Spelling suggestions: "subject:"atomic force"" "subject:"atomic sorce""
421 |
Pseudostatic and dynamic nanomechanics of the tunica adventitia in elastic arteries using atomic force microscopyGrant, Colin A., Twigg, Peter C. January 2013 (has links)
No / Tunica adventitia, the outer layer of blood vessels, is an important structural feature, predominantly consisting of collagen fibrils. This study uses pseudostatic atomic force microscopy (AFM) nanoindentation at physiological conditions to show that the distribution of indentation modulus and viscous creep for the tunica adventitia of porcine aorta and pulmonary artery are distinct. Dynamic nanoindentation demonstrates that the viscous dissipation of the tunica adventitia of the aorta is greater than the pulmonary artery. We suggest that this mechanical property of the aortic adventitia is functionally advantageous due to the higher blood pressure within this vessel during the cardiac cycle. The effects on pulsatile deformation and dissipative energy losses are discussed.
|
422 |
Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug DeliveryNair, Karthik Jayan, Whiteside, Benjamin R., Grant, Colin A., Patel, Rajnikant, Tuinea-Bobe, Cristina-Luminita, Norris, Keith, Paradkar, Anant R 2015 October 1922 (has links)
Yes / Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.
|
423 |
Dynamic mechanical analysis of collagen fibrils at the nanoscale.Grant, Colin A., Phillips, M.A., Thompson, N.H. 05 September 2011 (has links)
No / Low frequency (0.1¿2 Hz) dynamic mechanical analysis on individual type I collagen fibrils has been carried out using atomic force microscopy (AFM). Both the elastic (static) and viscous (dynamic) responses are correlated to the characteristic axial banding, gap and overlap regions. The elastic modulus (¿5 GPa) on the overlap region, where the density of tropocollagen is highest, is 160% that of the gap region. The amount of dissipation on each region is frequency dependent, with the gap region dissipating most energy at the lowest frequencies (0.1 Hz) and crossing over with the overlap region at ¿0.75 Hz. This may reflect an ability of collagen fibrils to absorb energy over a range of frequencies using more than one mechanism, which is suggested as an evolutionary driver for the mechanical role of type I collagen in connective tissues and organs. / BBSRC
|
424 |
Mechanical Investigations on Agar Gels Using Atomic Force Microscopy: Effect of Deuteration.Grant, Colin A., Twigg, Peter C., Savage, M.D., Woon, W.H., Greig, D. 25 August 2011 (has links)
No / The isotopic effect of exchanging deuterium with hydrogen on the mechanical and surface properties of agar gel is examined. The elastic modulus of the D2O gels obtained by AFM nanoindentation is significantly higher (factor of 1.5¿2) than the modulus found in H2O agar gels. Furthermore, the modulus is independent of loading rate. Surface imaging reveals that the surface roughness gets progressively smaller with increasing agar concentration. All these data suggest that the isotopic replacement of deuterium enhances the mechanical properties of the agar gel, with significant advantages in its use as a biphasic scaffold. / MRC
|
425 |
Static and dynamic nanomechanical properties of human skin tissue using atomic force microscopy: Effect of scarring in the upper dermis.Grant, Colin A., Twigg, Peter C., Tobin, Desmond J. 06 July 2012 (has links)
No / Following traumatic injury, skin has the capacity to repair itself through a complex cascade of biochemical change. The dermis, which contains a load-bearing collagenous network structure, is remodelled over a long period of time, affecting its mechanical behaviour. This study examines the nanomechanical and viscoelastic properties of the upper dermis from human skin that includes both healthy intact and scarred tissue. Extensive nanoindentation analysis shows that the dermal scar tissue exhibits stiffer behaviour than the healthy intact skin. The scar skin also shows weaker viscoelastic creep and capability to dissipate energy at physiologically relevant frequencies than the adjacent intact skin. These results are discussed in conjunction with a visual change in the orientation of collagenous fibrils in the scarred dermis compared with normal dermis, as shown by atomic force microscopy imaging.
|
426 |
Nano-Scale Observations of Tattoo Pigments in Skin by Atomic Force MicroscopyGrant, Colin A., Twigg, Peter C., Tobin, Desmond J. 26 March 2015 (has links)
No / In this study, we have shown how particles in carbon black tattoo ink accumulate in the human skin dermis using fine-resolution atomic force microscopy, with which a single ink particle in the collagenous network can be imaged. This information further demonstrates that tattoo inks are nano-particles. Further, we have deposited a commercially available tattoo ink on a glass slide and calculated a range of volumes for single ink particles.
|
427 |
Molecular-Level Understanding of Ionic Liquid/Solid Interfaces: Atomic Force Microscopy Study / 原子間力顕微鏡によるイオン液体/固体界面の分子レベル解析Bao, Yifan 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25287号 / 工博第5246号 / 新制||工||1999(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 杉村 博之, 教授 邑瀬 邦明, 准教授 小林 圭 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
428 |
Vers la réalisation de composants nanoélectroniques par anodisation localisée par AFM / Toward the realization of metalic nanoelectronic devices using local anodisation by AFMGuillaume, Nicolas 14 December 2015 (has links)
Ce travail de thèse se compose de deux parties : tout d’abord nous avons caractérisé sur le plan morphologique des motifs de TiOx réalisés par anodisation localisée par AFM (LAO) dans des couches pleines plaques de 5 nm de titane. Nous avons étudié l’influence de la tension d’oxydation, de la vitesse de balayage de la pointe AFM, de l’humidité relative de l’environnement, du mode AFM (contact ou intermittent) et du type de pointe. Les motifs les plus fins atteignent une largeur à mi-hauteur de 21 nm pour 2.2 nm de hauteur, ils sont obtenus avec une pointe PtSi utilisée en mode intermittent sous une tension de polarisation de -7V, une vitesse de balayage de 0.4 µm.s-1 et dans un environnement comportant une humidité de 43%. La deuxième partie de notre travail a été consacrée à l’élaboration et à la caractérisation de jonctions planaires MIM Ti/TiOx/Ti. Ces jonctions sont des motifs TLM de titane comportant une ligne transverse de TiOx réalisée par LAO. Lorsque les jonctions sont stressées électriquement sous air, une transformation morphologique irréversible se produit pour une densité de courant et un champ électrique atteignant de l’ordre de 7.1010 A.m-2 et 3.107 V.m-1 respectivement. Des analyses chimiques et structurales basées sur la microscopie électronique à transmission ont montré que la ligne initiale de TiOx amorphe s’était considérablement élargie et est constituée d’une zone de TiOx cristallin. Cette transformation peut être évitée en appliquant le stress électrique sous vide. Enfin des mesures électriques en température ont permis d’élucider les mécanismes de conduction : émission Schottky sous vide et conduction ionique sous air. / This work is divided in two specific parts: first of all we caracterized oxide patterns made by local anodic oxidation using an AFM on 5nm titanium wafers. We caracterized the morphology of the patterns. We studied the influence of several parameters such as oxidation voltage, writing speed of the AFM tip, relative humidity of the environment, AFM modes (contact or tapping)and the type of the tips we used. Most thinnest pattern we made reaches a full width at half maximum of 21nm with a 2.2nm height. It was obtained using a PtSi coating tip in tapping mode with an oxidation voltage of -7V, a writing speed of 0.4 um/s and a relative humidity of 43%. The second part of our work was dedicated to the realization and the characterization of planar MIM junction Ti/TiOx/Ti. These junctions are TLM patterns with a TiOx line cross-ways over the microwire of the TLM pattern. When the junctions are stressed electrically under ambient atmosphere, an irreversible morphological transformation is happenning for a current density and an electric field of 7.1010 A/m² and 3.107 V/m respectively. Chemical and structural analysis based on transmission electronic microscopy have shown that the initial amorphous TiOx junction have grown importantly with an area of crystalline TiOx. This transformation can be avoided by applying the electric stress under vacuum. Finally, electrical measurements in temperature highlighted the transport mecanisms within the junction: Schottky emission under vacuum and ionic conduction under ambient atmosphere.
|
429 |
Interfacial and Mechanical Properties of Carbon Nanotubes: A Force Spectroscopy StudyPoggi, Mark Andrew 22 September 2004 (has links)
Next generation polymer composites that utilize the high electrical conductivity and tensile strength of carbon nanotubes are of interest. To effectively disperse carbon nanotubes into polymers, a more fundamental understanding of the polymer/nanotube interface is needed. This requires the development of new analytical methods and techniques for measuring the adhesion between a single molecule and the sidewalls of carbon nanotubes.
Atomic Force Microscopy is an integral tool in the characterization of materials on the nanoscale. The objectives of this research were to: 1) characterize the binding force between single molecules and the backbone of a single walled carbon nanotube (SWNT), and 2) measure and interpret the mechanical response of carbon-based nano-objects to compressive loads using an atomic force microscope.
To identify chemical moieties that bind strongly to the sidewall of the nanotubes, two experimental approaches have been explored. In the first, force volume images of SWNT paper were obtained using gold-coated AFM tips functionalized with terminally substituted alkanethiols and para-substituted arylthiols. Analysis of these images enabled quantification of the adhesive interactions between the functionalized tip and the SWNT surface. The resultant adhesive forces were shown to be dependent upon surface topography, tip shape, and the terminal group on the alkanethiol.
The mechanical response of several single- and multi-walled carbon nanotubes under compressive load was examined with an AFM. When the scanner, onto which the substrate has been mounted, was extended and retracted in a cyclic fashion, cantilever deflection, oscillation amplitude and resonant frequency were simultaneously monitored. By time-correlating cantilever resonance spectra, deflection and scanner motion, precise control over the length of nanotube in contact with the substrate, analogous to fly-fishing was achieved. This multi-parameter force spectroscopy method is applicable for testing the mechanical and interfacial properties of a wide range of nanoscale objects.
This research has led to a clearer understanding of the chemistry at the nanotube/polymer interface, as well as the mechanical response of nanoscale materials. A new force spectroscopic tool, multi-parameter force spectroscopy, should be extremely helpful in characterizing the mechanical response of a myriad of nanoscale objects and enable nanoscale devices to become a reality.
|
430 |
Atomic force microscopy study on the mechanics of influenza viruses and liposomes / Rasterkraftmikroskop Studie der Mechanik von Influenza-Viren und LiposomenLi, Sai 20 November 2012 (has links)
Physik gibt es überall dort, wo Materie:
Maßnahmen wie Energie, Masse, Temperatur, Geschwindigkeit, Größe
und Steifigkeit sind alle Beispiele der physikalischen
Eigenschaften. Solche Mengen sind wichtige Charakterisierungen für
biologische Organismen: Sie verändern die ganze Zeit während des
gesamten Lebenszyklus. Für eine Bio-Mechaniker, Steifigkeit ist
eine wichtige Maßnahme zur biologischen Design zu verstehen. Weil
biologische Bausteine so klein wie 1 nm (Protein / DNA / Lipid)
sein können, sind spezielle Techniken erforderlich, um ihre
Steifigkeit zu studieren. Beide Rasterkraftmikroskopie (AFM) und
optischen Pinzetten können verwendet werden, um aktiv zu verformen
die Objekte an pN-nN Kräfte und messen die Verformung auf Nanometer
Längenskalen werden. In dieser Arbeit AFM wird angewandt, um die
Mechanik von Influenza-Viren, Liposomen und lebenden Zellen zu
studieren. Das Genom von Viren von einer Proteinhülle und in
einigen Fällen eine zusätzliche Lipidhülle verpackt. Dieser Verbund
Shell hat widersprüchliche Rollen: er hat das virale Genom zu
schützen, aber es sollte auch ermöglichen Auspacken während der
viralen Infektion in das Genom zu lösen. Influenza-Virus ist das
weichste Virus jemals gefunden, aber zur gleichen Zeit eine sehr
hartnäckige Virus verursacht jährliche Pandemien. Ein besseres
Verständnis der mechanischen Eigenschaften des Influenza-Virus kann
uns helfen zu verstehen, warum das Virus so erfolgreich ist. Die
mechanischen Eigenschaften von Influenza-Viren wurden durch AFM
gemessen und mit den Liposomen der viralen Lipid hergestellt. Wir
haben gefunden, dass die Influenzavirus-Mechanik durch seine
Lipidhülle (~ 70%) werden dominiert. In Kapitel 2 haben wir
gezeigt, dass anstelle der Verwendung einer starren Proteinkapsid
die Lipidhülle ausreicht, um das Influenza virale Genom zu
schützen. In Kapitel 3 haben wir weitere blickte in die Funktion
des M1 Proteinhülle während der viralen Infektion. Ein
Zwischenprodukt Auspacken Schritt wurde durch Messen der in
fluenzavirale Steifigkeit bei pH 7, 6, 5,5 und 5, Bedingungen, die
die Ansäuerung Umgebungen auf der viralen Infektion nachahmen
Stoffwechselweg entdeckt. Der Zwischenschritt wurde weiterhin als
wesentlich erwiesen für eine erfolgreiche Infektion. Wir schlagen
vor, dass das Influenza-Virus hat sich zu eng synchronisiert die
verschiedenen Schritte ihrer Auspacken mit pH-
|
Page generated in 0.0509 seconds