industrial area show a significant positive relationship with unemployment rate. The percentage of expenditures for economic development shows a significant negative relationship with unemployment rate. Region-specific fixed effect, which exclude the influence of independent variables, is the effect of regional characteristics of counties and cities on the unemployment rate. This result shows the coefficient of Taipei County and Taoyuan County is negative, and the coefficient of Nantou County, Chiayi County, Taitung County and Hualien County is positive. As for time-specific fixed effect, almost all years are significant, and the coefficient has the trend from negative to positive, indicating that a particular time impact will affect the unemployment rate.
|
9 |
模糊資料分類與模式建構探討-以單身人口數及失業率為例 / A study on the fuzzy data classification and model construction - with case study on the population of singles versus unemployment rate游鈞毅, Yu,Chun Yi Unknown Date (has links)
資料分類的應用在時間數列的分析與預測過程相當重要。而模糊資料近年來更受到重視,其應用的範圍包含:財金、社會、生醫、電機等各個領域。本研究欲運用模糊資料分類法,對區間時間數列的轉折偵測與模式建構做一個深入探討。主要應用平均累加模糊熵(average of the sum of fuzzy entropies), 找出其結構性改變的區間。並針對區間型時間數列進行模式建構診斷與預測。最後我們以單身人口數與失業率為實列做一個詳細的探討。結果顯示,失業率對單身人口數有顯著的影響而孤鸞年的效應並不顯著。 / The application of data classifications in time series analysis and forecasting is rather important. The fuzzy data classification has received much attention recently. It can be applied on various fields such as finance, sociology, biomedicine, electrical engineering and so on. This study is to use the fuzzy data classification to perform an intensive research on the change periods detection and model construction of the interval time series. We use average of the sum of fuzzy entropies to find out interval of the structural changes. Focusing on the time series of intervals, we build a model and make prediction about it. At the end, based on the case study on the population of singles versus, we thoroughly discuss this topic. The result shows that the unemployment rate does significantly correlate with the population of singles, but the "widow's year" does not .
|
10 |
台灣地區失業率之預測分析 / Preditive Analysis of Unemployment Rate in Taiwan陳依鋒, Chen, Yi-Feng Unknown Date (has links)
近年來由於亞洲金融風暴的肆虐,產生經濟不景氣,使得失業的問題逐漸受到社會所關注,本論文企圖以三個時間序列方法:1.單變量ARIMA模型;2.轉換函數(TF)模型;3.向量自迴歸(VAR)模型來建立台灣地區的失業率時間序列預測模型。資料則是利用台灣地區民國75年1月至民國87年12月的失業率月資料作實證預測分析,為了知道資料是否來自時間趨勢模型,測試是否經過差分消掉一部份的記憶會發生預測的誤差,所以先以多步(multi-step)預測和一步(one-step)預測的方法計算出民國88年1月至88年12月預測值,而預測評估準則則採用(1)MAPE、RMSPE、MPE及泰爾不等係數(THEIL);(2)變化方向誤差與趨勢變化誤差兩大方向來做預測比較。最後將算出的12期預測值與行政院主計處整體統計資料庫中所得到的失業率實際值利用預測評估準則做比較,結果發現一步預測法較多步預測法準確;而向量自迴歸模型(VAR)在大部份的預測期數上有較小的MAPE、RMSPE、MPE及THEIL值,因為此VAR模型考慮了在變數之間的共整合現象,有助於模型的預測,所以有較好預測的能力;反而是較複雜的ARIMA模型及轉換模型預測能力稍差一點。 / In this thesis, we plan to construct three time series models to forecast the Taiwan unemployment Rate. These time series models are ARIMA model、transfer function (TF) model and Vector Autoregressive (VAR) model. The data set consists of monthly observations for the period 75:1-87:12 for unemployment rate. We want to know if the data came from time trend model. First, we use multi-step forecasting and one-step forecasting to calculate 12 forecasted values from 88:01-88:12. Then We compare the prediction performance of these two methods by using:(1) MAPE、RMSPE、MPE and Theil’s Inequality Coefficient (THEIL);(2) Direction of Change Error and trend Change Error etc. It is found that one-step forecasting is more correct than multi-step forecasting and the forecasting performance of VAR model is improved by explicitly taking account of cointegration between the variables in the model,so VAR model has lower MAPE、RMSPE、MPE and THEIL for most horizons. However,the more parsimonious ARIMA and transfer function models have higher MAPE、RMSPE、MPE for most horizons.
|
Page generated in 0.03 seconds