41 |
盈餘品質指標資訊價值之研究--類神經網路之研究途徑沈淳惠 Unknown Date (has links)
盈餘是公司過去經營績效良窳之最終表現,而盈餘數值高低與公司股價報酬有密不可分的關係。然則,盈餘是企業營運的一連串會計處理結果,不同的會計原則及假設會影響會計處理的結果,使得當期及未來盈餘數值均會受到影響,因此在評估或預測企業的盈餘時,應對盈餘本身之品質加以探討,亦即,如何確認財務報表中那些是攸關盈餘品質優劣的資訊,透視盈餘本身的真正內涵以輔助投資人形成最佳投資策略,十分值得我們進一步研究。
近年來由於人工智慧之類神經網路快速地發展,加上類神經網路具備了平行分散式處理、關聯式記憶、自範例中學習等類似人類非線性思考的能力,在財務系統的應用上,學者所建構的類神經網路都比統計方法獲得了更好的結果。
有鑑於此,本研究即依據上述概念,以民國七十九年至八十四年共計五個年度財務報表資訊,以第一、二類上市公司一共十三個產業為研究樣本,建構了盈餘品質類神經網路預測模式,找出盈餘品質資訊內涵與盈餘成長率之關聯性。並以模式預測結果形成投資組合並據以作為投資策略操作。
在網路模式建構階段,本研究採取了過去學者所採用的盈餘品質指標作為網路之輸入結點;以每股盈餘成長率作為網路之輸出結點;以整體市場為學習範例,進行隱藏層結點個數之操弄,以找出學習效果較佳之網路模式,並以此網路模式作為後續研究採用之依據。以整體市場為樣本所進行的網路測試過程中,本研究所找出之較佳網路模式為:9-9-1。
本研究根據前述方法所進行的研究中,獲得了以下結論:
一、以整體市場為樣本所進行的測試中發現,模式之區別能力大致介於六成至七成之間。而預測能力大約是在五成至六成之間。
二、在整體市場、紡織類股以及電子類股之測試結果方面,以電子業之模式區別能力及預測能力最好,其次為紡織業。顯示以單一產業為樣本之模式學習效果優於整體市場。
三、在網路穩定性方面,則以紡織業組之穩定性較高,但與其它兩組之差異性並不明顯。
其次本研究以事件研究法進行投資策略分析,以模式之預測結果,輔以益本比評價法形成投資組合並進行投資決策,獲得了以下結論:
一、以整體市場、紡織類、電子類為投資對象均獲了超額報酬,在觀察期間內分別獲得了38.51%、34.62%以及56.89%的超額報酬率。其中以電子類股之表現最為突出。顯示本研究對於如電子業較重視研究發、資本密集之產業盈餘品質萃取能力較佳。
二、在觀察期間內,投資組合與類股報酬率表現均呈現正向相關,在類股指數上漲月份中,投資組合之超額報酬率較小,然而在類股指數下跌月份投資組合會出現較大幅的超額報酬。推論其原因在於本研究是以盈餘品質為基礎,而此類盈餘品具成長性且一致性、穩定性較高之公司較具抗跌性及長期持有之價值。
三、本研究驗證了盈餘品質網路模式能有效擷取財務報表盈餘資訊內涵,以之形成投資策略能獲取超額報酬。
關鍵字:盈餘品質、類神經網路、盈餘品質預測模式、投資組合、投資策略、累計超額報酬
|
42 |
類神經網路之應用-黃金期貨預測 / The application of neural network - forecasting gold future鐘正良, Chung, Chen Liang Unknown Date (has links)
本研究欲提出一COMEX黃金期貨價格的類神經網路模型,期此一模型能預測出當期的黃金期貨價格。在類神經網路模型方面,採用倒傳遞類神經網路;而其輸入層共有九個處理單元,即影響黃金期貨價格的九個變數,輸出層為一個處理單元,即黃金期貨價格,至於隱藏層則採二層,因黃金期貨價格有波動大、難預測且為非線性的特性。
為證明類神經網路是否有較傳統統計學方法在此一方面有較強的預測能力,所以以此模型與單變量時間數列模型及迴歸分析模型做比較,並以MSE及MAPE作為評估的準則。
在實作方面,研究資料以西元1987年1月至西元1991年12月60筆月資料為訓練樣本;而西元1992年1月至1995年12月48筆月資料為測試樣本。研究結果顯示不論是MSE或MAPE類神經網路模型皆優於迴歸分析模型及時間數列模型。
|
43 |
應用類神經網路於預測國外股價指數期約 / Forecasting Foreign Stock Index Futures: An Application of Neural Networks賴俊霖, Lai, Charles C. Unknown Date (has links)
本研究嘗試整合類神經網路與法則基礎(rule-based)系統技術,以建立S&P 500指數期貨的交易策略。本研究不同於先前研究之處有下列二方面:一、本研究採用法則基礎系統的方式提供神經網路的訓練範例;二、本研究以理解神經網路(Reasoning Neural Networks)取代後向傳導網路(Back propagation networks)以解決局部最小值與隱藏結點數未知的困境,而實證結果也顯示理解神經網路之表現優於後向傳導網路。首先,由期貨的日價格資料計算出十種技術分析指標值,用這些指標值來表示期貨市場內的各種可能狀況(case)。接著,我們提出FFM(Futures Forecast Model)與EFFM(Extended Futures Forecast Model)來處理市場的各種狀況,預測出隔日的期貨價格改變方向。以法則基礎方法所建立的FFM是用來處理明顯的狀況(obvious cases),並且提供類神經網路好的訓練範例。而EFFM包括四個理解神經網路系統與一個決策機置(voting mechanism),它被用來處理那些不明顯的狀況(non-obvious
cases)。從實證模擬的結果顯示,在預測市場時FFM與EFFM有良好的合作
關係。因此,我們以FFM與EFFM為基礎建立一個整合的期貨交易系統(Integrated Futures Trading System,IFTS),並將它用於S&P 500 指數期貨市場作模擬交易,結果我們發現在1988到1993年的測試期間,IFTS
的投資報酬率高於買入持有投資策略。 / This research adopts a hybrid approach to implementing the
trading strategies in the S&P 500 index futures market. The
hybrid approach integrates both the rule-based systems technique and the neural networks technique. Our methodology is different from previous studies in two aspects. First, we employ Reasoning Neural Networks (RN) instead of back propagation networks to resolve the undesired predicaments of local minimum and the unknown of the number of hidden nodes. Second, the rule-based systems approach is applied to provide neural networks with good
training examples. We, first, categorize the daily conditions of the futures market into a variety of cases through processing futures historical data. Then, the dual-forecast models, FFM (futures forecast model) and EFFM (extended futures forecast model), are proposed to predict the direction of daily price changes. The rule-based model, FFM, is designed to deal with the obvious cases and to provide the neural network-based model, EFFM, with good training examples. Meanwhile, EFFM, which consists of four RNs and a voting mechanism, is designed to handle the non-obvious cases. The simulation results show that the cooperation of FFM and EFFM does a good job in predicting
the direction of daily price change of S&P 500 index futures.
Based on FFM and EFFM, the integrated futures trading system
(IFTS) is developed and employed to trade the S&P 500 index
futures contracts. The results show that IFTS outperforms the passive buy-and-hold investment strategy over the six-year testing period from 1988 to 1993.
|
44 |
類神經網路產業盈餘預測及其投資策略之研究-以電子電機及紡織業為例 / The Studies of Earnings Prediction and Investment Strategy with Artificial Neural Network - The Examples of Electron and Textile Industry胡國瑜, Hu, Kuo-yie Unknown Date (has links)
財務報表記錄可說是企業經營績效良窳的反映指標,而其中所衍生出來的財務比率,向 來均是管理者、投資者進行企業診斷或未來經營績效預測的重要資訊來源。然而,相關 的研究發現,由於產業間經濟環境與市場結構特性的不同,所呈現出來的財務報表資訊 內涵亦將有所差別。因此,若進一步運用個別產業之報表資訊預測公司未來盈餘時,將 能夠提供產業間結果進行分析與比較的基礎。 如何自報表中獲取與公司經營績效相關之會計資訊,進而建構出優良的盈餘預測模式, 是近幾年來學者感興趣的研究課題之一。鑑於人工智慧之類神經網路系統擁有多項的特點,因此,對於盈餘預測會計資訊萃取的應用上,無非是提供了我們一個新的選擇途徑。 本研究即根據此項概念,以民國70年第一季至民國82年第三季為止共十五項大小產業之 股票上市公司財務報表以及股價報酬等資料作為研究樣本,進行盈餘預測模式的建構以 及投資超額報酬的計算。 進一步地說,本研究的內容可以分成三個部份,第一部份是以整體市場樣本為例,對類 神經網路主要參數如輸入變數組合、隱藏層節點數等進行調整及測試,以從中選取出盈 餘預測效果較佳之模式設定;在第二部份則是運用此一盈餘預測模式,分別對整體市場 以及紡織、電子電機
兩項產業樣本進行網路的訓練與測試,並根據模式所獲得之區別及 預測能力評估指標,探討不同產業特性樣本所建構的模式之間,其預測結果上的差異性 ;而第三部份則是利用各類產業模式預測結果的資訊,從利潤與風險兩種角度,定義"總 體"、"高利潤"、"低風險"、 "高利潤低風險"等四種不同類型投資策略,並以事件研究 法計算各項策略所能獲取之累積超額報酬,最後,則根據各策略之獲利績效,進行產業 間的分析比較,以找出本研究各類特定產業之最適投資策略。 本研究根據前述方式所進行的實驗研究中,獲得了以下三點結論: 一、類神經網路盈餘預測模式之建構 (一)以整體市場樣本為對象所進行之網路的測試中,發現模式整體區別能力大致介於五 到七成之間;而整體預測能力則介於四到六成之間。 (二)本研究所找出盈餘預測效果較佳之網路模式設定如下:1.輸入變數組合:單因子多變量變異數分析之22項顯著性財務比率 2.網路架構(輸入層-隱藏層-輸出層):22-22-1 3.連結權數初始值設定範圍:-0.1~0.1 二、產業盈餘預測結果之分析 (一)整體而言,產業間模式測試結果的差異並不大,其中以紡織產業的模式區別及預測 能力最好(70%以上),電子電機產業次之,而整體市場模式的結果均不及兩項單一性產業。 (二)模式預測能力穩定性方面,各產業於五個年度間預測率的波動大致還算穩定,其中 就紡織產業而言,其年度之間模式預測能力的差別不大,但電子電機產業年度間的變化 則要比前者來得明顯。 三、產業投資策略績效之分析 (一)各類型投資策略的整體結果中,紡織與電子電機兩項產業的獲利績效相當,且均要 比整體市場來得好,其中,紡織產業之"高利潤低風險"策略所獲得的累積超額報酬(43.28%) 更居全體之冠。 (二)本研究所找出之個別產業最適投資策略分別為: 1.整體市場:總體策略、低風險策略 2.紡織產業:高利潤低風險策略、高利潤策略 3.電子電機產業:高利潤低風險策略、低風險策略 / Financial Statements are very important information
indicating performance of corporations. Managers and investors
use financial ratios as vital indexes to evaluate and predict
operating results of corporations, and make their decisions.
ategy, and compute CAR for each investment strategies. At last,
I analyze the investing results of the four strategies for
individual industry. ANN ( Artificial Nerual Network) shoot a
new direction on researching application of abstracting
accounting information which can efficiently predict earnings.
According to results of relative researches, financial
statements from different industries present and implicate
different accounting information. If we further apply ANN on
financial statement information to predict earnings of
corporations, we can use the results as bases of analyses and
comparisons among industries. Because ANN model has many
advantages, in this research, I use financial statements and
return on stocks from corporations as researching samples to
construct prediction models and compute CAR(Cumulative Abcdrmal Return) on investments. These samples are chosen from 15 different industries and covered from the first quarter of 1981 to the third quarter of 1993. This research consists of three parts: 22 financial ratios selected by MANOVA First, I use the general market samples to adjust and predict the vital parameters of ANN models, such as the selection of input variable, the number of hidden node, and finally pick better setups for the prediction model. Second, I use this model to train and test samples from the general market, the textile, and the electron industry, and research the variation of predicting results by different models made up different industries by means of evaluation indexes . Third, I use the results predicted by the three different industry models, inspect of risk and return, to define four types of investment strategies -- "the general", "the high return", "the low risk", and "the high return - low risk" strategy, and compute CAR for each investment strategies. At last, I analyze the investing results of the four strategies for individual industry. After researching, I find:s of the textile and electron industry are better than the general markets'. 1.The better setups of ANN
predition models are :industries are: (1)the selection of input variable:the 22 financial ratios selected by MANOVA (2)the ANN model topology(input node - hidden node - output node):22-22-1 rategy (3)the range of initial connection weights:-0.1~0.1 return - low risk strategy 2.The analyses of results predicted by the three different industry models are: (1)the predicting abilities of the textile and electron industry are better than the general markets'. 3.The proper investment strategies of individual industries are: (1)the general market:the general and the low risk strategy (2)the textile industry:the high return and the high return - low risk strategy (3)the electron
industry:the low risk and the high return - low risk strategy
|
45 |
推理類神經網路及其應用 / The Reasoning Neural Network and It's Applications徐志鈞, Hsu Chih Chun Unknown Date (has links)
大部的類神經網路均為解決特定問題而設計,並非真正去模擬人腦的功能
,在本論文中介紹一個模擬人類學習方式的類神經網路,稱為推理類神經
網路(The Reasoning Neural Network),其主要兩個組成為強記(
cram -ming)及推理(reasoning)部份,透過彈性的組合這兩個部份可
使類神經網路具有類似人類的學習程序。在本論文中介紹其中一個學習程
序並用四個實驗來評估推理類神經網路的績效,從實結果得知,推理類神
經網路能以合理的隱藏節點數(hidden nodes)達到學習的目標,並建立
一個網路內部表示方式(internal representation),及具有好的推理
能力(g eneralization ability)。 / Most of artification Neural Networks are designed to resolve
spe -cific problems, rather than to model the brain. The
Reasoning N -eural Network (RNN) that imitates the way of human
learning is presented here. Two key components of RNN are the
cramming and t -he reasoning. These components coulds be
arranged flexibly to a -chieve the human-like learning
procedure. One edition of the RNN used in experiments is
introduces, and four different proble -ms are used to evaluate
the RNN's performance. From simulation results, the RNN
accomplishes the goal of learning with a reason -able number of
hidden nodes, and evolves a good internal repres -entation and
a generalization ability.
|
46 |
服務核心、服務傳送系統與績效關係之研究 : 以台北市服飾零售業為實證對象魏正元 Unknown Date (has links)
摘要
分類是研究的第一步,服務業理必須基於有意義的分類,才
可能提出規範性的結論。此外,服務業的無形產出,必須透過細緻的
服務傳送系統設計來傳遞給顧客。因此服務業的研究首要工作,在從
抽象的層次中提出對服務業無形特性的有效分類。經由文獻檢討及實
務觀察,本文提出三項服務業的產出分類構面:經濟性、社會性及心
理性利益,稱之為服務核心。以此三構面將台北市的服飾零售業分為
四種類型:經濟心理性、心理性、混雜性及經濟性零售店。各類型零
售店中較績優者,相互之間服務傳送系統的差異非常明顯,顯示績效
的殊途同歸性是明顯的。用一類型零售店組內的比較分析中,以類神
經網路求得影響績效最重要的服務傳送系統項目:經濟心理性最重要
的活動與商品無直接的關連;心理性零售店最重要的是人員專業性與
商品風格與品味;經濟性零售店的服務傳送系統則是愈簡單愈好。文
末並提出相關的討論是建議。 / ABSTRACT
keywords: service industry, service core, service delivery
system, retail industry, neural network
Classification is the first step for research. Normative
suggestions cannot be provided unless meaningful
classification is available in service management.
Meanwhile, intangible output in service organizations
usually is transferred to customers through delicate service
delivery system. Therefore the primary task in service
management research is to devise efficacious, theoretical
classifications to govern inherent intangibility in service
management. Through literature review and field study, this
paper proposed three classifying dimensions for fashion
retailing, which were termed service cores consisting of
economic , social , and psychological benefits. Based on these
three dimensions, four types of retailing firms were derived
with clustering analysis: eco-psychological, psychological,
and economic types. Between groups, better performers were
extracted to compare with each other, which demonstrated the
significances of equifinality towards performance and
differences between these four retailing types. Within
groups, neural network analysis was employed to determine
important factors in service delivery system. In
eco-psychological type, important factors were irrelevant to
merchandises. Professional salespersons and special
merchandise were critical to psychological stores. Better
economic stores were all rated low in most delivery
activities. Relevant suggestions and discussions were given
to conclude the findings.
|
47 |
以類神經網路構建區域電離層模型 / Study on Regional Ionospheric Modeling Using Artificial Neural Network李彥廷 Unknown Date (has links)
GPS 單點定位或稱絕對定位,傳統上使用虛擬距離觀測量,容易受到
電離層延遲影響,導致定位精度較差。因此,本文的目的為構建即時的區
域性電離層模型,以便能夠即時減弱電離層延遲量,提高單頻GPS 單點定
位的精度。
構建電離層模型的方法有很多種,而運用類神經網路為可能方法之一, 但是, 國內較少人探討。本研究嘗詴使用倒傳遞類神經網路(Back-propagation Artificial Neural Network),構建即時的區域電離層模型,藉由選擇適當的神經訓練函數及隱藏層神經元,利用過去收集的已知參考站的雙頻GPS 資料,計算電離層延遲量,訓練類神經網路,直到精度合乎要求;再以檢核站GPS 資料,檢驗類神經網路預測電離層延遲的功效。
採用的實驗資料為臺南市政府e-GPS 系統所提供六個測站,2008 年1
月3 日到1 月5 日的GPS 資料,計算測站與GPS 衛星連線中假想的電離層
薄殼交點—電離層穿透點(Ionosphere Pierce Point, IPP)之地理位置(緯度φ、經度λ),及太陽黑子數(sunspot numbers)等當作輸入值,IPP 的垂直電離層延遲當作輸出值,測詴包含單日、兩日以及不同的資料型態(IPP 點、網格點)等情況訓練類神經網路,藉由相對應的驗證資料,檢驗類神經網路的功效,最後將類神經網路的預估成果與全球電離層改正模型、雙頻GPS
資料計算的電離層延遲相比較,並根據改正率與統計特性,評估類神經網
路構建出的區域性電離層模型的成效。
由實驗成果顯示,構建的即時區域性電離層模型的標準差可小於±3TECU,並可改正約80%的電離層延遲誤差,故以類神經網路可有效的構
建出區域性的電離層模型。 / The conventional single point positioning using GPS pseudo rangemeasurements, are vulnerable to ionospheric errors, leading to poor positioningaccuracy. Constructing a real-time ionospheric model is one of the methods that
can reduce the ionospheric errors and improve the single point positioning accuracy.
Although there are many methods to construct regional ionosphere model,using artificial neural network (ANN) to construct a real-time ionospheric model is less to be mentioned. This study used back-propagation artificial neural network to estimate a regional real-time ionospheric model by selecting the appropriate training functions and the number of hidden layers and its’ nodes. The neural network had to be ‘trained’ by the computed TECs from reference stations’ duel-frequency GPS data until the required accuracy was achieved.
The experimental data are collected from 6 e-GPS stations of Tainan city government on January 3 to January 5, 2008. The input values for the ANN includ the geographical location of the ionosphere pierce point (IPP) and solar activity (sunspot number). The output value are those IPPs’ vertical total electron content (VTEC). Different times range and data types (IPPs’ or raster
data) for the impact of the ANN are tested. And then compared to Klobuchar model and global ionopheric model, according to the correct rate and the ΔTEC statistic table decide the effectiveness of ANN.
According to the test results, the regional ionopheric model constructed by ANN can corrected 80% of the ionospheric errors, the standard deviation of ΔTEC is less than ±3TECU.
|
48 |
資料採礦於乘用汽車產業之顧客關係管理研究 / A Study of Data Mining on Automobile Industry’s Customer Relationship Management陳竑廷 Unknown Date (has links)
國父 孫中山先生曾說:『民生的需要,從前經濟學家都說是衣、食、住三種。照我的研究,應該有四種:於衣、食、住之外,還有一種就是行。』,在各種交通工具中,最普及的就是汽車。汽車由貴族地位的象徵,發展至福特汽車公司一家獨大,最後演變為各大汽車品牌的競爭。更因消費者意識的改變,購買汽車時考慮的不再僅是量產速度、購買價格。在現今生產技術成熟,沒有一家汽車公司具壓倒性優勢的情況下,品牌的因素將會是消費者進行購買決策時一個重要的指標。
本研究欲透過國內六大汽車品牌之顧客關係資料,利用資料採礦模型,瞭解品牌形象、廣告印象及人口統計變數與購買意願之關係,進一步探討各汽車品牌之消費者忠誠度、客群分布與品牌差異,期能在汽車品牌公司百家爭鳴情況下,分析出消費者於不同汽車品牌之品牌知覺,提供汽車品牌之購買意願模型與後續研究參考。
|
49 |
動態輻狀基底函數類神經網路建構之研究 / Dynamic Implement Radial Basis Function Networks林祐宇 Unknown Date (has links)
近年來輻狀基底函數類神經網路 (Radial Basis Function Networks , RBFN) 應用在時間序列相關問題上已有相當的成果。在這篇論文裡,我們嘗試建構一個電腦軟體工具,可以很容易造出 RBFN,應用在時間序列預測相關問題上。更進一步的說,我們的電腦工具可以輕易做出即時修正,完全符合使用者的需求。我們一開始先複習 RBFN 的基本架構, 並說明如何應用到時間序列的問題上。接著我們研究近年來相當受到重視的 T-RBF (Temporal RBF) 架構。最後,我們解釋如何使用 Adobe Flex 去建構我們所需要的電腦軟體工具。這個工具是跨平台的程式,並且不論是雲端計算或是單機應用皆很合適。 / During recent years, applying Radial Basis Function Networks (RBFN) to
time series problems yields many important results. In this thesis, we
try to implement a cross-platform computer tool that can easily
construct a RBFN applied to time series forecasting problems. Moreover,
the RBFN created by this computer tool can do real-time modification
to fit specific needs. We first review the basic structures of RBFN
and explain how it can be applied to time series problems. Then, we
survey on so called temporal radial basis function (T-RBF) model,
which draws much attention these years. Finally, we explain how we
use Adobe Flex to create a computer tool as we mentioned in the
beginning. The computer application is cross-platform and is suitable
for both cloud computing and desktop applications.
|
50 |
降低電源轉換器內部零件溫升之研究蘇桓毅 Unknown Date (has links)
在面對市場強力競爭之下,許多企業為了達到永續經營的目的,往往藉由改善產品品質、降低生產成本以及加強產品的彈性與效能,以便創造出符合顧客需求的優良產品,進而提升市場競爭力。
本研究主要的對象為電源轉換器(Switch Power Supply)。該電源轉換器在運轉的過程中時常會有溫度過高的情況發生,進而影響顧客對於產品的滿意程度,因此希望藉由降低電源轉換器的溫升以及溫升變異,來提升產品的品質以增加顧客的滿意度。在本研究中利用田口方法以及實驗設計去規劃出適當的實驗流程與實驗方法,並且經由實驗來收集實驗數據,分別採用灰關聯分析、主成分灰關聯分析、模糊評估分析和倒傳遞類神經網路等四種方法進行實驗分析,以決定出最適因子水準組合。
根據工程經驗與實驗結果得知,電源轉換器內主要發熱零件為IC、T1、LF1和D7。最適組合之確認實驗與現況比較發現,雖然LF1的平均溫升約比現況高2℃左右,但是IC、T1和D7的平均溫升卻可以降低2∼4℃,而且這四個主要發熱零件的溫升標準差也都有大幅降低的現象,由於降低產品變異也會提昇產品品質,一旦產品品質提升了便能夠增加市場競爭力,並且增加顧客的購買意願,因此本研究所找出的最適外殼鑽孔形狀與矽膠片厚度組合的改善效果良好。
|
Page generated in 0.0255 seconds