• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 870
  • 72
  • 53
  • 51
  • 50
  • 46
  • 38
  • 36
  • 11
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1013
  • 349
  • 264
  • 189
  • 184
  • 155
  • 144
  • 127
  • 127
  • 126
  • 117
  • 104
  • 100
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Fundamentos de matemática. Introducción al nivel universitario [Capítulo 1]

Egoavil Vera, Juan Raúl January 1900 (has links)
Desde que ingresa al colegio, todo estudiante debe llevar cursos de matemáticas durante, al menos, 12 años de su vida. Luego, necesita perfeccionar las habilidades obtenidas durante esos años para ingresar a la universidad; sea que desee estudiar una carrera del área de las ciencias naturales y exactas o no. Incluso, en la mayoría de los empleos se requiere que los recién egresados tengan conocimientos básicos de Matemáticas. Por esto, es importante ayudar al estudiante a desarrollar estas habilidades con miras a un buen desempeño durante su carrera universitaria y, posteriormente, en su vida profesional. Fundamentos de Matemática. Introducción al nivel universitario, es un libro que busca apoyar a los escolares del último año de secundaria, a los postulantes a la universidad y a los alumnos universitarios del primer ciclo para que encuentren el valor de las matemáticas en su propia realidad y profesión. Así, cada capítulo, ofrece una introducción clara, sencilla y general de la teoría matemática correspondiente, utilizando ejercicios y problemas aplicados y contextualizado según las diferentes carreras profesionales. Esta obra está dividida en tres unidades: Fundamentos de Aritmética, Fundamentos del Álgebra, y Fundamentos de Geometría y Trigonometría. Para desarrollar cada una, el autor ha recurrido a textos introductorios, ejemplos, ejercicios y problemas aplicativos. Asimismo, sugiere páginas web para que acuciosos lectores, ávidos de aprendizaje, continúen con su formación de manera autónoma.
322

Una contribución sobre la variedad de las álgebras cilíndricas de dimensión dos libres de elementos diagonales

Figallo, Martín 04 May 2005 (has links)
Con el objeto de iniciarme en la tarea de realizar investiación en Matemáticas y Lógica Matemática, Aldo V. Figallo, mi pa-dre y director de este trabajo, me sugirió comenzar con el análisis de un sistema proposicional algebrizable, o más preci-samente, la versión algebraica de ese sistema proposicional. Entonces, con este objetivo, me propuso en primer lugar que estudiara un trabajo bastante reciente y de complejidad consi-derable, cuyo autor es N. Bezhanishvili, al que tituló Varietries of two-dimensional cylindric algebras. part I: Diagonal-free case, el cuál fue publicado en el año 2002, en las páginas 11 a 42 de la primera sección del volumen 48 de la prestigiosa re-vista Algebra universalis. Entre otros resultados, Bezhanishvili estableció que la variedad de las álgebras cilimdricas de dimen-sión 2 librer de elementos diagonales (o Df2-álgebras), tiene la particularidad que toda subvariedad propia es localmente finita. Este hecho sugiere de manera natural, investigar a las álgebras finitas. Por otra parte, como las Df2-álgebras consti-tuyen una ampliación de las álgebras de Boole monádicas de Halmos, también hemos extendido algunos resultados sobre las álgebras de Boole Monádicas al caso de las Df2-álgebras, que por supuesto no fueron establecidos previamente poor Bezhanishvili. Al trabajo lo hemos organizado en cuatro capí-tulos. El Cap. I, Introducción y preliminares, contiene cuatro secciones y los temas que hemos incluido en ellas son resultados bien conocidos, pero necesarios tanto para facilitar la lectura, como para introducir notaciones y dejar fijadas cuáles serán las definiciones que utilizaremos posteriormente. El Cap. II, Representaciones de las Df2 álgebras, tiene tres secciones y en él obtenemos dos representación para las Df2 áñgebras. La primera "vía" álgebras de equivalencia y la segunda por medio álgebras funcionales. Es en este capítulo donde extendemos resultados de Halmos para las álgebras de Boole monádicas. El Cap. III, Df2 álgebras finitas, consta de cinco secciones. En una de ellas describimos las Df2 álgebras subdirectamente irreducibles, en otra probamos que en este caso toda álgebra no trivial es producto directo de álgebras subdirectamente irreducibles, y en la sección final utilizamos resultados que hemos obtenido para las Df2 álgebras y los utilizamos para obtener una nueva solución del problema de determinar las subálgebras monádicas de un álgebra de Boole monádica finita. Finalmente, el Cap. IV, Variedades de Df2-álgebras, tiene dos secciones. En la primera nos abocamos al problema de determinar las subálgebras de un álgebra finita dada, y en la segunda analizamos el retículo de las subvarie-dadesde la variedad de las Df2-álgebras. Casi todos los resul-tados obtenidos en esta tesis los hemos expuesto en congre-sos nacionales e internacionales (ver[15,16,17,18,19]). Algu-nos de stos resultados los hemos publicado ([20]) y otros están en vias de publicación ([21]). / In 1955, P. Halmos introduced the notion of (existential) quantifier on a Boolean algebra and called monadic Boolean algebras any pari (A, E) formed by a Boolean algebra A and q quantifier E defined on A (see [23]). It is well-known that the-se algebras constitute the algebraic counterpart of the monadic predicate calculus of classical logic. In 1968 A. Diego and R. Panzone, while investigating certain type of problemas related with the theory of probabilities, considered Boolean set algebras endowed with two quantifiers which, in addition, commuted (see [14]). They introduced what they called biadic Boolean algebras as triples (A, E1, E2), where A is a Boolean algebra, E1, E2 are quantifiers on A that commute, i.e., they satisfy the additional property: E1E2x=E2E1x for al x E A. These algebras constiture a particular case of the cylindric algebras introduced by A. Tarski, L. Chin y F Thomp-son with the purpose of providing a device for an algebraic study of first-order predicate calculus. A detailed stydy of cylindric algebras can be seen in [27].From now on, following Henkin, Monk and Tarski we shall call the Boolean biadic alge-bras diagonal-fre two -dimensional cylindric algebras (or Df2-algebras) and denoted the variety of Df2-algebras by Df2. It should be noted that Df2 has been widely investigated by different authors but little has been studied on those pro-blems inherent to finite algebras. Among other known results of this variety, the subdirectly irreducible Df2-algebras were described and it wasshown that they coincide with the simple ones (see [27]). Recently, N Bezhanishvili, in [5], studied the lattice A(Df2) of al subvarieties of Df2 and he proved that every proper subvariety of Df2 is locally finite although Df2 is not.We have organized our work in four chapters. Chapter I, Introduction and preliminaries, containsfour sections and the topics included there are well-known but necessary for the understanding of the following chapters as well as for intro-ducing notations and the definitions that will be used later. Chapter II, Representations of Df2-algebras, has three sec-tions and there are exhibited two representations theorems for Df2 algebras. The firs one is "via" w3quivalence algebras and the second by means of algebras of functions. It is here where we extend the results obtained by Halmos for monadic Boolean algebras. Chapter III, Finitte Df2-algebras, has five sections. In this chapter the we describe the subdirectly irreducible Df2-algebras, also we proved that eavery non-trivial finite algebra is direct product of subdirectly irreducible algebras; and then we use theses results in order tu obtain a nw solution of the problem of determining all monadic subalge-bras of a given finite monadic Boolean algegra. Finally, in Chapter IV, Varieties of Df2-algebras, we determine all subal-gebras of a finite Df2-algebras and we study the lattice of all subvarieties of the variety Df2. All these results have been exposed in national and international meetings (see [15, 16, 17, 18, 19]) and some of the have been published ([220]) or are to bi pubished ([21]).
323

Sobre la lógica que preserva grados de verdad asociada a las álgebras de Stone involutivas

Cantú, Liliana Mónica 04 June 2019 (has links)
En este trabajo estudiamos a la lógica que preserva grados de verdad asociada a la clase de las álgebras de Stone involutivas (denotada por S). Estas álgebras fueron introducidas por Cignoli y Sagastume ([12, 13]) en conexión con la teoría de las álgebras de Lukasiewicz{Moisil n{valuadas. Existen diferentes maneras de relacionar una lógica con una clase dada de álgebras (cf.[35]). El estudio de las lógicas que preservan grados de verdad se remonta a Wójcicki en su libro de 1988 [49], en el contexto de la lógica de Lukasiewicz, y luego extendido en [5, 21, 22, 23] entre otros. Esto sigue un patrón muy general que puede ser considerado para cualquier clase de estructura de valores de verdad con un orden definido sobre ellos. El objetivo es explotar la multiplicidad de valores, considerando una relación de consecuencia que preserve cotas inferiores en lugar de solo preservar el último elemento del orden (el valor 1). En el Capítulo 1, repasamos todas las nociones y resultados conocidos de álgebra universal y dualidades topológicas (de Priestley) que son necesarias para el desarrollo posterior. También, repasamos nociones básicas de la teoría de las lógicas paraconsistentes, exhibimos un ejemplo importante y demostramos resultados conocidos. En el Capítulo 2, introducimos la noción de álgebra de Stone involutiva. Probamos que ésta es una clase ecuacional de álgebras, es decir, S es una variedad. Exhibimos la relación de éstas con otras clases de álgebras como los retículos pseudocomplementados y las álgebras de Lukasiewicz trivalentes. Mostramos ejemplos importantes como también exhibimos un método para obtener álgebras de Stone involutivas de conjuntos. Además, repasamos la dualidad topológica estilo Priestley para las S-álgebras, dada por Cignoli y Sagastume en [13], y sus aplicaciones. Finalmente, en el Capítulo 3, introducimos la lógica que preserva grados de verdad asociada a las álgebras de Stone involutivas denominada Six. Mostramos que ésta es una lógica multivaluada (con seis valores de verdad) y que queda determinada por un número finito de matrices finitas (cuatro matrices). Probamos, además, que Six es una lógica paraconsistente en la que es posible definir un operador de consistencia y, por lo tanto, Six resulta ser una Lógica de la Inconsistencia Formal (LFI)(ver [7]). Para finalizar este capítulo, estudiamos la teoría de prueba de Six proveyendo un cálculo estilo Gentzen (cálculo de secuentes) y probando los correspondientes teoremas de correctitud, completitud y principio de inversión. Todos los resultados de este capítulo son originales y fueron aceptados para su publicación en L. Cantú y M. Figallo, On the logic that preserves degrees of truth associated to involutive Stone algebras. Por aparecer en Logic Journal of the IGPL. https://doi.org/10.1093/jigpal/jzy071 / In this thesis, we study the logic that preserves degrees of truth associated to the class of involutive Stone algebras (denoted by S). These algebras were introduced by Cignoli and Sagastume (see [12, 13]) in connection with the theory of n{valued Lukasiewicz{Moisil algebras. There are different ways of relating a logic to a given class of algebras (cf.[35]). The study of logics that preserves degrees of truth goes back to Wójcicki in his book of 1988 [49], in the context of the Lukasiewicz logic, and then extended in [5, 21, 22, 23] among others. This approach follows a very general pattern that can be considered for any class of truth structure endowed with an ordering relation; and which intend to exploit manyvaluedness focusing on the notion of inference that results from preserving lower bounds of truth values, and hence not only preserving the greatest element of the order (the value 1). In Chapter 1, we recall all the notions of universal algebra, theory of topological dualities (Priestley) which are necessary for what follows. Also, we recall basic notions of the theory of paraconsistent logics, we exhibit examples and show well-known results of the theory . In Chapter 2, we introduce the notion of involutive Stone algebra. We prove that it is an equational class, that is, S is a variety. We exhibit the relation of these algebras with other well- known algebraic structures such as pseudocomplemented lattices and three-valued Lukasiewicz algebras. We show important examples of involutive Stone algebras and describe a method for constructing involutive Stone algebras of sets. Besides, we recall the Priestley{style topological duality for the S-algebras, given by Cignoli and Sagastume in [13], and its applications. Finally, in Chapter 3, we introduce the logic that preserves degrees of truth associated to involutive Stone algebras named Six. We prove that this is a multy{valued logic (with six truth values) and that it can be determined by a finite number of finite matrices (four matrices). We show that Six is a paraconsistent logic in which it is possible to define a consistency operator and, therefore, Six turns out to be a Logic of Formal Inconsistency (LFI)(see [7]). To end this chapter, we study the theory of truth of Six by providing a Gentzen style calculus (sequent calculus) for it and by proving the corresponding soundness, completeness and inversion principle theorems. All these results are original and were accepted for publication in L. Cantú and M. Figallo, On the logic that preserves degrees of truth associated to involutive Stone algebras. To appear in Logic Journal of the IGPL. https://doi.org/10.1093/jigpal/jzy071
324

Grupos algebricos e hiperalgebras / Algebraic groups and hyperalgebras

Macedo, Tiago Rodrigues, 1985- 11 September 2018 (has links)
Orientadores: Adriano Adrega de Moura, Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-09-11T21:13:21Z (GMT). No. of bitstreams: 1 Macedo_TiagoRodrigues_M.pdf: 809265 bytes, checksum: 0f4ecb72bd6a8b221a3514e62b63fd41 (MD5) Previous issue date: 2009 / Resumo: Apresentaremos resultados relacionando a álgebra de distribuições de grupos de Chevalley com as chamadas hiperálgebras. Estas últimas são álgebras de Hopf construídas por redução módulo p da forma integral de Kostant para álgebras de Lie simples. Em seguida, tentamos, a partir de uma certa classe de álgebras de Hopf, a saber, álgebras de Hopf que são álgebras de distribuições de grupos algébricos, reconstruir esses grupos algébricos. / Abstract: We present some results which relate the algebra of distributions of a Chevalley group and the so called hyperalgebras. The latter are Hopf algebras obtained by reduction modulo p of the Kostant integral form of a simple Lie algebra. Then we try to rebuild algebraic groups from Hopf algebras which are their algebras of distribution. / Mestrado / Algebra / Mestre em Matemática
325

A post-Lie operad of rooted trees / Uma operad pós-Lie de árvores enraizadas

Silva, Pryscilla dos Santos Ferreira 29 June 2018 (has links)
In this thesis we propose a description of the operad defining post-Lie algebras in terms of rooted trees and we discuss some applications of such a construction. In particular, we re-derive both the free post-Lie algebra defined in [22] and the main result of the paper [8]. Furthermore, a possible extension of the concept of symmetric brace algebra to the category of the post-Lie algebras is proposed. / Nessa tese propomos a descrição da operad que define as álgebras pós-Lie em termos de árvores enraizadas e discutimos algumas aplicações dessa construção. Em particular, nós obtemos novamente a álgebra pós-Lie livre definida em [22] e o resultado principal do artigo [8]. Além disso, uma possível extensão do conceito de álgebra brace simétrica à categoria de álgebras pós-Lie é apresentada.
326

Anéis de inteiros de corpos de números e aplicações /

Araujo, Robson Ricardo de January 2015 (has links)
Orientador: Antonio Aparecido de Andrade / Banca: Trajano Pires da Nóbrega Neto / Banca: Edson Donizete de Carvalho / Resumo: Esta dissertação apresenta o anel de inteiros de corpos quadráticos, de corpos ciclotômicos, de alguns subcorpos ciclotômicos e de corpos de números abelianos com o objetivo de utilizá-los na produção de reticulados algébricos, os quais são aplicados a teoria da Informação e a teoria dos Códigos Corretores de Erros. O texto desenvolve conceitos básicos sobre Álgebra e Teoria Algébrica dos Números, estuda bases integrais de corpos de n umeros sob dois diferentes aspectos, caracteriza o anel de inteiros dos corpos de números referidos anteriormente e apresenta algumas aplicações dessa teoria aos reticulados algébricos. Os teoremas centrais demonstrados nesta dissertação são o Teorema de Hilbert-Speiser e o Teorema de Leopoldt-Lettl. Este fornece o anel de inteiros de qualquer corpo de números abeliano, generalizando aquele. Esta dissertação possui um capítulo dedicado a demonstração do Teorema de Leopoldt-Lettl de maneira detalhada. Além disso, este trabalho faz uma análise sobre a monogênese de alguns anéis de inteiros e apresenta um contraexemplo de anel de inteiros não monogênico. O último capítulo e dedicado aos reticulados e mostra exemplos de reticulados algébricos construídos nos espaços de dimensões 2, 4, 6 e 8 via o homomorfismo de Minkowski em ideais de anéis de inteiros de corpos de números. O trabalho que originou esta dissertação consistiu principalmente na pesquisa e no detalhamento das demonstrações do Teorema de Leopoldt-Lettl e de três teoremas relacionados ao tema da monogênese de anéis de inteiros. Este empenho deu origem a um desenvolvimento mais claro e menos compacto das demonstrações relacionadas a esses assuntos, o qual e apresentado no texto. Enfim, este trabalho reúne e oferece um grande aparato teórico que tem sido útil ao desenvolvimento da teoria dos reticulados algébricos e que cria a expectativa de sua utilização em futuras aplicações / Abstract: This master thesis presents the rings of integers of quadratic elds, cyclotomic elds, some cyclotomic sub elds and abelian number elds aiming use them to produce algebraic lattices, which are applied in the Information Theory and in the Error Correcting Codes Theory. The text develops basic concepts about Algebra and Algebraic Number Theory, studies integral basis of number elds from two di erent perspectives, characterizes the ring of integers of the aforementioned number elds and presents some applications of this theory to algebraic lattices. The main proven theorems in this thesis are Hilbert-Speiser Theorem and Leopoldt-Lettl Theorem. The second provides the ring of integers of any abelian number eld, generalizing the rst. This thesis has a chapter dedicated to make the proof of the Leopoldt-Lettl Theorem in detail. Furthermore, this work analyses the monogenesis of some ring of integers and presents a counterexample of a ring of integers non-monogenic. The last chapter is aimed at lattices and shows examples of algebraic lattices in spaces of dimensions 2, 4, 6 and 8 constructed by ideals of ring of integers of number elds through Minkowski homomorphism. The work that created this thesis consisted mainly in research and detailing of the proofs of Leopoldt- Lettl Theorem and of three theorems linked to the issue of monogenesis of the ring of integers. This e ort created a development lighter and less compact of the proofs related to these subjects, which is presented in the text. Finally, this thesis gathers and provides a great theoretical apparatus that has been useful to development of the theory of algebraic lattices and that creates the expectation of its use in future applications in this area / Mestre
327

Identidades polinomiais da álgebra de octônios / Polynomial identities of the octonion algebra

Meirelles, Fernando Henry 06 June 2014 (has links)
Neste trabalho encontramos bases para as identidades T Z 32 e T Z 22 gradu- adas dos octônios. Utilizando a base obtida no T Z 22 , re-obtivemos uma base para as identidades Z 2 -graduadas das matrizes dois por dois. Também obti- vemos as identidades simultaneamente fracas e antissimétricas ou skew dos octônios na categorias de álgebras alternativas. Também obtivemos as identi- dades antissimétricas da álgebra de Malcev simples de dimensão sete, sl(O). Para ambos os casos estudados de identidades não graduadas dos octônios, mostramos positivamente a conjectura de Shestakov-Zhukavets: O T -ideal de identidades dos octônios coincide com o da álgebra alternativa quadrá- tica. / In this work we find bases for the T Z 32 and T Z 22 graded identities of the octonion algebra. Using the base obtained in the T Z 22 case, we re-obtain a basis for the Z 2 -graded identities of two by two matrices. We also obtained the simultaneously skew and weak identities of the octonions in the category of alternative algebras. In addition we find a basis of identities for the simple Malcev algebra of dimension seven, sl(O). For both skew cases of identities studied we positively show the Shestakov-Zhukavets conjecture: The T -ideal of identities of the octonions coincides with that of the quadratic alternative algebra.
328

Álgebra de semigrupo na compactificação de Stone-Cech de semigrupos discretos / Semigroup algebra in the Stone-Cech compactification of discrete semigroups

Bellini, Matheus Koveroff 11 December 2017 (has links)
Dado um semigrupo S e a topologia discreta sobre ele, é possível estender a operação ao compactificado de Stone-Cech beta(S) de forma que seja contínua à direita. Diversas propriedades algébricas tais como cancelatividade, comutatividade e ser grupo implicam em propriedades algébrico-topológicas de beta(S). Em particular, o conjunto dos naturais com a soma e/ou o produto é o mais explorado: resultados tais como a existência de 2^c ideais á esquerda minimais e de cadeias decrescentes de idempotentes são mostrados e suas consequências discutidas. / Given a semigroup S and its discrete topology, it is possible to extend its operation to its Stone-Cech compactification beta(S) so that it is right-continuous. Several algebraic properties such as cancellativity, commutativity annd being a group influence topological-algebraic properties of beta(S). Most especially, the set of natural numbers with addition and/or multiplication is explored: results such as the existence of 2^c minimal left ideals or of decreasing chains of idempotents are shown and their consequences analysed.
329

Codificação espaço-temporal

Luiz, Thiago Tambasco [UNESP] 31 August 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-08-31Bitstream added on 2014-06-13T18:07:07Z : No. of bitstreams: 1 luiz_tt_me_rcla.pdf: 1144708 bytes, checksum: 5fd4c73d19e7f479b9df87d1424de1b4 (MD5) / See-Sp / Neste trabalho nós abordamos alguns dos principais aspectos relacionados a codi- cação espaço-temporal e as ferramentas algébricas envolvidas na projeção de códigos baseados em álgebras de divisão cíclica. Apresentaremos também a construção do Código de Ouro ([9], [10]), que é um código espaço-temporal perfeito / In this work we discuss some main aspects related to space-time coding and algebraic tools involved in the design of codes based on cyclic division algebras. We also present the construction of the Golden Code ([9], [10]), which is a perfect space-time code
330

Cubo mágico : propriedades e resoluções envolvendo álgebra e teoria de grupos /

Grimm, Luis Gustavo Hauff Martins. January 2016 (has links)
Orientador: Carina Alves / Banca: Cristiane Alexandra Lázaro / Banca: Agnaldo José Ferrari / Resumo: O cubo mágico é um dos quebra-cabeças mais famosos do mundo, e em geral atrai aatenção de muita gente, em especial a dos matemáticos. O desa o, as formas, simetriase movimentos induzem a ideia de estarmos diante de um objeto matemático. E podemosir além. As ações e movimentos no cubo mágico são elementos que atendem a todasas condições da estrutura de um grupo, assim como também se relacionam com umgrupo de permutações. À luz da Teoria de Grupos e dos Grupos de Permutações,iremos analisar algumas sequências de movimentos como os comutadores e conjugados.Existem vários algoritmos que resolvem o cubo mágico e que são fáceis de serem obtidos,por exemplo, na internet. O objetivo desta dissertação, além de trazer uma propostade resolução, é o de proporcionar um caminho para além da simples memorização deum algoritmo, no sentido de compreendê-lo. Consequentemente, a justi cativa para apossibilidade de se resolver um cubo mágico é de ordem matemática e não empírica / Abstract: The Rubik's Cube is one of the most famous puzzle of the world, and generally attractsthe attention of many people, especially mathematicians. The challenge, shapes,symmetries and movements induce the idea of being in front of a mathematical object.And we can go further. The actions and movements in the magic cube are elementsthat meet all the conditions of the structure of a group, as well as relate to a group ofpermutations. In light of the Group Theory and Permutations groups we will examinesome sequences of movements such as commutators and conjugates. There are severalalgorithms that solve the magic cube and which are easy to obtain, for example, at theInternet. The aim of this dissertation, beyond to show a resolution, is to provide a pathbeyond simple memorization of an algorithm in order to understand it. Consequently,the justi cation for the possibility of solving a Rubik's Cube is math and not empirical / Mestre

Page generated in 0.0785 seconds