• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 40
  • 13
  • Tagged with
  • 130
  • 48
  • 40
  • 32
  • 27
  • 21
  • 18
  • 18
  • 17
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Contrôle non destructif via des sondes courants de Foucault : nouvelles approches

Jiang, Zixian 23 January 2014 (has links) (PDF)
L'objectif principal de cette thèse est de proposer et de tester quelques méthodes de l'optimisation de forme afin d'identifier et de reconstruire des dépôts qui couvrent la paroi extérieure d'un tube conducteur dans un générateur de vapeurs en utilisant des signaux courant de Foucault. Ce problème est motivé par des applications industrielles en contrôle non-destructive dans le secteur de l'énergie nucléaire. En fait, des dépôts peuvent obstruer le passage de circuit de refroidissement entre les tubes et les plaques entretoises qui les soutiennent, ce qui entraînerait une baisse de productivité et mettrait la structure en danger. On considère dans un premier temps un cas axisymétrique dans le cadre duquel on construit un modèle 2-D par des équations aux dérivées partielles pour le courant de Foucault, ce qui nous permet ensuite de reproduire des mesures d'impédances qui correspondent en réalité les signaux courants de Foucault. Pour réduire le coût de calculs de la simulation numérique, on tronque le domaine du problème en posant des conditions aux bords artificielles basées sur des études sur le comportement de la solution, notamment sur un calcul semi-analytique de l'opérateur Dirichlet-to-Neumann dans la direction axiale. Pour la partie identification et reconstruction, on distingue deux sortes de dépôts et établit pour chacun une méthode d'inversion spécifique. Le premier cas concernent des dépôts dont la conductivité est relativement faible (d'environs 1.e4 S/m). On utilise la méthode d'optimisation de forme qui consiste à exprimer explicitement la dérivée des mesures d'impédance par rapport au domaine du dépôt en fonction d'une déformation et à représenter le gradient d'un fonctionnel de coût à minimiser par l'intermédiaire d'un état adjoint proprement défini. Motivée par la présence des dépôts et des plaques de maintient non-axisymétriques, on fait aussi une extension en 3-D des méthodes précédentes. Pour le deuxième cas, des dépôts sont fortement conducteurs et sous forme de couche mince d'une épaisseur de l'ordre de micron. La méthode adaptée à la première sorte de dépôts devient ici trop coûteuse à cause du degré de liberté très élevé des éléments finis sur un maillage extrêmement raffiné à l'échelle de la couche mince. Pour relever cette difficulté, les études sont portées sur plusieurs modèles asymptotiques qui remplace la couche mince par des conditions d'interface sur la surface du tube portante du dépôt. Le nom de modèle asymptotique vient du fait que les conditions d'interface effectives sont obtenues par le développement asymptotique de la solution en fonction d'un paramètre caractérisant la conductivité et l'épaisseur de la couche mince. La validation numérique a permis de retenir un modèle asymptotique qui est à la fois suffisamment précis et simple à inverser. L'inversion (recherche de l'épaisseur du dépôt) consiste alors à rechercher des paramètres dans les conditions d'interface (non standard). Pour les deux cas, la validation et des exemples numériques sont proposés pour le modèle direct et l'inversion.
72

Sondages pour données fonctionnelles : construction de bandes de confiance asymptotiques et prise en compte d'information auxiliaire

Josserand, Etienne 12 October 2011 (has links) (PDF)
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaustive, les techniques d'échantillonnage fournissent une solution efficace pour estimer des quantités globales simples, telles que la courbe moyenne, sans être obligé de stocker toutes les données. Dans cette thèse, nous proposons un estimateur d'Horvitz-Thompson de la courbe moyenne, et grâce à des hypothèses asymptotiques sur le plan de sondage nous avons établi un Théorème Central Limite Fonctionnel dans le cadre des fonctions continues afin d'obtenir des bandes de confiance asymptotiques. Pour un plan d'échantillonnage à taille fixe, nous montrons que le sondage stratifié peut grandement améliorer l'estimation comparativement au sondage aléatoire simple. De plus, nous étendons la règle d'allocation optimale de Neyman dans le contexte fonctionnel. La prise en compte d'information auxiliaire a été développée grâce à des estimateurs par modèle assisté, mais aussi en utilisant directement cette information dans les poids d'échantillonnage avec le sondage à probabilités inégales proportionnelles à la taille. Le cas des courbes bruitées est également étudié avec la mise en place d'un lissage par polynômes locaux. Pour sélectionner la largeur de la fenêtre de lissage, nous proposons une méthode de validation croisée qui tient compte des poids de sondage. Les propriétés de consistance de nos estimateurs sont établies, ainsi que la normalité asymptotique des estimateurs de la courbe moyenne. Deux méthodes de constructions des bandes de confiance sont proposées. La première utilise la normalité asymptotique de nos estimateurs en simulant un processus Gaussien conditionnellement à sa fonction de covariance afin d'en estimer la loi du sup. La seconde utilise des techniques de bootstrap en population finie qui ne nécessitent pas l'estimation de la fonction de covariance.
73

Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie / Development and analysis of finite volume schemes motivated by the preservation of asymptotic behaviors. Application to models from physics and biology.

Bessemoulin-Chatard, Marianne 30 November 2012 (has links)
Cette thèse est dédiée au développement et à l’analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s’articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d’asymptotiques : l’asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d’énergie–dissipation d’énergie discrètes qui permettent de prouver d’une part la convergence en temps long de la solution approchée vers une approximation de l’équilibre thermique, d’autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l’asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d’un flux d’advection. Le flux numérique est défini de telle sorte que les états d’équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l’ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l’étude d’un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n’explosent pas en temps fini, quelles que soient les données initiales. L’étude de la convergence du schéma repose sur une estimation d’entropie discrète nécessitant l’utilisation de versions discrètes d’inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l’objet d’un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV. / This dissertation is dedicated to the development and analysis of finite volume numericals chemes for convection-diffusion equations, which notably occur in models arising from physics and biology. We are more particularly interested in preserving asymptotic behavior at the discrete level. This dissertation is composed of three parts, each one including two chapters. In the first part, we consider the discretization of the linear drift-diffusion system for semiconductors with the implicit Scharfetter-Gummel scheme. We focus on preserving two kinds of asymptotics with this scheme : the long-time asymptotic and the quasineutral limit. We show discrete energy–energy dissipation estimates which constitute the main point to prove first the large time convergence of the approximate solution to an approximation of the thermal equilibrium, and then the stability at the quasineutral limit. In the second part, we are interested in designing finite volume schemes which preserve the long time behavior in a more general framework. More precisely, we consider nonlinear convection-diffusion equations arising in various physical models : porous media equation, drift-diffusion system for semiconductors... We propose two spatial discretizations which preserve the long time behavior of the approximate solutions. We first generalize the Scharfetter-Gummel flux for a nonlinear diffusion. This scheme provides satisfying numerical results if the diffusion term does not degenerate. Then we propose a discretization which takes into account together the convection and diffusion terms by rewriting the flux as an advective flux. The numerical flux is then defined in such a way that equilibrium states are preserved, and we use a slope limiters method so as to obtain second order space accuracy, even in the degenerate case. Finally, the third part is devoted to the study of a numerical scheme for a chemotaxis model with cross diffusion, for which the solutions do not blow up in finite time, even for large initial data. The proof of convergence is based on a discrete entropy estimate which requires the use of discrete functional inequalities such as Poincaré-Sobolev and Gagliardo-Nirenberg-Sobolev inequalities. The demonstration of these inequalities is the subject of an independent chapter in which we propose a study in quite a general framework, including mixed boundary conditions and generalization to DDFV schemes.
74

Nouvelle approche pour l'obtention de modèles asymptotiques en océanographie / New method to obtain asymptotic models in oceanography

Bellec, Stevan 05 October 2016 (has links)
Dans ce manuscrit, nous nous inéressons à l'étude du mouvement des vagues soumises uniquement à leur poids par le biais d'équations asymptotiques. Nous commençons par rappeler la dérivation des principaux modèles généralement utilisés (Boussinesq, Green-Naghdi,...). Nous introduisons également un nouveau modèle exprimé en amplitude-flux qui correspond à une variante des équations de Nwogu. Dans le second chapitre, nous démontrons un résultat d'existence en temps long pour ces nouvelles équations et nous étudions l'existence d'ondes solitaires pour les équations de Boussinesq. Ce travail permet notamment de calculer avec une grande précision ces solutions exactes. Le troisième chapitre détaille les différences non linéaires que l'on retrouve entre les différentes équations de Boussinesq (modèles en flux-amplitude comparés aux modèles en vitesse-amplitude). Enfin, les deux derniers chapitres introduisent un nouveau paradigme pour trouver des schémas numériques adaptés aux modèles asymptotiques. L'idée est d'appliquer une analyse asymptotique aux équations d'Euler discrétisées. Ce nouveau paradigme est appliqué aux équations de Peregrine, de Nwogu et de Green-Naghdi. Plusieurs cas tests sont proposés dans ces deux chapitres. / In this work, we are interested in the evolution of water waves under the gravity force using asymptotics models. We start by recalling the derivation of most used models (Boussinesq, Green-Naghdi,...) and we introduce a new model expressed amplitude-flux, which is an alternative version of the Nwogu equations. In the second chapter, we prove a long time existence result for the new model and we investigate the existence of solitary waves for the Boussinesq models. This work allow us to compute these solutions with a good precision. The third chapter highlights the nonlinear differences between the Boussinesq equations (amplitude-flux models versus amplitude-velocity models). Finally, the two last chapter introduce a new paradigm in order to find numerical schemes adapted to asymptotics models. The idea is to apply an asymptotic analysis to a discretized Euler system. This new paradigm is applied to Peregrine equations, Nwogu equations and Green-Naghdi equations. Test cases are presented in these two chapters
75

Sondages pour données fonctionnelles : construction de bandes de confiance asymptotiques et prise en compte d'information auxiliaire / Survey sampling for functionnal data : building asymptotic confidence bands and considering auxiliary information

Josserand, Etienne 12 October 2011 (has links)
Lorsque des bases de données fonctionnelles sont trop grandes pour être observées de manière exhaustive, les techniques d’échantillonnage fournissent une solution efficace pour estimer des quantités globales simples, telles que la courbe moyenne, sans être obligé de stocker toutes les données. Dans cette thèse, nous proposons un estimateur d’Horvitz-Thompson de la courbe moyenne, et grâce à des hypothèses asymptotiques sur le plan de sondage nous avons établi un Théorème Central Limite Fonctionnel dans le cadre des fonctions continues afin d’obtenir des bandes de confiance asymptotiques. Pour un plan d’échantillonnage à taille fixe, nous montrons que le sondage stratifié peut grandement améliorer l’estimation comparativement au sondage aléatoire simple. De plus, nous étendons la règle d’allocation optimale de Neyman dans le contexte fonctionnel. La prise en compte d’information auxiliaire a été développée grâce à des estimateurs par modèle assisté, mais aussi en utilisant directement cette information dans les poids d’échantillonnage avec le sondage à probabilités inégales proportionnelles à la taille. Le cas des courbes bruitées est également étudié avec la mise en place d’un lissage par polynômes locaux. Pour sélectionner la largeur de la fenêtre de lissage, nous proposons une méthode de validation croisée qui tient compte des poids de sondage. Les propriétés de consistance de nos estimateurs sont établies, ainsi que la normalité asymptotique des estimateurs de la courbe moyenne. Deux méthodes de constructions des bandes de confiance sont proposées. La première utilise la normalité asymptotique de nos estimateurs en simulant un processus Gaussien conditionnellement à sa fonction de covariance afin d’en estimer la loi du sup. La seconde utilise des techniques de bootstrap en population finie qui ne nécessitent pas l’estimation de la fonction de covariance. / When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function, without being obligated to store all the data. In this thesis, we propose a Horvitz–Thompson estimator of the mean trajectory, and with additional assumptions on the sampling design, we state a functional Central Limit Theorem and deduce asymptotic confidence bands. For a fixed sample size, we show that stratified sampling can greatly improve the estimation compared to simple random sampling. In addition, we extend Neyman’s rule of optimal allocation to the functional context. Taking into account auxiliary information has been developed with model-assisted estimators and weighted estimators with unequal probability sampling proportional to size. The case of noisy curves is also studied with the help local polynomial smoothers. To select the bandwidth, we propose a cross-validation criterion that takes into account the sampling weights. The consistency properties of our estimators are established, as well as asymptotic normality of the estimators of the mean curve. Two methods to build confidence bands are proposed. The first uses the asymptotic normality of our estimators by simulating a Gaussian process given estimated the covariance function in order to estimate the law of supremum. The second uses bootstrap techniques in a finite population that does not require to estimate the covariance function.
76

Micromechanical modeling of imperfect interfaces and applications

Raffa, Maria Letizia 27 November 2015 (has links)
Le rôle crucial des interfaces solides dans les problèmes de structures dans de nombreux domaines de l'Ingénierie est désormais bien connue et c'est certainement un sujet de grand intérêt scientifique. Aujourd'hui, la modélisation analytique et numérique des interfaces structurelles représentent un défi du fait desphénomènes physiques très complexes qu'il faut prendre en compte (tels que adhésion, contact non-conforme,microfissuration, frottement, contact unilatéral) autant que le besoin d'avoir des méthodes numériques qui soient capables de traiter à la fois la faible épaisseur des zones d'interface et les sauts dans les champs physiques concernés. Cette thèse vise à développer un outil analytique cohérent et général qui soit capable de dépasser les limitations des stratégies existantes et concernant la modélisation des interfaces emph{soft} et emph{hard} caractérisées par une microfissuration évolutive. Une nouvelle approche, appelée emph{Imperfect Interface Approach} (IIA), est proposée. Elle couple de manière cohérente arguments de théorie asymptotique et techniques d'homogénéisation pour les milieux microfissurés dans le cadre de la emph{Non-Interacting Approximation} (NIA). Dans le cadre de l'élasticité linéaire, l'IIA est employée avec succès pour obtenir un ensemble de modèles d'interfaces imparfaites.En généralisant la méthode de développement asymptotique à la théorie élastique des déformations finies, un modèle d'interface soft non-linéaire a été dérivé. Comme une nouvelle application, l'IIA est appliquée afin de formuler un modèle de contact non-conforme à raideurs equivalents. Simulations numériques appliquées à la maçonnerie ont été effectuées. / The crucial role of solid interfaces in structural problems in several engineering fields is well-established and they represent certainly a scientific topic of great interest. Nowadays, analytical and numerical modeling of structural interfaces are challenging tasks, due to the complex physical phenomena to take into account (such as adhesion, non-conforming contact, microcracking, friction, unilateral contact), as well as to the need of numerical methods suitable for treating small thickness of the interface zones and jumps in the physically relevant fields.Present PhD thesis aims to develop a consistent and general analytical tool able to overcome some modeling shortcomings of available modeling strategies accounting for soft and hard interfaces, and characterized by evolving microcracking. A novel approach, referred to as emph{Imperfect Interface Approach} (IIA), is proposed. It consistently couples asymptotic arguments and homogenization techniques for microcracked media in the framework of the Non-Interacting Approximation (NIA). In the context of linear elasticity, the IIA is successfully employed to derive a set of imperfect interface. By generalizing the matched asymptotic expansion method to finite strains, a nonlinear soft interface model has been derived. As a new general application, the IIA is applied to formulate a spring-type model for non-conforming contact. Finally, numerical simulations applying the soft interface models obtained in both linear and nonlinear cases to masonry structures, are carried out, showing effectiveness and soundness of the proposed formulation.
77

Estimation par tests / Estimation via testing

Sart, Mathieu 25 November 2013 (has links)
Cette thèse porte sur l'estimation de fonctions à l'aide de tests dans trois cadres statistiques différents. Nous commençons par étudier le problème de l'estimation des intensités de processus de Poisson avec covariables. Nous démontrons un théorème général de sélection de modèles et en déduisons des bornes de risque non-asymptotiques sous des hypothèses variées sur la fonction à estimer. Nous estimons ensuite la densité de transition d'une chaîne de Markov homogène et proposons pour cela deux procédures. La première, basée sur la sélection d'estimateurs constants par morceaux, permet d'établir une inégalité de type oracle sous des hypothèses minimales sur la chaîne de Markov. Nous en déduisons des vitesses de convergence uniformes sur des boules d'espaces de Besov inhomogènes et montrons que l'estimateur est adaptatif par rapport à la régularité de la densité de transition. La performance de l'estimateur est aussi évalué en pratique grâce à des simulations numériques. La seconde procédure peut difficilement être implémenté en pratique mais permet d'obtenir un résultat général de sélection de modèles et d'en déduire des vitesses de convergence sous des hypothèses plus générales sur la densité de transition. Finalement, nous proposons un nouvel estimateur paramétrique d'une densité. Son risque est contrôlé sous des hypothèses pour lesquelles la méthode du maximum de vraisemblance peut ne pas fonctionner. Les simulations montrent que ces deux estimateurs sont très proches lorsque le modèle est vrai et suffisamment régulier. Il est cependant robuste, contrairement à l'estimateur du maximum de vraisemblance. / This thesis deals with the estimation of functions from tests in three statistical settings. We begin by studying the problem of estimating the intensities of Poisson processes with covariates. We prove a general model selection theorem from which we derive non-asymptotic risk bounds under various assumptions on the target function. We then propose two procedures to estimate the transition density of an homogeneous Markov chain. The first one selects an estimator among a collection of piecewise constant estimators. The selected estimator is shown to satisfy an oracle-type inequality under minimal assumptions on the Markov chain which allows us to deduce uniform rates of convergence over balls of inhomogeneous Besov spaces. Besides, the estimator is adaptive with respect to the smoothness of the transition density. We also evaluate the performance of the estimator in practice by carrying out numerical simulations. The second procedure is only of theoretical interest but yields a general model selection theorem from which we derive rates of convergence under more general assumptions on the transition density. Finally, we propose a new parametric estimator of a density. We upper-bound its risk under assumptions for which the maximum likelihood method may not work. The simulations show that these two estimators are very close when the model is true and regular enough. However, contrary to the maximum likelihood estimator, this estimator is robust.
78

Quelques contributions à la sélection de variables et aux tests non-paramétriques / A few contributions to variable selection and nonparametric tests

Comminges, Laëtitia 12 December 2012 (has links)
Les données du monde réel sont souvent de très grande dimension, faisant intervenir un grand nombre de variables non pertinentes ou redondantes. La sélection de variables est donc utile dans ce cadre. D'abord, on considère la sélection de variables dans le modèle de régression quand le nombre de variables est très grand. En particulier on traite le cas où le nombre de variables pertinentes est bien plus petit que la dimension ambiante. Sans supposer aucune forme paramétrique pour la fonction de régression, on obtient des conditions minimales permettant de retrouver l'ensemble des variables pertinentes. Ces conditions relient la dimension intrinsèque à la dimension ambiante et la taille de l'échantillon. Ensuite, on considère le problème du test d'une hypothèse nulle composite sous un modèle de régression non paramétrique multi varié. Pour une fonctionnelle quadratique donnée $Q$, l'hypothèse nulle correspond au fait que la fonction $f$ satisfait la contrainte $Q[f] = 0$, tandis que l'alternative correspond aux fonctions pour lesquelles $ |Q[f]|$ est minorée par une constante strictement positive. On fournit des taux minimax de test et les constantes de séparation exactes ainsi qu'une procédure optimale exacte, pour des fonctionnelles quadratiques diagonales et positives. On peut utiliser ces résultats pour tester la pertinence d'une ou plusieurs variables explicatives. L'étude des taux minimax pour les fonctionnelles quadratiques diagonales qui ne sont ni positives ni négatives, fait apparaître deux régimes différents : un régime « régulier » et un régime « irrégulier ». On applique ceci au test de l'égalité des normes de deux fonctions observées dans des environnements bruités / Real-world data are often extremely high-dimensional, severely under constrained and interspersed with a large number of irrelevant or redundant features. Relevant variable selection is a compelling approach for addressing statistical issues in the scenario of high-dimensional and noisy data with small sample size. First, we address the issue of variable selection in the regression model when the number of variables is very large. The main focus is on the situation where the number of relevant variables is much smaller than the ambient dimension. Without assuming any parametric form of the underlying regression function, we get tight conditions making it possible to consistently estimate the set of relevant variables. Secondly, we consider the problem of testing a particular type of composite null hypothesis under a nonparametric multivariate regression model. For a given quadratic functional $Q$, the null hypothesis states that the regression function $f$ satisfies the constraint $Q[f] = 0$, while the alternative corresponds to the functions for which $Q[f]$ is bounded away from zero. We provide minimax rates of testing and the exact separation constants, along with a sharp-optimal testing procedure, for diagonal and nonnegative quadratic functionals. We can apply this to testing the relevance of a variable. Studying minimax rates for quadratic functionals which are neither positive nor negative, makes appear two different regimes: “regular” and “irregular”. We apply this to the issue of testing the equality of norms of two functions observed in noisy environments
79

Modèles de mélange et de Markov caché non-paramétriques : propriétés asymptotiques de la loi a posteriori et efficacité / Non Parametric Mixture Models and Hidden Markov Models : Asymptotic Behaviour of the Posterior Distribution and Efficiency

Vernet, Elodie, Edith 15 November 2016 (has links)
Les modèles latents sont très utilisés en pratique, comme en génomique, économétrie, reconnaissance de parole... Comme la modélisation paramétrique des densités d’émission, c’est-à-dire les lois d’une observation sachant l’état latent, peut conduire à de mauvais résultats en pratique, un récent intérêt pour les modèles latents non paramétriques est apparu dans les applications. Or ces modèles ont peu été étudiés en théorie. Dans cette thèse je me suis intéressée aux propriétés asymptotiques des estimateurs (dans le cas fréquentiste) et de la loi a posteriori (dans le cadre Bayésien) dans deux modèles latents particuliers : les modèles de Markov caché et les modèles de mélange. J’ai tout d’abord étudié la concentration de la loi a posteriori dans les modèles non paramétriques de Markov caché. Plus précisément, j’ai étudié la consistance puis la vitesse de concentration de la loi a posteriori. Enfin je me suis intéressée à l’estimation efficace du paramètre de mélange dans les modèles semi paramétriques de mélange. / Latent models have been widely used in diverse fields such as speech recognition, genomics, econometrics. Because parametric modeling of emission distributions, that is the distributions of an observation given the latent state, may lead to poor results in practice, in particular for clustering purposes, recent interest in using non parametric latent models appeared in applications. Yet little thoughts have been given to theory in this framework. During my PhD I have been interested in the asymptotic behaviour of estimators (in the frequentist case) and the posterior distribution (in the Bayesian case) in two particuliar non parametric latent models: hidden Markov models and mixture models. I have first studied the concentration of the posterior distribution in non parametric hidden Markov models. More precisely, I have considered posterior consistency and posterior concentration rates. Finally, I have been interested in efficient estimation of the mixture parameter in semi parametric mixture models.
80

Tests non paramétriques minimax pour de grandes matrices de covariance / Non parametric minimax tests for high dimensional covariance matrices

Zgheib, Rania 23 May 2016 (has links)
Ces travaux contribuent à la théorie des tests non paramétriques minimax dans le modèle de grandes matrices de covariance. Plus précisément, nous observons $n$ vecteurs indépendants, de dimension $p$, $X_1,ldots, X_n$, ayant la même loi gaussienne $mathcal {N}_p(0, Sigma)$, où $Sigma$ est la matrice de covariance inconnue. Nous testons l'hypothèse nulle $H_0:Sigma = I$, où $I$ est la matrice identité. L'hypothèse alternative est constituée d'un ellipsoïde avec une boule de rayon $varphi$ autour de $I$ enlevée. Asymptotiquement, $n$ et $p$ tendent vers l'infini. La théorie minimax des tests, les autres approches considérées pour le modèle de matrice de covariance, ainsi que le résumé de nos résultats font l'objet de l'introduction.Le deuxième chapitre est consacré aux matrices de covariance $Sigma$ de Toeplitz. Le lien avec le modèle de densité spectrale est discuté. Nous considérons deux types d'ellipsoïdes, décrits par des pondérations polynomiales (dits de type Sobolev) et exponentielles, respectivement.Dans les deux cas, nous trouvons les vitesses de séparation minimax. Nous établissons également des équivalents asymptotiques exacts de l'erreur minimax de deuxième espèce et de l'erreur minimax totale. La procédure de test asymptotiquement minimax exacte est basée sur une U-statistique d'ordre 2 pondérée de façon optimale.Le troisième chapitre considère une hypothèse alternative de matrices de covariance pas nécessairement de Toeplitz, appartenant à un ellipsoïde de type Sobolev de paramètre $alpha$. Nous donnons des équivalents asymptotiques exacts des erreurs minimax de 2ème espèce et totale. Nous proposons une procédure de test adaptative, c-à-d libre de $alpha$, quand $alpha$ appartient à un compact de $(1/2, + infty)$.L'implémentation numérique des procédures introduites dans les deux premiers chapitres montrent qu'elles se comportent très bien pour de grandes valeurs de $p$, en particulier elles gagnent beaucoup sur les méthodes existantes quand $p$ est grand et $n$ petit.Le quatrième chapitre se consacre aux tests adaptatifs dans un modèle de covariance où les observations sont incomplètes. En effet, chaque coordonnée du vecteur est manquante de manière indépendante avec probabilité $1-a$, $ ain (0,1)$, où $a$ peut tendre vers 0. Nous traitons ce problème comme un problème inverse. Nous établissons ici les vitesses minimax de séparation et introduisons de nouvelles procédures adaptatives de test. Les statistiques de test définies ici ont des poids constants. Nous considérons les deux cas: matrices de Toeplitz ou pas, appartenant aux ellipsoïdes de type Sobolev / Our work contributes to the theory of non-parametric minimax tests for high dimensional covariance matrices. More precisely, we observe $n$ independent, identically distributed vectors of dimension $p$, $X_1,ldots, X_n$ having Gaussian distribution $mathcal{N}_p(0,Sigma)$, where $Sigma$ is the unknown covariance matrix. We test the null hypothesis $H_0 : Sigma =I$, where $I$ is the identity matrix. The alternative hypothesis is given by an ellipsoid from which a ball of radius $varphi$ centered in $I$ is removed. Asymptotically, $n$ and $p$ tend to infinity. The minimax test theory, other approaches considered for testing covariance matrices and a summary of our results are given in the introduction.The second chapter is devoted to the case of Toeplitz covariance matrices $Sigma$. The connection with the spectral density model is discussed. We consider two types of ellipsoids, describe by polynomial weights and exponential weights, respectively. We find the minimax separation rate in both cases. We establish the sharp asymptotic equivalents of the minimax type II error probability and the minimax total error probability. The asymptotically minimax test procedure is a U-statistic of order 2 weighted by an optimal way.The third chapter considers alternative hypothesis containing covariance matrices not necessarily Toeplitz, that belong to an ellipsoid of parameter $alpha$. We obtain the minimax separation rate and give sharp asymptotic equivalents of the minimax type II error probability and the minimax total error probability. We propose an adaptive test procedure free of $alpha$, for $alpha$ belonging to a compact of $(1/2, + infty)$.We implement the tests procedures given in the previous two chapters. The results show their good behavior for large values of $p$ and that, in particular, they gain significantly over existing methods for large $p$ and small $n$.The fourth chapter is dedicated to adaptive tests in the model of covariance matrices where the observations are incomplete. That is, each value of the observed vector is missing with probability $1-a$, $a in (0,1)$ and $a$ may tend to 0. We treat this problem as an inverse problem. We establish the minimax separation rates and introduce new adaptive test procedures. Here, the tests statistics are weighted by constant weights. We consider ellipsoids of Sobolev type, for both cases : Toeplitz and non Toeplitz matrices

Page generated in 0.0428 seconds