• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 19
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 27
  • 26
  • 23
  • 21
  • 20
  • 19
  • 18
  • 16
  • 16
  • 16
  • 16
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Étude DFT+U des phases structurales du La2CuO4

Delaval-Lebel, Merlin 08 1900 (has links)
Ce mémoire traite des propriétés du La2CuO4 dopé en trous, le premier supraconducteur à haute température critique ayant été découvert. Les différentes phases électroniques du cristal y seront présentées, ainsi que le diagramme de phases en dopage de ce matériau. Les trois structures dans lesquelles on peut retrouver ce cristal seront décrites en détail, et leurs liens présumés avec les phases électroniques seront présentés. Il s’en suivra une étude utilisant la théorie de la fonctionnelle de la densité combinée au modèle de Hubbard (DFT+U) des différentes phases structurales, en plus des phases antiferromagnétiques et paramagnétiques. L’effet de la corrélation électronique sur la structure cristalline sera également étudié par l’intermédiaire du paramètre de Hubbard. Le but sera de vérifier si la DFT+U reproduit bien le diagramme de phases expérimentales, et sous quelles conditions. Une étude des effets de l’inclinaison des octaèdres d’oxygène sur la structure électronique sera également présentée. / Presented here is a study on the hole doped La2CuO4, the first discovered high-­‐Tc superconductor of the cuprate family. The different electronic phases of this crystal are briefly reviewed. The three crystal structures present in this material are described, and the link between those phases and the electronic structure are discussed. The relationship of those structural phases with the magnetic phases is investigated with the help of calculations based on the density functional theory where an additional Hubbard term has been added (DFT+U). With the help of the Hubbard parameter, the effect of the electronic correlation’s strength on the structural parameters of the crystal is also studied. The idea here is to verify how well the DFT+U is able to reproduce the experimental phase diagram of this material. The effect of the tilting of the oxygen octahedras on the electronic structure is also addressed.
122

Magnetische Grenzflächeneffekte in Doppellagen aus V2O3 und den ferromagnetisch geordneten Übergangsmetallen / Magnetic properties of bilayers consisting of V2O3 and magnetically ordered transition metals

Sass, Björn 24 September 2004 (has links)
No description available.
123

Interplay of magnetic, orthorhombic, and superconducting phase transitions in iron-based superconductors

Schmiedt, Jacob 29 October 2014 (has links) (PDF)
The physics of iron pnictides has been the subject of intense research for half a decade since the discovery of superconductivity in doped LaFeAsO in 2008. By now there exists a large number of different materials that are summarized under the term "pnictides'' with significant differences in their crystal structure, electronic properties, and their phase diagrams. This thesis is concerned with the investigation of the various phase transitions that are observed in the underdoped compounds of the pnictide subgroups RFeAsO, where R is a rare-earth element, and AFe_2As_2, where A is an alkaline-earth element. These compounds display two closely bound transitions from a tetragonal to an orthorhombic phase and from a paramagnetic to an antiferromagnetic metal. Both symmetry-broken phases are suppressed by doping or pressure and close to their disappearance superconductivity sets in. The superconducting state is stabilized until some optimal doping or pressure is reached and gets suppressed thereafter. The central goal of this thesis is to improve our understanding of the interplay between these three phases and to describe the various phase transitions. We start from an itinerant picture that explains the magnetism as a result of an excitonic instability and show how the other phases can be included into this picture. This approach is based on the the observation that the compounds we are interested in have a Fermi surface with multiple nested electron and hole pockets and that they have small to intermediate interaction strengths. The thesis starts with a study of the doping dependence of the antiferromagnetic phase transition in four different five-orbital models. We use the random-phase approximation to determine the transition temperature, the dominant ordering vector, and the contribution of the different orbitals to the ordering. This allows us to identify the more realistic models, which give results that are in good agreement with experimental observations. In addition to the frequently made assumption of orbital-independent interaction potentials we study the effect of a reduction of the interaction strengths that involve the d_{xy} orbital. We find that this tunes the system between two different nesting instabilities. A reduction of the interactions that involve the d_{xy} orbital also enhances the tendency towards incommensurate (IC) order. For a weak reduction this tendency is compensated by the presence of the orthorhombic phase. However, for a reduction of 30%, as it is suggested by constrained random-phase-approximation calculations, we always find large doping ranges, where a state with IC order has the highest transition temperature. We continue the investigation of the magnetic phase transition by studying the competition of different possible types of antiferromagnetic order that arises from the presence of two degenerate nesting instabilities with the ordering vectors (pi,0) and (0,pi). We derive a Ginzburg-Landau free energy from a microscopic two-band model and find that the presence of the experimentally observed stripe phase strongly depends on the number and size of the hole pockets in the system and on the doping. We show that within the picture of a purely magnetically driven nematic phase transition, which breaks the C_4 symmetry and induces the orthorhombic distortion, the nematic phase displays exactly the same dependence on the model parameters as the magnetic stripe phase. We propose that in addition to the purely magnetically driven nematic instability there is a ferro-orbital instability in the system that stabilizes the nematic transition and, thus, explains the experimentally observed robustness of the orthorhombic transition. We argue that including a ferro-orbital instability into the picture may also be necessary to reproduce the transition from simultaneous first-order transitions into an orthorhombic antiferromagnetic state to two separate second-order transitions, which is observed as a function of doping. Finally, a study of the superconducting phase transition inside the antiferromagnetic phase that is observed in some pnictide compounds is presented. We present an approach to calculate the fluctuation-mediated pairing interaction in the spin-density-wave phase of a multiband system, which is based on the random-phase approximation. This approach is applied to a minimal two-band model for the pnictides to study the effect of the various symmetry-allowed bare on-site interactions on the gap symmetry and structure. We find a competition between various even- and odd-parity states and over a limited parameter range a p_x-wave state is the dominant instability. The largest part of the parameter space is dominated by even parity states but the gap structure sensitively depends on the bare interactions. We propose that the experimentally observed transition from a nodeless to a nodal gap can be due to changes in the on-site interaction potentials.
124

Electric, Magnetic and Magnetocaloric Studies of Magnetoelectric GdMnO3 and Gd0.5Sr0.5MnO3 Single Crystals

Wagh, Aditya A January 2014 (has links) (PDF)
After the prediction of magnetoelectric effect in Cr2O3, in early 1960's, D. Asrov became the first to experimentally verify this phenomenon. After the pioneering work on magnetoelectric materials in 1960's and 1970's, the discovery of large magnetoelectric effect in orthorhombic rare-earth manganite TbMnO3 has revived great interest in magnetoelectric materials, especially during the last decade. Magnetoelectric multiferroics have great potential in applications such as novel memory storage devices and sensors. As a result of extensive theoretical and experimental investigations conducted on rare-earth magnetoelectric manganites, TbMnO3 has become a prototype magnetoelectric multiferroic material. Orthorhombic rare-earth manganites RMnO3 (R = Gd, Tb and Dy) exhibit improper ferroelectricity where the origin of ferroelectricity is purely magnetic in nature. RMnO3 exhibit diverse and complex magnetic interactions and phases. Doped manganites of the type R1-xAxMnO3 (A = Ca, Sr and Ba) present a rich magnetic and electronic phase diagram. The doping concentration, average ion-size and size mismatch (i.e. disor-der) at A-site, all contribute to determine the ground state. A variety of magnetic phases, competing with each other, are responsible for many functional properties like magnetoelectric effect, colossal magnetoresistance (CMR), magnetostriction and magnetocaloric effect (MCE). In this context, studies of magnetoelectric materials are of great relevance from technical as well as fundamental aspects. Notably, complexity of electronic (and magnetic) phases and experimental difficulties in acquiring reliable measurement-data easily are the most concerning issues in establishing a clear understanding of magnetoelectric materials. In the magnetic phase diagram of RMnO3, GdMnO3 lies on the border between A-type antiferromagnetic and cycloidal antiferromagnetic ground states. Cycloidal spin arrangement is responsible for the induction of ferroelectricity in these materials. There are disparate opinions about the ground state of GdMnO3 (whether the ground state is ferroelectric or not). Understanding of the influence of rare-earth magnetic sublattice on magnetism in GdMnO3 (at low temperature) lacks clarity till date. Neutron scattering studies on GdMnO3 due to high absorption cross-section of Gd ion, yield little success in determining the nature of complex magnetic phases in this material. Interestingly, an earlier report on strontium-substituted gadolinium manganite Gd0.5Sr0.5MnO3 demonstrated the spontaneous electric polarization and related magnetoelectric effect. It was hypothesized that the observed ferroelectricity could be improper and electronic in nature. Strontium doping facilitates quenched disorder that leads to interesting magnetic phases and phase transitions. In order to understand the physical properties of gadolinium manganites and to unravel the relationship between them, it is essential to investigate high quality single crystals of these materials. This thesis deals with growth and investigation of several important physical phenomena of gadolinium manganites such as magnetic, electric, magnetoelectric and magnetocaloric properties. The thesis is organized in seven chapters. A brief summary of each chapter follows: Chapter:1 This chapter provides general introduction to magnetoelectric effect and multiferroicity. The term multiferroicity refers to simultaneous existence of magnetic and electric ordering in a single phase material. Magnetoelectric multiferroics have shown great potential for several applications. They exhibit cross coupling between the electronic and magnetic order parameters, hence basics of various magnetic interactions (and magnetism) are brie y discussed in the rst section of the chapter. It is followed by a brief discussion about the principle of magnetoelectric effect. Magnetoelctric coupling is broadly classified into two types namely, direct coupling and indirect coupling. In the former, the emphasis is given on linear magnetoelectric effect. The concept of multiferroicity is introduced in the next section followed by a brief overview and application potential of multiferroics. Further, classi cation scheme of multiferroic materials is discussed. The concept of improper ferroelectricity and description of subcategories namely, magnetic ferroelectric, geometric ferroelectric and electronic ferroelectric are documented. Magnetic ferroelectric category is considered the most relevant; featuring the type of ferroelectric material as GdMnO3 referred in this thesis. The microscopic theory for mechanism of ferroelectricity in spiral antiferromagnets is presented. While brie ng the thermodynamic background of the magnetocaloric effect, indirect estimation of two important characteristics namely, isothermal magnetic entropy change (∆SM ) and adiabatic change in temperature (∆Tad) under the application of magnetic field are dealt with. In the last part of the chapter, motivation and scope of the thesis is discussed. Chapter:2 This chapter outlines various experimental methodologies adopted in this work. It describes the basic principles of various experimental techniques and related experimental apparatuses used. The chapter starts with the synthesis tech-niques used in the preparation of different compounds studied. The principle of oat-zone method, employed for single-crystal growth, is described. Orientation of single crystals was determined using a home-built back- reflection Laue set up. The basics of Laue reflection and indexing procedure for recorded Laue photographs are described. Various physical properties (electric, magnetic, thermal, magnetoelectric and magnetocaloric properties) were studied using commercial as well as home-built experimental apparatuses. Design and working principle of all the experimental tools are outlined in this chapter. Fabrication details, interfacing of measurement instruments and calibration (standardization) of equipment used in this work are described in appropriate sections. Chapter:3 Chapter-3 describes the investigation of various physical properties of high quality single crystals of magnetoelectric multiferroics, GdMnO3. Synthesis of GdMnO3 is carried out using solid state synthesis route. Single phase nature of the material is confirmed by X-ray powder diffraction technique. Single crystals of GdMnO3 are grown in argon ambience using oat-zone method. As grown crystals are oriented with the help of back-reflection Laue method. GdMnO3 exhibits incommensurate collinear antiferromagnetic phase below 42 K and transforms to canted A-type antiferromagnetic phase below 23 K. Magnetic and specific heat studies have revealed very sharp features near the magnetic transitions which also confirm the high quality of the single crystal. dc magnetization studies illustrate the anisotropic behavior in canted A-type antiferromagnetic phase and clarifies the influence of rare-earth magnetic sub-lattice on overall magnetism (at low temperature). Application of magnetic field (above 10 kOe) along `b' axis helps formation of the cycloidal antiferromagnetic phase. Here, spontaneous electric polarization is induced along `a' axis. The temperature variation plot of dielectric constant, ϵa (under ap- plied magnetic field along `b' axis) shows sharp anomalies in the vicinity of magnetic ordering transitions suggesting magnetodielectric effects. Magnetic field tuning of electric polarization establish the magnetoelectric nature of GdMnO3. Magnetocaloric properties of single crystals of GdMnO3 are investigated using magnetic and magnetothermal measurements. The magnitude of the giant magnetocaloric effect observed is compared with that of other rare-earth manganite multiferroics. Magnetocaloric studies shed light on magnetic ordering of rare-earth ion Gd3+. The phenomenon of inverse magnetocaloric effect observed at low temperature and under low fields is possibly linked to the ordering of Gd3+ spins. Complex interactions between the 3d and 4f magnetic sublattices are believed to influence magnetocaloric properties. Chapter:4 The details of synthesis and single crystal growth of Gd0.5Sr0.5MnO3 using oat-zone method are presented in Chapter 4. Single phase nature of the material is veri ed by carrying out powder x-ray diffraction analysis and confirmation of single crystallinity and orientation through back-reflection Laue method. Electric transport studies reveal semiconductor-like nature of Gd0.5Sr0.5MnO3 until the lowest temperature achieved. This is due to charge localization process which occurs concurrently with decrease in temperature. Gd0.5Sr0.5MnO3 exhibits charge-ordered insulator (COI) phase below 90 K (ac-cording to an earlier report). It is found that under application of magnetic field above a critical value, charge ordering melts and the phase transforms to ferromagnetic metallic (FMM) phase. This transformation is first-order in nature with associated CMR (109%). The first-order phase transition (FOPT) occurs between competing COI and FMM phases and manifests as hysteresis across the FOPT. Strontium doping at A-site induces a large size mismatch at A-site resulting in high quenched disorder in Gd0.5Sr0.5MnO3. The disorder plays a significant role in CMR as well as glass-like dynamics within the low-temperature magnetic phase. ac susceptibility studies and dynamic scaling analysis reveal very slow dynamics inside the low-temperature magnetic phase (below 32 K). According to an earlier report, spontaneous electric polarization and magnetoelectric effect were pronounced near FOPT (at 4.5 K and 100 kOe) between COI and FMM phases. It is prudent to investigate FOPT across COI and FMM phases in Gd0.5Sr0.5MnO3 to understand complex magnetic phases present. Thermodynamic limits of the FOPT (in magnetic field - temperature (H-T) plane), such as supercooling and superheating, are experimentally determined from magnetization and magnetotransport measurements. Interestingly, thermomagnetic anomalies such as open hysteresis loops are observed while traversing the FOPT isothermally or isomagnetically in the H-T plane. These anomalies point towards incomplete phase transformation while crossing the FOPT. Phenomenological model of kinetic arrest is invoked to understand these anomalies. The model put for-ward the idea that while cooling across the FOPT, extraction of specific heat is easier than that of latent heat. In other words, phase transformation across FOPT is thermodynamically allowed but kinetics becomes very slow and phase transformation does not occur at the conventional experimental time scale. Magnetization relaxation measurements (at 89 kOe) with field-cooled magnetization protocol reveal that the relaxation time constant rst decreases with temperature and later, increases non-monotonically below 30 K. This qualita-tive behavior indicates glass-like arrest of the FOPT. Further, thermal cycling studies of zero field-cooled (ZFC) and eld-cooled (FC) magnetization indicate that a low temperature phase prepared with ZFC and FC protocols (at 89 kOe) is not at equilibrium. This confirms the kinetic arrest of FOPT and formation of magnetic phase similar to glass. Chapter:5 Chapter-5 deals with the investigation of the effect of an electric field on charge ordered phase in Gd0.5Sr0.5MnO3 single crystals. As discussed in the previous chapter, application of magnetic field above a critical value collapses the charge ordered phase which transforms to FMM phase. In this view, it is interesting to investigate effect of electric field on the charge ordering. There are various reports on doped manganites such as Pr1-xCaxMnO3 (x = 0:3 to 0:4) that claim melting of charge ordering under application of electric field (or current) above a critical value. In this thesis work, current - voltage (I - V) characteristics of Gd0.5Sr0.5MnO3 are studied at various constant temperatures. Preliminary measurements show that the I-V characteristics are highly non-linear and are accompanied by the onset of negative differential resistance (NDR) above a critical current value. However, we suspect a major contribution of Joule heating in realization of the NDR. Continual I - V loop measurements for five loops revealed thermal drag and that the onset of NDR shifts systematically towards high current values until it disappeared in the current window. Two strategies were employed to investigate the role of Joule heating in realization of NDR: 1) monitoring the sample surface temperature during electric transport measurement and 2) reducing of the Joule heating in a controlled manner by using pulsed current I - V measuremenets. By tuning the duty cycle of the current pulses (or in other words, by controlling the Joule heating in the sample), it was feasible to shift the onset of NDR to any desired value of the current. At low magnitude of the duty cycle in the current range upto 40 mA, the NDR phenomenon did not occur. These experiments concluded that the NDR in Gd0.5Sr0.5MnO3 is a consequence of the Joule heating. Chapter:6 `Chapter-6 deals with the thermal and magnetocaloric properties of Gd0.5Sr0.5MnO3 oriented single crystals. Magnetocaloric properties of Gd0.5Sr0.5MnO3 have been studied using magnetic and magnetothermal measurements. Tempera-ture variation of ∆SM is estimated for magnetic field change of 0 - 70 kOe. The eld 70 kOe is well below the critical magnetic eld required for FOPT between COI and FMM phases. Magnetzation - field (M-H) loop shows minimal hysteresis for measurements up to 70 kOe. The minimal hysteresis behavior al-lows one to make fairly accurate estimation of magnetocaloric properties. ∆Tad was separately estimated from specific heat measurements at different magnetic fields. Specific heat studies show the presence of Schottky-like anomaly at low temperature. Chapter:7 Finally, Chapter-7 summarizes various experimental results, analyses and conclusions. A broad outlook of the work in general with future scope of research in this area are outlined in this chapter.
125

Vliv prostorového omezení na vlastnosti metamagnetických nanostruktur / Spatial confinement effects in metamagnetic nanostructures

Jaskowiec, Jiří January 2019 (has links)
Silné prostorové omezení materiálů způsobuje jejich nové vlastnosti, které mohou najit uplatnění v mnoha vědeckých i technických odvětvích. Snaha zmenšit velikosti součástek, zvětšit hustotu zápisu a zefektivnit procesy je současným trendem elektronického průmyslu. V této práci je studován vliv prostorového omezení na vlastnosti metamagnetického železo-rhodia (FeRh) během fázové přeměny. FeRh je materiál vykazující fázovou přeměnu prvního druhu mezi antiferomagnetickou a feromagnetickou fází. Metodou mikroskopie magnetických sil v magnetickém poli kolmém na rovinu vzorku je zobrazeni a analyzována struktura fázových domén behem fázové přeměny. Kvantitativní analýza naměřených dat je provedena užitím výškové korelační funkce a její výsledky jsou porovnány pro různé velikosti struktur a tloušťky tenkých vrstev.
126

Superconductivity in two-dimensions from the Hubbard model to the Su-Schrieffer-Heeger model

Roy, Dipayan 06 August 2021 (has links)
We study unconventional superconductivity in two-dimensional systems. Unbiased numerical calculations within two-dimensional Hubbard models have found no evidence for long-range superconducting order. Most of the two-dimensional theories suggest that the superconducting state can be obtained by destabilizing an antiferromagnetic or spin-liquid insulating state. An antiferromagnet is a half-filled system because each site has one electron or hole. However, in anisotropic triangular lattices, numerical calculation finds pairing enhancement at quarter-filling but no long-range superconducting order. Many organic superconductors are dimerized in nature. Such a dimer lattice is effectively half-filled because each dimer has one electron or hole. Some theories suggest that magnetic fluctuation in such a system can give superconductivity. However, at zero temperature, we performed density matrix renormalization group (DMRG) calculations in such a system, and we find no superconducting long-range order. We also find that the antiferromagnetic order is not necessary to get a superconducting state. Failure in explaining superconductivity in two-dimensional systems suggests that only repulsive interactions between electrons are not sufficient, and other interactions are required. The most likely candidate is the electron-phonon interaction. However, existing theories of superconductivity emphasize either electron-electron or electron-phonon interactions, each of which tends to cancel the effect of the other. We present direct evidence from quantum Monte Carlo calculations of cooperative, as opposed to competing, effects of electron-electron and electron-phonon interactions within the frustrated Hubbard Hamiltonian, uniquely at the band-filling of one-quarter. Bond-coupled phonons and the onsite Hubbard U cooperatively reinforce d-wave superconducting pair-pair correlations at this filling while competing with one another at all other densities. Our work further gives new insight into how intertwined charge-order and superconductivity appear in real materials.
127

Étude du champ magnétique interne de deux matériaux magnétiques et d'un supraconducteur sans symétrie d'inversion

Desilets-Benoit, Alexandre 08 1900 (has links)
Cette thèse est divisée en trois parties. Une première section présente les résultats de l'étude de la formation de polarons magnétiques liés (BMP) dans le ferroaimant EuB6 par diffusion de neutrons à petits angles (SANS). La nature magnétique du système ferromagnétique est observée sous une température critique de 15K. La signature des BMP n'apparaît pas dans la diffusion de neutrons, mais ces mesures permettent de confirmer une limite inférieure de 100\AA à la longueur de cohérence des BMP (xi_{Lower}). Dans un second temps, l'étude du LaRhSi3, un supraconducteur sans symétrie d'inversion, par muSR et ZF-muSR nous permet de sonder le comportement magnétique du système dans la phase supraconductrice. Aucun champ magnétique interne n'a été détecté en ZF-muSR sous la température critique (T_c = 2.2K). Cela indique que la phase supraconductrice ne porte pas de moment cinétique intrinsèque. L'analyse du spectre d'asymétrie sous l'application d'un champ magnétique externe nous apprend que le système est faiblement type II par l'apparition de la signature de domaines magnétiques typique d'un réseau de vortex entre H_{c1}(0) et H_{c2}(0), respectivement de 80+/- 5 et 169.0 +/- 0.5 G. Finalement, la troisième section porte sur l'étude du champ magnétique interne dans l'antiferroaimant organique NIT-2Py. L'observation d'une dépendance en température des champs magnétiques internes aux sites d'implantation muonique par ZF-muSR confirme la présence d'une interaction à longue portée entre les moments cinétiques moléculaires. Ces valeurs de champs internes, comparées aux calculs basés sur la densité de spins obtenue par calculs de la théorie de la fonctionnelle de la densité, indiquent que la moitié des molécules se dimérisent et ne contribuent pas à l'ordre antiferromagnétique. La fraction des molécules contribuant à l'ordre antiferromagnétique sous la température critique (T_c = 1.33 +/- 0.01K) forme des chaines uniformément polarisées selon l'axe (1 0 -2). Ces chaines interagissent antiferromagnétiquement entre elles le long de l'axe (0 1 0) et ferromagnétiquement entre les plan [-1 0 2]. / This thesis is divided in three sections. The first section presents the results from a small angle neutron scattering (SANS) investigation of the formation of bound magnetic polarons in the ferromagnet EuB6. While the magnetic nature of the system was observed below 15K, we could not resolve the q dependent signature of the polarons, thus putting a lower limit of 100\AA to the coherence length of the phenomenon (xi_{Lower}). Secondly, we investigated the non-centrosymmetric superconductor LaRhSi3 by muSR. The absence of an internal field below T_c = 2.2 K in ZF-muSR, indicates that the superconducting wave function does not carry an intrinsic magnetic moment. The asymmetry spectrum taken under external magnetic field shows the magnetic signature associated with vortices between H_{c1}(0) and H_{c2}(0), respectively 80 +/- 5 and 169.0 +/- 0.5 G, suggesting the system is weakly type-II. Finally, the third section presents the zero field muSR study of internal magnetic fields in the organic antiferromagnet NIT-2Py. The temperature dependent oscillating signal in the ZF-muSR spectrum confirms the presence of a long-range magnetic interaction between the molecules. By comparing the measured internal magnetic fields to calculated values based on density fonctional theory calculations, we confirm that half the molecules dimerizes while the other half forms the antiferromagnetic order under the critical temperature (T_c = 1.33 +/- 0.01K). In this antiferromagnetic order, the moments on the magnetic molecules are uniformly aligned along the (1 0 -2) axis. They interact antiferromagnetically along the (0 1 0) axis and ferromagnetically between the [-1 0 2] planes.
128

Theoretical investigation of size effects in multiferroic nanoparticles

Allen, Marc Alexander 05 August 2020 (has links)
Over the last two decades, great progress has been made in the understanding of multiferroic materials, ones where multiple long-range orders simultaneously exist. However, much of the research has focused on bulk systems. If these materials are to be incorporated into devices, they would not be in bulk form, but would be miniaturized, such as in nanoparticle form. Accordingly, a better understanding of multiferroic nanoparticles is necessary. This manuscript examines the multiferroic phase diagram of multiferroic nanoparticles related to system size and surface-induced magnetic anisotropy. There is a particular focus on bismuth ferrite, the room-temperature antiferromagnetic-ferroelectric multiferroic. Theoretical results will be presented which show that at certain sizes, a bistability develops in the cycloidal wavevector. This implies bistability in the ferroelectric and magnetic moments of the nanoparticles. This novel magnetoelectric bistability may be of use in the creation of an electrically-written, magnetically-read memory element. / Graduate
129

Nouveaux états quantiques de spin induits par frustration magnétique sur le réseau kagome / New quantum spin states induced by magnetic frustration on the kagome lattice

Kermarrec, Edwin 05 December 2012 (has links)
La déstabilisation de l’ordre antiferromagnétique de Néel au profit de nouvelles phases quantiques à température nulle à deux dimensions est envisageable grâce au phénomène de frustration magnétique. Le modèle théorique de spins Heisenberg S=1/2 répartis sur le réseau bidimensionnel frustré kagome, constitué de triangles joints uniquement par leurs sommets, est susceptible de stabiliser des phases quantiques originales de liquides de spin, qui ne présentent aucune brisure de symétrie à T = 0. Cette thèse a été consacrée à l’étude expérimentale de deux types de composés de spins S=1/2 (Cu2+) à géométrie kagome à l’aide de techniques spectroscopiques locales, la RMN et la μSR, ainsi que de mesures thermodynamiques (susceptibilité magnétique, chaleur spécifique). Dans Mg-herbertsmithite, la frustration est générée par une interaction d’échange premiers voisins antiferromagnétique J et est responsable d’un comportement liquide de spin jusqu’à des températures de l’ordre de J/10000. Par rapport au composé isostructural antérieur, Zn-herbertsmithite, nous avons montré qu’il possédait des propriétés physiques similaires tout en permettant une caractérisation fine du taux de défauts de substitutions Cu/Mg. Nos expériences réalisées à partir d’échantillons contrôlés permettent d’étudier finement l’origine des plateaux de relaxation observés en μSR à basse température en lien avec l’existence des défauts de spins interplans. La kapellasite et l’haydéite possèdent des interactions ferromagnétiques (J1) et antiferromagnétiques (Jd), offrant la possibilité d’explorer le diagramme de phases générées par la compétition de ces interactions sur le réseau kagome. Pour la kapellasite, nos mesures de μSR démontrent le caractère liquide de spin jusqu’à T ≈ J1/1000. La dépendance en température de la susceptibilité magnétique sondée par RMN du 35Cl ainsi que de la chaleur spécifique permettent d’évaluer le rapport Jd/J1 = 0.85, qui localise classiquement son fondamental au sein d’une phase originale de spins non coplanaires à 12 sous-réseaux appelée cuboc2. Les interactions présentes dans l’haydéite localisent son fondamental au sein de la phase ferromagnétique, en bon accord avec nos mesures qui indiquent une transition partielle à caractère ferromagnétique à T = 4 K. Cette étude confirme la pertinence du réseau kagome frustré pour la stabilisation de phases quantiques originales et démontre l’existence d’une nouvelle phase liquide de spin sur ce réseau, distincte de celle attendue pour des spins couplés antiferromagnétiquement. / Magnetic frustration helps destabilizing conventional Néel order at T = 0 in dimensions 2, and therefore allows the emergence of new original quantum phases. The S=1/2 Heisenberg Hamiltonian on the highly frustrated kagome lattice, which is made of corner-sharing triangles, is expected to stabilize such quantum states, including the spin liquid ones which do not break any symmetry even at T = 0. This thesis work focuses on the experimental study of two kinds of S=1/2 (Cu2+) kagome compounds using NMR and μSR local probes as well as thermodynamic measurements (magnetic susceptibility, specific heat).In Mg-herbertsmithite magnetic frustration occurs thanks to a first nearest-neighbor antiferromagnetic interaction J and is responsible for the spin liquid behavior observed down to T = J/10000. In comparison with the formerly known isostructural counterpart Zn-herbertsmithite, we showed that it shares similar physical magnetic properties while allowing sensitive structural refinements and therefore a control of the level of Cu/Mg substitutions defects. Our experiments performed on such well controlled materials allow us to investigate the origin of the dynamical relaxation in these compounds in relation with the existence of interplane spins defects. Kapellasite and haydeite possess both ferromagnetic (J1) and antiferromagnetic (Jd) interactions. They offer the possibility to explore the phase diagram generated by such competing interactions on the kagome lattice. For kapellasite, our μSR experiments evidenced a spin liquid character down to T ≈ J1/1000. We tracked the temperature dependence of the magnetic susceptibility probed by 35Cl-NMR as well as of the specific heat, from which the ratio Jd/J1 = 0.85 can be evaluated. This ratio locates the ground-state of kapellasite to be within an original non-coplanar spin phase described by 12 magnetic sublattices and called cuboc2. Magnetic exchanges in haydeite locate its ground-state within the ferromagnetic phase. Both our local and thermodynamic measurements point to a partial ferromagnetic transition at T = 4 K. This study confirms the relevance of the frustrated quantum kagome lattice to stabilize original quantum phases and suggests the existence of a new spin liquid phase, distinct from the one expected for antiferromagnetically coupled spins.
130

Diagramme de phase et corrélations électroniques dans les supraconducteurs à base de Fer : une étude par RMN / NMR study of phase diagram and electronic correlations in Iron based superconductors

Texier, Yoan 09 July 2013 (has links)
La découverte en 2008 de supraconductivité à relativement haute température (Tc,max = 56K) dans les pnictures de Fer a ravivé les questions fondamentales sur l’origine et la nature de la supraconductivité posés par les supraconducteurs non conventionnels. En particulier, la présence d’une phase antiferromagnétique à proximité de celle supraconductrice dans leur diagramme de phase pose la question du lien entre magnétisme et supraconductivité. Ces supraconducteurs à base de Fe présentent un diagramme de phase générique, mais quelques exceptions remettent en question une description qui se voudrait universelle. Nous avons choisi d’étudier ces cas particuliers grâce à une sonde locale, la résonance magnétique nucléaire (RMN). Nos observations nous ont non seulement permis de comprendre la raison de ces exceptions, mais aussi de s’en servir pour mieux sonder les corrélations magnétiques dans ces matériaux, un ingrédient clé pour la compréhension de la supraconductivité. Premier sujet, la coexistence de supraconductivité et de magnétisme : celle-ci a été observée dans la plupart des supraconducteurs à base de Fer de façon homogène ou inhomogène, mais toujours pour des états magnétiques à faible TN et faibles moments en accord avec des descriptions itinérantes à faibles corrélations. Pourtant un nouveau composé au Sélénium est venu remettre en cause ces conclusions en présentant une apparente coexistence homogène entre une forte supraconductivité macroscopique (Tc ≈ 30K) et un très fort antiferromagnétisme (TN ≈ 600K, moments magnétiques de valeur élevée de 3.3µB). Cette observation suggère donc une description ici plutôt en terme d’isolants de Mott contrairement aux autres supraconducteurs à base de Fer. Nos mesures RMN permettent de montrer en fait l’existence d’une séparation de phase et de statuer sur la stœchiométrie et les propriétés électroniques des différentes phases, pour finalement réconcilier ce composé et les autres familles. Deuxième exception : dans la famille archétype BaFe₂As₂, tous les dopages sur site Fer ou Arsenic ou même l’application de pression mènent à la supraconductivité, sauf dans le cas du dopage au Manganèse ou au Chrome en site Fer, qui ne provoquent pas l’apparition de la supraconductivité. Nos mesures RMN nous ont permis de sonder la nature de la transition magnétique, mais aussi l’état métallique de ces composés substitués. Nous montrons en particulier que le trou supplémentaire du Manganèse substitué à la place du Fer reste en fait localisé sur son site et se manifeste alors par un moment magnétique localisé. Cette étude du dopage par le Manganèse ouvre la voie à l’idée d’utiliser le Manganèse en faible concentration comme source de moments localisés qui polarisent magnétiquement leur environnement. Cette polarisation permet en effet de caractériser la nature même des corrélations de spin. Nous avons donc utilisé la RMN ainsi que la magnétométrie-SQUID pour mesurer cette polarisation dans des composés supraconducteurs pour sonder les corrélations de spins de ces systèmes. Nous concluons que ces corrélations sont plutôt faibles et indépendantes de la température dans les composés dopés en électrons. / The discovery in 2008 of superconductivity at a rather high temperature in the iron pnictides (Tc,max = 56K) has revived the fundamental questions about the existence and the nature of the superconducting phase raised by the unconventional superconductors. In particular, the existence of an antiferromagnetic phase that is in vicinity of the superconducting phase in the phase diagram raises questions about the link between magnetism and superconductivity. These Iron based superconductors have a generic phase diagram, but some exceptions are questioning a description that would be universal. We chose to study these cases through a local probe, nuclear magnetic resonance (NMR). Our observations have not only allowed us to understand the reasons for these exceptions, but also be used to better probe the magnetic correlations in these materials, a key ingredient for the understanding of superconductivity. First subject, the coexistence of superconductivity and magnetism: it was observed in most superconductors based on iron homogeneously or inhomogeneously, but always for magnetic states at low TN and low magnetic moments in accordance with nesting descriptions with low correlations. Yet a new compound Selenium came to question these conclusions with an apparent homogeneous coexistence between a strong macroscopic superconductivity (Tc ≈ 30K) and a very strong antiferromagnetism (TN ≈ 600K, magnetic moments of high value of 3.3μB). This observation suggests a description rather in terms of Mott insulators, unlike other iron-based superconductors. Our NMR measurements show the existence of an effective phase separation and determine the stoichiometry and the electronic properties of the different phases, eventually reconciling this compound and other families. Second exception : in the archetype family BaFe₂As₂, all iron or arsenic on-site doping or even application of pressure leads to superconductivity, except in the case of Chrome or Manganese doping in Iron site, which does not cause the onset of superconductivity. Our NMR measurements have allowed us to probe the nature of the magnetic transition, but also the metallic state of the substituted compounds. We show in particular that the extra hole Manganese substituted in place of the iron is actually located on its atom and then manifested by a localized magnetic moment. This study of Manganese doping opens up the idea of using Manganese in low concentrations as a source of localized moments which magnetically polarize their environment. This polarization makes it possible to characterize the nature of the spin correlations. We used NMR and SQUID magnetometry, to measure the polarization in superconducting compounds to probe the spin correlations of these systems. We conclude that these correlations are rather low and independent of temperature in electrons doped compounds.

Page generated in 0.0743 seconds