• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 515
  • 182
  • 39
  • 26
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 762
  • 377
  • 118
  • 117
  • 105
  • 101
  • 92
  • 91
  • 85
  • 73
  • 70
  • 64
  • 63
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Les "Bone Morphogenetic Proteins" et le cancer du sein /

Pouliot, Frédéric. January 2004 (has links)
Thèse (Ph. D.)--Université Laval, 2004. / Bibliogr.: f. 193-217. Publié aussi en version électronique.
322

La structure et la fonction de la polymérase d'orthobunyavirus La Crosse / Structure and function of the La Crosse orthobunyavirus polymerase

Gerlach, Piotr 29 June 2015 (has links)
Les virus ne sont rien de plus que des particules composées de lipides et/ou de protéines qui encapsulent de l'information génétique composée d'ARN ou d'ADN. Au cours du cycle viral, les virus entrent dans la cellule hôte où ils dupliquent leur génome, puis forment de nouvelles particules virales qui ressortiront de la cellule pour se diffuser. Alors que pour produire leurs protéines virales les virus détournent la machinerie cellulaire, ils utilisent pour la plupart leur propre polymérase spécifique pour répliquer leur génome.Les Bunyaviridae sont une grande famille des virus à ARN simple brin segmenté de polarité négative. Les Arenaviridae et les Orthomyxoviridae sont les deux autres familles de ce type. Certains bunyavirus provoquent des maladies humaines graves, comme des fièvres hémorragiques, des encéphalites et des méningites. D'autres infectent des plantes et animaux, posant une menace économique sérieuse en agronomie.Les ARN polymérases ARN-dépendante de virus à ARN négatif segmenté sont des machineries multi-fonctionnelles, capables de répliquer le génome viral et de le transcrire en ARNs messagers. La réplication est effectuée de novo, en utilisant un intermédiaire d'ARN complémentaire de polarité positive, alors que la transcription est initiée par vol de coiffe d'ARN cellulaire. Chaque segment du génome viral est recouvert par des nucléoprotéines et fixé à la polymérase par ses extrémités 3' et 5' conservées. Le complexe ARN viral/nucléoprotéines/polymérase forme une ribonucléoprotéine, qui est l'unité fonctionnelle de la réplication/transcription.L'objectif de mon projet de thèse était la caractérisation structurale et fonctionnelle de la polymérase du virus La Crosse, également nommée protéine L. Ce projet était basé sur l'hypothèse que toutes les polymérases de virus à ARN négatif segmenté pourraient partager une organisation et un mode d'action similaire. Lors de la première année de ma thèse, j'ai tenté de caractériser le domaine C-terminal, que nous supposions être responsable de la fixation de coiffe. Au cours de la deuxième année, j'ai étendu mes recherches sur l'étude de l'interaction entre les extrémités de l'ARN viral et la protéine L (protéine entière et construction tronquée en C-terminal). Confronté à des difficultés pour établir des tests de réplication et de transcription in vitro, j'ai poursuivi mes recherches en troisième année avec l'étude d'interactions et de co-cristallisation entre polymérase et ARN viral. Cela a finalement conduit au résultat principal de ma thèse - la détermination de la structure par cristallographie aux rayons X de la polymérase de virus de La Crosse en complexe avec les extrémités 3' et 5' de l‘ARN viral. La structure obtenue constitue une percée dans le domaine de bunyavirus. Elle révèle – à la différence de ce qui avait été initialement proposé – que les extrémités 3' et 5' de l'ARN se lient dans deux sites séparés et conservés. La liaison de l'extrémité 5' de l'ARN viral stabilise de façon allostérique l'un des motifs catalytiques du site actif de la polymérase. La structure révèle l'existence de deux tunnels séparés pour l'ARN produit et l'ARN matrice de sortir, ce qui suggère que le brin d'ARN naissant est séparé de la matrice et quitte la polymérase comme ARN simple brin. La proximité des tunnels d'entrée et de sortie de la matrice explique comment la polymérase peut se déplacer le long de l'ARN génomique avec une perturbation minimale de la ribonucléoprotéine.En parallèle de la structure de la polymérase du virus La Crosse, les structures des polymérases hétérotrimériques de la grippe A et B en complexe avec l'ARN viral ont également été déterminées au sein du groupe du Dr. Stephen Cusack. La comparaison de l'organisation des polymérases des deux familles et de la nature de leur liaison avec l'ARN viral montre que, malgré une homologie de séquence minimale, des similitudes structurelles sont frappantes. Cela suggère fortement la présence d'un ancêtre commun. / Viruses are not more than particles composed of lipids and/or proteins with genetic information – the viral RNA or DNA genome – embedded inside. In order to be efficient, once they enter the host cell they need to multiply this genetic information, package it into new viral particles and spread out from the cell. While in order to produce viral proteins viruses highjack cellular machinery, for replicating their genome most viruses use their own, specialized polymerases.Bunyaviridae is the largest viral family of segmented negative-strand RNA viruses, comprising also Arenaviridae and Orthomyxoviridae families. Some bunyaviruses are causative agents of severe human diseases including heamorrhagic fevers, encephalitis and meningitis. Others infect a variety of plants and animals posing a significant economic threat to the crop cultivation and cattle breeding.RNA-dependent RNA polymerases of segmented negative-strand RNA viruses are multifunctional machines, able to perform both de novo genome replication via positive-strand cRNA intermediate, and viral mRNA transcription using cap-snatched host-derived mRNA primer. Viral RNA genome of bunyaviruses, arenaviruses, and orthomyxoviruses is divided into three, two, and eight segments respectively. Each segment, coated by nucleoproteins and attached through its conserved 3′ and 5′ ends to the polymerase, constitutes an individual ribonucleoprotein particle – an autonomous RNA synthesis unit.The scope of the PhD project described in this thesis was the structural and functional characterization of the La Crosse orthobunyavirus polymerase, also named the L protein. It was based on the hypothesis that all polymerases of segmented negative-strand RNA viruses share a similar domain organization and mode of action. During the 1st year attempts were made to confirm and characterize a putative C-terminal cap-binding domain. During the 2nd year project was extended to study 3′ and 5′ vRNA ends interactions with the full length and C-terminus truncated L protein. Facing difficulties to establish replication and transcription assays in vitro, vRNA binding studies and co-crystallizastion were continued during the 3rd year. This finally led to the main achievement of the thesis – the x-ray structure of La Crosse orthobunyavirus polymerase in complex with vRNA. Obtained structure is a breakthrough in the bunyavirus field. It reveals – unlike it was initially believed – conserved, sequence specific and separate binding sites for 3′ and 5′ vRNA ends located within the polymerase. The 5′ vRNA end binding allosterically structures one of the conserved catalytic motifs within the polymerase active site. The structure sheds also some new light on bunyaviral replication and transcription mechanisms. There exist two distinct product and template exit channels, suggesting that the nascent RNA strand is separated from the template and leaves the polymerase as the single-strand RNA. Close proximity of the template entry and exit channels explains how the polymerase can translocate along the genomic template with minimal disruption of the RNP.In parallel to the La Crosse polymerase structure, structures of Influenza A and B heterotrimeric polymerases in complex with vRNA were also obtained in Stephen Cusack group. This gave a great opportunity to compare the domain organization and the nature of vRNA binding by viral polymerases belonging to Bunyaviriadae and Orthomyxoviridae families, and proved that despite minimal sequence homology the structural similarities are striking. This strongly suggests an evolutionary common ancestor, which can possibly be shared with non-segmented negative-strand RNA viruses as well.
323

Functional studies of the RNA helicases Vasa and Tdrd9 in the piRNA pathway / Analyses fonctionnelles de les ARN hélicases Vasa et TDRD9 dans la voie des piRNA

Spinelli, Pietro 01 December 2015 (has links)
Les protéines Piwi sont exprimées dans les gonades (testicules et ovaires) des animaux où elles s'associent à des petits ARN nommés piRNAs (Piwi-interaction RNAs) et répriment les éléments transposables, défendant ainsi de l'intégrité du génome. En effet, les animaux knock-out pour les protéines Piwi montrent une perte de piRNAs et une activation des éléments transposables avec des conséquences catastrophiques: l'arrêt du développement des cellules germinales, due potentiellement à des dommages du génome qui entraîne l'infertilité. Le « Silencing » est réalisé soit par l'activité endonucléase guidée par les piRNAs de la protéine Piwi cytosolique ou par le recrutement de la machinerie de répression transcriptionelle sur les loci génomiques des cibles par Piwi nucléaire. La biogenèse des piRNAs peut être divisée en deux voies, une primaire et une secondaire. De longs ARN précurseurs simple-brin sont transformés en piRNAs matures de 25-30 nt qui sont chargés dans les protéines Piwi. Une fois chargée avec le piRNA, Piwi se lie aux transcrits de transposons ayant la séquence complémentaire et les clive en générant deux ARN, dont l'un peut être chargé dans une nouvelle protéine Piwi, produisant un piRNA secondaire. Des études génétiques ont identifié plusieurs facteurs protéiques essentiels à ce processus. Certain de ces facteurs sont des hélicases à ARN dont le rôle spécifique reste inconnu, principalement parce que ce sont des enzymes dynamiques et l'identification de leurs cibles et leurs partenaires protéiques avec des approches biochimiques standards est difficile.Dans la première partie de cette thèse nous décrivons comment l'introduction d'une mutation ponctuelle dans la boîte DEAD de l'hélicase à ARN Vasa (DEAD à DQAD) peut bloquer son activité in vivo et figer le complexe transitoire de biogenèse qui contient VASA et les deux protéines Piwi responsables de la biogenèse secondaire.La résolution de la structure de VASADQ en complexe avec l'ATP ou l'AMPPNP a révélé les détails moléculaires de cette inhibition et a expliqué le phénotype observé in vivo. VASADQ a un taux d'hydrolyse de l'ATP réduit, car après hydrolyse, le phosphate libre est bloqué à l'intérieur du site actif en raison d'une liaison hydrogène supplémentaire formée avec la Gln mutée. La réduction de l'hydrolyse de l'ATP se traduit par une faible liaison à l'ARN mesurée par des expériences biophysiques. L'introduction de la même mutation chez l'homologue murin de VASA (MVH) produit un phénotype de dominant négatif où MVHDQ est agglutinée sur le complexe RNP contenant les protéines Piwi et les piRNAs.Dans la deuxième partie de cette thèse, nous avons introduit la même mutation dans TDRD9, une autre hélicase à ARN impliquée dans la voie des piRNAs mais dont la fonction est inconnue. Nous avons d'abord exprimé, purifié TDRD9 et montré que la mutation dans son domaine hélicase DEVH à DQVH abolit complètement son activité ATPase sans impacter sur sa stabilité. Par la suite, nous avons généré une souris Knock-in et analysé son phénotype. Les souris Knock-in mâles sont stériles et présentent un blocage au début de la spermatogenèse qui est probablement une conséquence des dommages de l'ADN générés par l'activation des éléments transposables. Ces éléments, comme Line-1, présentent un défaut de méthylation à leur loci génomiques, mais qui ne semble pas être contrôlé par la voie piRNA dans le mutant, étant donné que les protéines Piwis sont correctement chargées avec les piRNAs dérivés de Line-1.Dans l'ensemble, nous avons étudié le rôle moléculaire de deux hélicases à ARN dans la voie des piRNAs, nous avons élucidé le rôle de VASA et nous montrons que l'activité ATPase de TDRD9 est essentielle pour la régulation des transposons au cours de la spermatogenèse de la souris. / PIWI proteins are expressed in the gonads (testis and ovary) of animals where they associate with PIWI-interacting RNAs (piRNAs) and silence transposable elements, defending the integrity of the genome. Indeed, animal knock-outs of Piwi proteins display a loss of piRNAs and activation of transposon sequences with catastrophic consequences: block in germ cell development potentially due to genome damage, resulting in infertility. Silencing is achieved either by piRNA-guided endonuclease activity of cytosolic Piwi protein or by recruitment of transcriptional repression machinery on target genomic loci by nuclear Piwi. Biogenesis of piRNAs can be divided in primary and secondary pathway. Primary pathway describes how long single-stranded RNA precursors are processed into mature 25-30 nt piRNAs and loaded into Piwi proteins. Piwi-loaded piRNAs bind and cleave complementary transposon transcripts generating two RNA products, one of which can be loaded into a new Piwi protein, generating a secondary piRNA. Different protein factors are essential in this process as identified by genetic studies. Few of these factors are putative RNA helicases but their specific role is unknown, mainly because RNA helicase are dynamic enzymes and identification of their targets and protein partners with standard biochemical approaches is challenging.In the first part of this thesis I describe how the introduction of a point mutation in the DEAD box of the RNA helicase Vasa (DEAD to DQAD) can block its activity in vivo and freeze a transient biogenesis complex that contains Vasa and the two Piwi proteins responsible for secondary biogenesis.Crystal structure of VASADQ in complex with ATP or AMPPNP revealed the molecular details of this inhibition and explained the phenotype observed in vivo. VasaDQ has a reduced ATP hydrolysis rate because after hydrolysis the free phosphate is blocked inside the active site due to an additional hydrogen bond formed with the mutated Gln. The reduction in ATP hydrolysis is mirrored by an impaired RNA binding activity as measured with biophysical experiments. Introduction of the same mutation in the mouse homologue of Vasa (MVH) has a dominant-negative phenotype where MVHDQ is clump on an ribonucleoprotein (RNP) complex containing piRNAs and mouse Piwi proteins.In the second part of this thesis I introduce the same mutation in TDRD9, another RNA helicase involved in piRNA pathway with an unknown function. First I expressed and purified TDRD9 and showed that DEVH to DQVH mutation in its helicase domain completely abolishes its ATPase activity but do not affects its stability. Next I created a knock-in mutation in the mouse genomic locus for Tdrd9 and analysed the resulting phenotype in the mutant. Knock-in mice are male sterile with an early block in spermatogenesis that is probably a consequence of uncontrolled DNA damages generated by de-repressed transposon elements. These elements, like Line-1, fail to be correctly methylated at their genomic loci in the Tdrd9 mutant. Although Tdrd9 is important for Line-1 transposon silencing, it is likely not via a role in piRNA biogenesis since Piwi proteins are correctly loaded with Line-1 derived piRNAs. Interestingly a drop in piRNAs that derives from SINE elements is observed in the mutant, probably reflecting a role for Tdrd9 in sorting primary transcripts into MILI and MIWI2 during DNA de novo methylation.Overall I investigated the molecular role of two RNA helicases in the piRNA pathway, elucidating the role of Vasa and show that the ATPase activity of Tdrd9 is essential for transposon regulation in mouse spermatogenesis.
324

Mécanismes de régulation post-transcriptionnelle de l'expression des mucines par la galectine-3 / Mechanisms of post-transcriptional regulation of mucins expression by galectin-3

Coppin, Lucie 12 June 2017 (has links)
L’adénocarcinome pancréatique canalaire s’accompagne d’une néoexpression de la mucine membranaire MUC4 et d’une surexpression des mucines membranaires MUC1 et MUC16. Ces O-glycoprotéines de haut poids moléculaire sont codées par des ARNm possédant des particularités inhabituelles par rapport aux autres transcrits humains, comme une longue demi-vie et une très grande taille. La galectine-3, une lectine endogène également surexprimée au cours du cancer pancréatique, exerce de très nombreuses fonctions biologiques, en particulier dans le domaine du trafic intracellulaire des glycoprotéines et de l’épissage des pré-ARNm. Cependant, l’implication de cette galectine à un autre niveau du cycle de vie des ARNm n’avait pas été explorée jusque-là dans la littérature. De précédents travaux du laboratoire ont démontré que la suppression de l’expression de la galectine-3 dans la lignée cellulaire cancéreuse pancréatique humaine CAPAN-1 s’accompagne d’une diminution de l’expression des transcrits de certaines mucines membranaires. L’objectif de ce travail a donc été d’étudier les mécanismes de régulation de l’expression des mucines membranaires, et plus particulièrement MUC4, par la galectine-3.Nous avons démontré que la galectine-3, in vitro, régule l’expression de MUC4 au niveau post-transcriptionnel en stabilisant les transcrits de cette mucine. Ceci passe par la potentialisation de la fixation de la RNA Binding Protein hnRNP-L sur l’élément cis-régulateur CA repeat présent dans le 3’UTR de MUC4. Nos résultats indiquent que cette régulation est présente in vivo au niveau physiologique dans des tissus épithéliaux digestifs murins. Par ailleurs, nous avons mis en évidence que la galectine-3 interagit avec hnRNP-L dans le cytoplasme mais qu’elle interagit faiblement avec des marqueurs de P-Bodies ou de granules de stress. Concernant le rôle de la galectine-3 dans le cycle de vie des ARNm, nos données révèlent que celle-ci se lie à aux transcrits matures de MUC4 au niveau périnucléaire, probablement dans des granules de stockage qui ne sont ni des granules de stress ni des P-bodies et dont le type reste à déterminer. Nous avons également élargi nos résultats en étudiant l’implication de cette lectine dans le métabolisme d’autres ARNm et nos analyses indiquent que la galectine-3 serait impliquée dans la régulation post-transcriptionnelle positive ou négative d’un ensemble de transcrits dont les fonctions convergent vers les voies UPR (Unfolded protein response) et ERAD (Endoplasmic-reticulum-associated protein degradation) mais également plus généralement vers le processing des protéines en réponse au stress du réticulum endoplasmique.En conclusion, nos travaux mettent en évidence un nouveau rôle de la galectine-3 en tant que RNA binding protein dans la stabilisation des ARNm de MUC4 mais aussi un nouveau rôle dans la coordination de l’expression de répertoires de transcrits matures ayant des rôles biologiques communs (RNA regulon) permettant à la cellule de s’adapter au plan morphologique, métabolique et biologique à des changements physiopathologiques. Ceci renforce les interconnexions largement décrites dans la littérature entre mucines, galectine-3 et les grandes fonctions cellulaires qui sont perturbées en situation cancéreuse. / Pancreatic ductal adenocarcinoma is characterized by a neo expression of the membrane-bound mucin MUC4 and an overexpression of membrane-bound mucins MUC1 and MUC16. These high molecular weight O-glycoproteins are encoded by mRNA sharing unusual features among human transcripts, such as a long half-life and a very large size. Galectin-3, an endogenous lectin frequently over-expressed in pancreatic cancer, has many biological functions, especially in intracellular glycoprotein trafficking and pre-mRNA splicing. However, the involvement of this lectin in another step of mRNA life cycle has not been explored in literature yet. Previous works performed in the laboratory have demonstrated that LGALS3 gene knock-down in a human cancerous pancreatic cancer cell line is followed by a decrease of the expression of several membrane-bound mucin mRNAs. The aim of this present work was to study the mechanism of the regulation of mucins expression, especially for MUC4, by galectin-3.We have demonstrated that galectin-3, in vitro, regulates MUC4 expression at the post-transcriptionnal level through the stabilization of the transcripts of this mucin. Galectin-3 potentiates the binding of hnRNP-L, a RNA-Binding protein, on the CA repeat region present in MUC4 3’UTR. Our results show that this regulation occurs physiologically in vivo in mice digestive epithelial tissues. Moreover, we have demonstrated that galectin-3 interacts with hnRNP-L in cell cytoplasm but scarcely with protein markers of P-Bodies or stress granules markers. Regarding the influence of galectin-3 in mRNA life cycle, our results suggest that it binds to mature MUC4 transcripts in the perinuclear area, probably in storage granules whose type should to be determined. We have also broadened our results by studying this lectin’s involvement in the metabolism of other mRNA. Our analyzes suggest that galectin-3 could be involved in the positive or negative post-transcriptionnal regulation of a mRNA subset whose functions are linked to unfolded protein response (UPR) and Endoplasmic-reticulum-associated protein degradation (ERAD) pathways, but also more generally towards protein processing in response to endoplasmic reticulum stress.In conclusion, our work highlights a new function for galectin-3 as a RNA binding protein in the stabilization of MUC4 mRNA, but also a new function in the coordination of the expression of repertories of mature transcripts with shared functions or (RNA regulon) allowing morphological, biological and metabolic cell adaptation to physiopathological changes. These results strengthen the interplay between mucins, galectin-3 and cellular functions which are disturbed in cancer.
325

Epigenetic Regulation of Skeletal Muscle Differentiation / Régulation épigénétique de la différenciation du muscle squelettique

Scionti, Isabella 20 November 2017 (has links)
LSD1 et PHF2 sont des déméthylases de lysines capables de déméthyler à la fois les protéines histones qui influencent l’expression génique et les protéines non histones en affectant leurs activités ou stabilités. Des approches fonctionnelles d’inactivation de Lsd1 ou Phf2 chez la souris ont démontré l’implication de ces enzymes dans l'engagement des cellules progénitrices au cours de la différenciation. La myogenèse est l'un des exemples les mieux caractérisés sur la façon dont les cellules progénitrices se multiplient et se différencient pour former un organe fonctionnel. Elle est initiée par une expression temporelle spécifique des gènes régulateurs cibles. Parmi ces facteurs, MYOD est un régulateur clé de l'engagement dans la différenciation des cellules progénitrices musculaires. Bien que l’action de MYOD au cours de la différenciation cellulaire ait été largement étudiée, peu de chose sont connus sur les événements de remodelage de la chromatine associés à l'activation de l'expression de MyoD. Parmi les régions régulatrices de l'expression de MyoD, la région Core Enhancer (CE) qui est transcrite en ARN activateur non codant (CEeRNA) a été démontrée pour contrôler l'initiation de l'expression de MyoD au cours de l'engagement de myoblastes dans la différenciation.Nous avons identifié LSD1 et PHF2 comme des activateurs clés du CE de MyoD. L'invalidation in vitro et in vivo de LSD1 ou l'inhibition de l'activité enzymatique de LSD1 empêche le recrutement de l'ARN PolII sur le CE, empêchant l’expression du CEeRNA. D’après nos résultats, l'expression forcée du CEeRNA restaure efficacement l'expression de MyoD et la fusion myoblastique en l'absence de LSD1. De plus, PHF2 interagit avec LSD1 en régulant sa stabilité protéique.En effet, l'ablation in vitro de PHF2 entraîne une dégradation massive de LSD1 et donc une absence d'expression du CEeRNA. Cependant, toutes les modifications d'histones qui ont lieu dans la région du CE lors de l'activation de la différenciation ne peuvent pas être directement attribuées à l'activité enzymatique de LSD1 ou PHF2. Ces résultats soulèvent la question de l'identité des partenaires de LSD1 et PHF2, qui co-participeraient à l'expression du CEeRNA et donc à l'engagement des myoblastes dans la différenciation cellulaire. / LSD1 and PHF2 are lysine de-methylases that can de-methylate both histone proteins, influencing gene expression and non-histone proteins, affecting their activity or stability. Functional approaches using Lsd1 or Phf2 inactivation in mouse have demonstrated the involvement of these enzymes in the engagement of progenitor cells into differentiation. One of the best-characterized examples of how progenitor cells multiply and differentiate to form functional organ is myogenesis. It is initiated by the specific timing expression of the specific regulatory genes; among these factors, MYOD is a key regulator of the engagement into differentiation of muscle progenitor cells. Although the action of MYOD during muscle differentiation has been extensively studied, still little is known about the chromatin remodeling events associated with the activation of MyoD expression. Among the regulatory regions of MyoD expression, the Core Enhancer region (CE), which transcribes for a non-coding enhancer RNA (CEeRNA), has been demonstrated to control the initiation of MyoD expression during myoblast commitment. We identified LSD1 and PHF2 as key activators of the MyoD CE. In vitro and in vivo ablation of LSD1 or inhibition of LSD1 enzymatic activity impaired the recruitment of RNA PolII on the CE, resulting in a failed expression of the CEeRNA. According to our results, forced expression of the CEeRNA efficiently rescue MyoD expression and myoblast fusion in the absence of LSD1. Moreover PHF2 interacts with LSD1 regulating its protein stability. Indeed in vitro ablation of PHF2 results in a massive LSD1 degradation and thus absence of CEeRNA expression. However, all the histone modifications occurring on the CE region upon activation cannot be directly attributed to LSD1 or PHF2 enzymatic activity. These results raise the question of the identity of LSD1 and PHF2 partners, which co-participate to CEeRNA expression and thus to the engagement of myoblast cells into differentiation.
326

Implementación de una estrategia de clonación en E. coli de genes de Prodiplosis longifila Gagné con potencial para la producción de ARNdc en bacterias

Correa Guerrero, Mónica Carola January 2018 (has links)
Las estrategias biotecnológicas presentan un alto potencial para el control de plagas de insectos; una de ellas, es el silenciamiento de genes mediado por ARN de interferencia (ARNi), que se aplica contra genes importantes en la viabilidad del insecto. Entre las principales ventajas, se menciona, su uso como alternativa de los pesticidas, además de poder desarrollarse para un ataque específico contra la especie blanco. Para una futura implementación en campo, se debe contar con una serie de pasos técnicos estandarizados, entre los cuales involucra la producción de ARN de doble cadena (ARNdc), que es la molécula inductora del mecanismo de ARNi. En este trabajo se presenta una metodología de clonación de genes para la síntesis de ARNdc en bacterias a partir de secuencias de genes del insecto Prodiplosis longifila Gagné, plaga principal de los cultivos de espárrago en el Perú. Se utiliza la técnica TA cloning, en la que se aprovecha la actividad transferasa terminal de la enzima polimerasa de Thermus aquaticus para modificar los productos de PCR. El vector modificado para esta técnica se obtuvo a partir del vector LITMUS 38i, al que se linearizó y se le agregó un nucleótido de timina. Los resultados muestran que la metodología permitió clonar, en corto tiempo, secuencias provenientes de 18 genes del insecto, resultando así en una metodología conveniente para su uso en la producción de ARNdc en estrategias de ARNi. / Tesis
327

De l'œuf à l'adulte : étude moléculaire et fonctionnelle de la répression des éléments transposables par les piARN au cours du développement chez drosophila melanogaster / From egg to adult : molecular and functional study of piRNA-mediated repression during germline development in drosophila melanogaster

Marie, Pauline 20 September 2016 (has links)
Chez les métazoaires, la mobilisation des éléments transposables est régulée par de petits ARN non codants appelés piARN pour "PIWI interacting RNA". Cette répression est très étudiée dans la lignée germinale adulte où elle est particulièrement efficace. Néanmoins, la mobilisation de ces éléments doit être régulée tout au long du développement de la lignée germinale, qui transmet l’information génétique à travers les générations. Durant ma thèse, j’ai utilisé le modèle D. melanogaster pour étudier la répression des éléments transposables au cours du développement de la lignée germinale femelle. J’ai ainsi pu montrer qu’une répression fonctionnelle par les piARN existe dès la fin de l’embryogenèse et que les gènes liés à la régulation chez l'adulte sont également nécessaires pour la répression au cours du développement. L’analyse de données de séquençage haut débit m’a permis de mettre en évidence la production de novo de piARN fonctionnels dans les gonades en formation. De plus, comme dans les ovaires adultes, j'ai pu remarquer une répression incomplète, ressemblant à la variégation, à tous les stades du développement. Des expériences de lignage cellulaire suggèrent fortement qu'une mémoire épigénétique précoce est initiée dans les cellules germinales embryonnaires et maintenue jusqu'au stade adulte. L'implication de l'Heterochromatin Protein 1a (HP1a) dans la production des piARN télomériques montrée par séquençage des piARN pourrait expliquer ce phénomène . Les données présentées ici montrent que piARN et leurs partenaires protéiques sont les composants d'un système de répression épigénétique continu tout au long de la vie des cellules germinales. / In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous investigations in Drosophila have enlightened the mechanism of this repression in the adult germline. However, very little is known about piRNA-mediated repression during germline development. Nevertheless, to maintain the integrity of the genome, repression should occur throughout the lifespan of germ cells. During my PhD, I show that piRNA-mediated repression is active in the female germline, from late embryonic to pupal primordial germ cells, and that genes related to the adult piRNA pathway are required for repression during development. rhino-dependent piRNAs, exhibiting the molecular signature of the piRNA pathway "ping-pong" amplification step, are detected in larval gonads, arguing for de novo biogenesis of functional piRNAs during development. I also show that production of telomeric piRNAs depends on Heterochromatin Protein 1a (HP1a). Furthermore, as in adult ovaries, I observe an incomplete, bimodal and stochastic repression resembling variegation at all developmental stages. Clonal analyzes of this incomplete silencing strongly suggest that a cellular memory of an early repression decision is initiated in embryonic germ cells and further maintained until the adult stage. Taken together, the data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.
328

Contingent microARN des exosomes, diagnostic et physiopathologie des gliomes / MicroRNA contents of exosomes, diagnosis and physiopathology of gliomas

Ipas, Hélène 31 October 2013 (has links)
Les tumeurs gliales du cerveau et en particulier les glioblastomes sont des tumeurs de très mauvais pronostic. Les paramètres qui contrôlent des phénotypes comme l'agressivité, la migration, ou la chimio-résistance de ces tumeurs sont mal connus. Dans ce contexte tumoral, il est envisagé que les microARN (ARN non-codants d'une vingtaine de bases) soient des acteurs essentiels des phénomènes de modification phénotypique parce qu'ils sont capables d'orchestrer l'expression de nombreux gènes. Nous avons montré que les microARN sont des marqueurs tissulaires précieux pour le diagnostic permettant de différencier les deux types principaux de gliomes à partir de prélèvements tumoraux. Nous avons aussi observé que plusieurs microARN sont, en outre, sécrétés par les cellules gliales saines ou cancéreuses au sein de microvésicules appelées exosomes. Le contenu en ARN de ces exosomes a été caractérisé par analyse moléculaire transcriptomique (ARN messagers et microARN) par techniques d'hybridation sur puces à ADN Affymetrix. Les profils ARN exosomaux sains et cancéreux sont distincts, mais ils ne reflètent pas intégralement le profil ARN des cellules dont ils sont issus. Des conditions de stress hypoxique ou l'utilisation de composés pharmacologiques (GW4869 et 5-aza-2'-désoxycitidine) n'affectent pas la quantité d'exosomes produite par la lignée de glioblastome (U87) en culture. Les profils ARN sont cependant modifiés, et le contenu des exosomes produits semble donc être un mécanisme actif et régulé. Enfin, des exosomes cancéreux incubés avec des cellules saines ont très peu d'effet sur le phénotype de celles-ci. Les microARN tissulaires et exosomaux seraient donc des acteurs importants de la physiopathologie du gliome et de sa progression, dont les rôles restent encore à préciser. / Brain glial tumors, and particularly glioblastomas, are tumors with a very bad prognosis. Nowadays, parameters that control aggressiveness, migration or chemo-resistance are poorly known. In this tumor context microRNAs (20 base-long non-coding RNAs) are thought to be essential actors of phenotypic-modification phenomenons as they are able to control the expression of numerous genes. We showed that microRNAs are precious diagnosis tissular markers helping in differentiating two principal tumor types from tissular samples. We also observed that several microRNAs are secreted by glial cells in microvesicles called exosomes. The exosomes RNA content was characterized by molecular transcriptomic analysis (messenger RNAs and microRNAs) using Affymetrix hybridization techniques. The healthy and cancerous exosomal RNA profiles are distinct but do not reflect the RNA profile of the cells they are derived from. Oxygen stress conditions, or use of chemical drugs (GW4869 or 5-Aza-2'-deoxycitidine), do not affect the quantity of exosomes produced by the culture cell line of glioblastoma U87. Nevertheless, the RNA profiles are modified and contents of exosomes produced seem to be controled by an active and regulated mechanism. Finally, cancerous exosomes incubated with healthy cells have a very restrain effect on their phenotypes. Thus tissular and exosomal microRNAs might be important actors of the glioma physiopathology and progression, which roles remain to be defined in detail.
329

Oligonucléotides comme modulateurs de l'expression génique / Oligonucleotides as gene expression modulators

Rouleau, Samuel January 2017 (has links)
L’ARN est sans aucun doute la molécule biologique la plus versatile qui soit. Tout comme l’ADN, il peut contenir et transmettre de l’information génétique. Tout comme les protéines, il peut accomplir une multitude de fonctions biologiques. De plus, son rôle le plus connu demeure celui d’intermédiaire entre l’ADN et les protéines. L’ARN est donc au cœur d’un bon nombre de processus biologiques. Ceci lui confère un immense potentiel thérapeutique qui jusqu’à présent demeure largement inexploité. Pour accomplir ses fonctions, l’ARN doit adopter une structure tridimensionnelle précise qui est dépendante à la fois de sa séquence et de son environnement. Ainsi, en modifiant la structure d’un ARN, il est possible d’en moduler sa fonction. C’est l’objectif global des travaux présentés dans cette thèse. Pour y parvenir, de courts oligonucléotides antisens (OA) ont été utilisés. Cette stratégie revêt plusieurs avantages. Comme les OA s’apparient à leur cible en formant des paires de bases Watson-Crick, ils offrent une grande spécificité et leur design est facile. De plus, en se fiant aux données structurales et aux logiciels de prédictions de structures des ARN, on peut aisément identifier les régions à cibler avec les OA. Enfin, cette technique est versatile puisqu’on peut cibler différents motifs d’ARN. La première cible a été le ribozyme du virus de l’hépatite D. Cet ARN, qui catalyse une réaction d’auto-coupure, a été modifié afin que son activité devienne dépendante à la liaison d’OA. Plusieurs modules ont ainsi été créés et combinés afin d’obtenir des ribozymes qui répondaient à la présence d’un ou plusieurs OA. En insérant ces interrupteurs moléculaires dans les régions non traduites d’un ARNm, nous avons ainsi modulé l’expression de ce gène avec les OA. Cet outil a des applications intéressantes pour la régulation de gènes en biologie synthétique. Un autre motif ciblé a été le G-quadruplex (G4). Cette structure non canonique exerce de nombreuses fonctions biologiques et représente donc une cible thérapeutique intéressante. Lorsque présent dans la région 5’ non traduite d’un ARNm, le G4 mène généralement à une diminution de la traduction. En utilisant des OA qui empêchent la formation du G4, nous avons été en mesure d’augmenter la traduction du gène ciblé. De plus, il a été possible de développer des OA qui favorisent la formation d’un G4 dans le but de diminuer l’expression de la cible. Finalement, dans le dernier chapitre de cette thèse, il est démontré que les G4 présents dans les microARN primaires influencent leur maturation en microARN matures. Des OA ciblant ces G4 ont été utilisés afin de favoriser la maturation de microARN suppresseurs de tumeurs, ce qui présente un potentiel thérapeutique intéressant. En bref, les travaux présentés dans cette thèse démontrent clairement que les OA sont un outil de choix pour cibler et modifier la structure de motifs d’ARN spécifiques. / Abstract : RNA is a versatile biological molecule. Like DNA, it can contain and transmit genetic information. Like proteins, it can accomplish multiple biological functions. Also, its most known role remains that of intermediary between DNA and proteins. RNA is thus a key player in many biological processes. This gives it an immense therapeutic potential which remains largely untapped. To fulfill its functions, RNA must adopt a precise threedimensional structure that is dependent on both its sequence and its environment. Thus, by modifying the structure of an RNA, it is possible to modulate its function. This is the overall objective of the work presented in this thesis. To achieve this, small antisense oligonucleotides (ASO) have been used. This strategy has several advantages. As ASO bind their target with Watson-Crick base pairs, they offer great specificity and their design is easy. Moreover, reliance on structural data and RNA structure prediction softwares makes it easy to identify the regions to be targeted with ASO. Finally, this technique is versatile since it is possible to target different RNA motifs. The first target was the HDV self-cleaving motif. This RNA, which catalyzes a self-cleaving reaction, has been modified so that its activity became dependent on the binding of ASO. Several modules were thus created and combined in order to obtain ribozymes which responded to the presence of one or more ASO. By inserting these molecular switches into an mRNA’s UTR, the expression of this gene was modulated with the ASO. This has interesting applications for the regulation of genes in synthetic biology. Another target motif was the G-quadruplex (G4). This non-canonical structure exerts many biological functions and therefore represents an interesting therapeutic target. When present in the mRNA’s 5’UTR, G4 generally lead to a decrease in translation. Using ASO that prevent G4 formation, we were able to increase the translation of the target gene. In addition, it has been possible to develop ASO which promote the formation of a G4 in order to decrease the expression of the target. Finally, in the last chapter of this thesis, it is demonstrated that the G4 present in the primary microRNAs influence their maturation in mature microRNAs. ASO targeting these G4 have been used in order to promote the maturation of tumor suppressor microRNAs, which has an interesting therapeutic potential. The work presented in this thesis clearly demonstrates that ASO are ideal for targeting and altering the structure of specific RNA motifs.
330

Contribution à la mise en place d'un système de génétique inverse pour le virus de la paralysie chronique de l'abaille / Toward a reverse genetic system for chronic bee paralysis virus molecular studies

Youssef, Ibrahim 15 September 2016 (has links)
Le virus de la paralysie chronique de l’abeille (CBPV) est responsable d’une maladie infectieuse et contagieuse de l’abeille domestique. c'est un virus anisométrique et non enveloppé. Les premières études ont décrit son génome étant constitué de cinq segments d’ARN simple brin de polarité positive : deux ARN majoritaires et trois ARN minoritaires. Cependant, ces derniers n’ont pas été observés lors de récentes études. L’ARN 1 coderait pour les protéines non structurales et L’ARN 2 coderait pour deux protéines structurales.Les ARN totaux du CBPV sont infectieux chez l’abeille par inoculation intra-thoracique. Toutefois, les éléments génétiques essentiels à la réplication du virus n’étaient pas encore déterminés. Néanmoins, cette information est cruciale pour la mise en place du système de génétique inverse pour le CBPV afin de mieux caractériser ce virus. Lors de ce travail, nous avons montré le pouvoir infectieux des ARN majoritaires du CBPV. Ces résultats nous ont permis d'accomplir la première étape de la mise du système de génétique inverse pour le CBPV: le clonage des ARN majoritaires. Les résultats préliminaires montrent que les ARN transcrits in vitro à partir des plasmides recombinants sont répliqués in vivo après leur inoculation aux abeilles, mais ne conduisaient à aucun signe clinique de la maladie. Le système de génétique inverse du CBPV développé offrira la possibilité, par mutagenèse dirigée, de définir les fonctions des ORF et des protéines voire de permettre la production de protéines purifiées nécessaires à la production d’anticorps monoclonaux afin de développer un test rapide de diagnostic de la paralysie chronique. / Chronic bee paralysis virus (CBPV) causes an infectious and contagious disease of adult honeybees. CBPV is an anisometric and non-enveloped virus. First studies described its genome as composed of five positive single-stranded RNAs: two major RNAs and three minor RNAs. However, these latest were not observed during recent studies. CBPV RNA 1 encodes for the non-structural proteins and RNA 2 encodes for two structural proteins. The total RNAs of CBPV are infectious by intra-thoracic inoculation of bees. However, the essential genetic elements for CBPV replication are still unknown. Besides, this information is crucial to develop a reverse genetic system in order to better characterize this virus.In this work, we showed the infectivity of CBPV major RNA. These results allowed us to accomplish the first step of the implementation of the reverse genetics system for CBPV: cloning of major RNA. Our preliminary results showed that RNA transcribed in vitro from recombinant plasmids replicated in vivo after inoculation to bees, but did not led to any clinical signs of the disease.The reverse genetics system developed for CBPV facilitate the study of CBPV genome, by site directed mutagenesis, the determination of its proteins functions. Moreover, it allows the expression of purified proteins necessary for production of monoclonal antibodies to develop a rapid diagnostic test for CBPV.

Page generated in 0.0439 seconds