• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 14
  • 9
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 113
  • 113
  • 88
  • 38
  • 38
  • 26
  • 26
  • 23
  • 22
  • 19
  • 18
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Portfolio Risk Modelling in Venture Debt / Kreditriskmodellering inom Venture Debt

Eriksson, John, Holmberg, Jacob January 2023 (has links)
This thesis project is an experimental study on how to approach quantitative portfolio credit risk modelling in Venture Debt portfolios. Facing a lack of applicable default data from ArK and publicly available sets, as well as seeking to capture companies that fail to service debt obligations before defaulting per se, we present an approach to risk modeling based on trends in revenue. The main framework revolves around driving a Monte Carlo simulation with Copluas to predict future revenue scenarios across a portfolio of early-stage technology companies. Three models for a random Gaussian walk, a Linear Dynamic System and an Autoregressive Integrated Moving Average (ARIMA) time series are implemented and evaluated in terms of their portfolio Value-at-Risk influence. The model performance confirms that modeling portfolio risk in Venture Debt is challenging, especially due to lack of sufficient data and thus a heavy reliance on assumptions. However, the empirical results for Value-at-Risk and Expected Shortfall are in line with expectations. The evaluated portfolio is still in an early stage with a majority of assets not yet in their repayment period and consequently the spread of potential losses within one year is very tight. It should further be recognized that the scope in terms of explanatory variables for sales and model complexities has been narrowed and simplified for computational benefits, transparency and communicability. The main conclusion drawn is that alternative approaches to model Venture Debt risk is fully possible, and should improve in reliability and accuracy with more data feeding the model. For future research it is recommended to incorporate macroeconomic variables as well as similar company analysis to better capture macro, funding and sector conditions. Furthermore, it is suggested to extend the set of financial and operational explanatory variables for sales through machine learning or neural networks. / Detta examensarbete är en experimentell studie för kvantitativ modellering av kreditrisk i Venture Debt-portföljer. Givet en brist på tillgänlig konkurs-data från ArK samt från offentligt tillgängliga databaser i kombination med ambitionen att inkludera företag som misslyckas med skuldförpliktelser innan konkurs per se, presenterar vi en metod för riskmodellering baserad på trender i intäkter. Ramverket för modellen kretsar kring Monte Carlo-simulering med Copluas för att estimera framtida intäktsscenarier över en portfölj med tillväxtbolag inom tekniksektorn. Tre modeller för en random walk, ett linjärt dynamiskt system och ARIMA- tidsserier implementeras och utvärderas i termer av deras inflytande på portföljens Value-at- Risk. Modellens prestationer bekräftar att modellering av portföljrisk inom Venture Debt är utmanande, särskilt på grund av bristen på tillräckliga data och därmed ett stort beroende av antaganden. Dock är de empiriska resultaten för Value-at-Risk och Expected Shortfall i linje med förväntningarna. Den utvärderade portföljen är fortfarande i ett tidigt skede där en majoritet av tillgångarna fortfarande befinner sig i en amorteringsfri period och följaktligen är spridningen av potentiella förluster inom ett år mycket snäv. Det bör vidare tillkännages att omfattningen i termer av förklarande variabler för intäkter och modellkomplexitet har förenklats för beräkningsfördelar, transparens och kommunicerbarhet. Den främsta slutsatsen som dras är att alternativa metoder för att modellera risker inom Venture Debt är fullt möjliga och bör förbättras i tillförlitlighet och precision när mer data kan matas in i modellen. För framtida arbete rekommenderas det att inkorporera makroekonomiska variabler samt analys av liknande bolag för att bättre fånga makro-, finansierings- och sektorsförhållanden. Vidare föreslås det att utöka uppsättningen av finansiella och operationella förklarande variabler för intäkter genom maskininlärning eller neurala nätverk.
102

Beiträge zur expliziten Fehlerabschätzung im zentralen Grenzwertsatz

Paditz, Ludwig 04 June 2013 (has links) (PDF)
In der Arbeit wird das asymptotische Verhalten von geeignet normierten und zentrierten Summen von Zufallsgrößen untersucht, die entweder unabhängig sind oder im Falle der Abhängigkeit als Martingaldifferenzfolge oder stark multiplikatives System auftreten. Neben der klassischen Summationstheorie werden die Limitierungsverfahren mit einer unendlichen Summationsmatrix oder einer angepaßten Folge von Gewichtsfunktionen betrachtet. Es werden die Methode der charakteristischen Funktionen und besonders die direkte Methode der konjugierten Verteilungsfunktionen weiterentwickelt, um quantitative Aussagen über gleichmäßige und ungleichmäßige Restgliedabschätzungen in zentralen Grenzwertsatz zu beweisen. Die Untersuchungen werden dabei in der Lp-Metrik, 1<p<oo oder p=1 bzw. p=oo, durchgeführt, wobei der Fall p=oo der üblichen sup-Norm entspricht. Darüber hinaus wird im Fall unabhängiger Zufallsgrößen der lokale Grenzwertsatz für Dichten betrachtet. Mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. Die Arbeit wird abgerundet durch verschiedene Hinweise auf praktische Anwendungen. / In the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system. In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions. It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem. The investigations are realized in the Lp metric, 1 <p <oo or p = 1 or p = oo, where in the case p = oo it is the usual sup-norm. In addition, in the case of independent random variables the local limit theorem for densities is considered. By means of electronic data processing new numerical results are obtained. The work is finished by various references to practical applications.
103

Beiträge zur expliziten Fehlerabschätzung im zentralen Grenzwertsatz

Paditz, Ludwig 27 April 1989 (has links)
In der Arbeit wird das asymptotische Verhalten von geeignet normierten und zentrierten Summen von Zufallsgrößen untersucht, die entweder unabhängig sind oder im Falle der Abhängigkeit als Martingaldifferenzfolge oder stark multiplikatives System auftreten. Neben der klassischen Summationstheorie werden die Limitierungsverfahren mit einer unendlichen Summationsmatrix oder einer angepaßten Folge von Gewichtsfunktionen betrachtet. Es werden die Methode der charakteristischen Funktionen und besonders die direkte Methode der konjugierten Verteilungsfunktionen weiterentwickelt, um quantitative Aussagen über gleichmäßige und ungleichmäßige Restgliedabschätzungen in zentralen Grenzwertsatz zu beweisen. Die Untersuchungen werden dabei in der Lp-Metrik, 1<p<oo oder p=1 bzw. p=oo, durchgeführt, wobei der Fall p=oo der üblichen sup-Norm entspricht. Darüber hinaus wird im Fall unabhängiger Zufallsgrößen der lokale Grenzwertsatz für Dichten betrachtet. Mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. Die Arbeit wird abgerundet durch verschiedene Hinweise auf praktische Anwendungen. / In the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system. In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions. It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem. The investigations are realized in the Lp metric, 1 <p <oo or p = 1 or p = oo, where in the case p = oo it is the usual sup-norm. In addition, in the case of independent random variables the local limit theorem for densities is considered. By means of electronic data processing new numerical results are obtained. The work is finished by various references to practical applications.
104

Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten Normalverteilung

Paditz, Ludwig 28 May 2013 (has links) (PDF)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt. Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden. International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert: Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß. Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert. Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten. Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen. Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet. Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend. Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given. Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest. International two main directions have emerged in the theory of limit theorems: Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process. First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution. As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants. Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically. Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time. In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly. The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
105

Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten Normalverteilung

Paditz, Ludwig 25 August 1977 (has links)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt. Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden. International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert: Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß. Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert. Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten. Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen. Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet. Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend. Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given. Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest. International two main directions have emerged in the theory of limit theorems: Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process. First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution. As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants. Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically. Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time. In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly. The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
106

Applications of Generating Functions

Tseng, Chieh-Mei 26 June 2007 (has links)
Generating functions express a sequence as coefficients arising from a power series in variables. They have many applications in combinatorics and probability. In this paper, we will investigate the important properties of four kinds of generating functions in one variables: ordinary generating unction, exponential generating function, probability generating function and moment generating function. Many examples with applications in combinatorics and probability, will be discussed. Finally, some well-known contest problems related to generating functions will be addressed.
107

Quantile Estimation based on the Almost Sure Central Limit Theorem / Schätzung von Quantilen basierend auf dem zentralen Grenzwertsatz in der fast sicheren Version

Thangavelu, Karthinathan 25 January 2006 (has links)
No description available.
108

Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire / Estimate the mean electricity consumption curve by survey and take auxiliary information into account

Lardin, Pauline 26 November 2012 (has links)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données / In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the auxiliary information at the sampling stage, considering πps (unequal probability) sampling designs and the functional Horvitz-Thompson estimator. Under conditions on the entropy of the sampling design the covariance function of the Horvitz-Thompson estimator can be estimated with the Hájek approximation extended to the functional framework. For each method, we show, under weak hypotheses on the sampling design and the regularity of the trajectories, some asymptotic properties of the estimator of the mean curve and of its covariance function. We also establish a functional central limit theorem.Next, we compare two methods that can be used to build confidence bands. The first one is based on simulations of Gaussian processes and is assessed rigorously. The second one uses bootstrap techniques in a finite population framework which have been adapted to take into account the functional nature of the data
109

Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)

Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06). Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente. Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben. Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n. Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06). Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente. Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben. Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n. Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1 7. Beweise zum Abschnitt 6 S. 2 8. Diskussion der Ergebnisse S. 6 Literatur S. 10 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06). Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments. Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references. Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n. Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1 7. Beweise zum Abschnitt 6 S. 2 8. Diskussion der Ergebnisse S. 6 Literatur S. 10
110

Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)

Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06). Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente. Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben. Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n. Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:1. Einführung S. 2 2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3 3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6 4. Beweis zum Abschnitt 2 S. 8 5. Beweise zum Abschnitt 3 S. 13 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06). Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments. Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references. Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n. Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:1. Einführung S. 2 2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3 3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6 4. Beweis zum Abschnitt 2 S. 8 5. Beweise zum Abschnitt 3 S. 13

Page generated in 0.0603 seconds