• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 17
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An Analysis of EcoRouting Using a Variable Acceleration Rate Synthesis Model

Warpe, Hrusheekesh Sunil 07 August 2017 (has links)
Automotive manufacturers are facing increasing pressure from legislative bodies and consumers to reduce fuel consumption and greenhouse gas emissions of vehicles. This has led to many automotive manufacturers starting production of Plug-in Hybrid Electric Vehicles (PHEV's) and Battery Electric Vehicles (BEV's). Another method that helps to reduce the environmental effect of transportation is EcoRouting. The standard Global Positioning System (GPS) navigation offers route alternatives between user specified origin and destination. This technology provides multiple routes to the user and focuses on reducing the travel time to reach to the destination. EcoRouting is the method to determine a route that minimizes vehicle energy consumption, unlike traditional routing methods that minimize travel time. An EcoRouting system has been developed as a part of this thesis that takes in information such as speed limits, the number of stop lights, and the road grade to calculate the energy consumption of a vehicle along a route. A synthesis methodology is introduced that takes into consideration the distance between the origin and destination, the acceleration rate of the vehicle, cruise speed and jerk rate as inputs to simulate driver behavior on a given route. A new approach is presented in this thesis that weighs the energy consumption for different routes and chooses the route with the least energy consumption, subject to a constraint on travel time. A cost function for quantifying the effect of travel time is introduced that assists in choosing the EcoRoute with an acceptable limit on the travel time required to reach the destination. The analysis of the EcoRouting system with minimum number of conditional stops and maximum number of conditional stops is done in this thesis. The effect on energy consumption with the presence and absence of road-grade information along a route is also studied. A sensitivity study is performed to observe the change in energy consumption of the vehicle with a change in acceleration rates and road grade. Three routing scenarios are presented in this thesis to demonstrate the functionality of EcoRouting. The EcoRouting model presented in this thesis is also validated against an external EcoRouting research paper and the energy consumption along three routes is calculated. The EcoRoute solution is found to vary with the information given to the variable acceleration rate model. The synthesis and the results that are obtained show that parameters such as acceleration, deceleration, and road grade affect the overall energy consumption of a vehicle and are helpful in determining the EcoRoute. / Master of Science
12

Synthesizing Vehicle Cornering Modes for Energy Consumption Analysis

Fedor, Craig Steven 14 June 2018 (has links)
Automotive vehicle manufacturers have been facing increased pressures from legislative bodies and consumers to reduce the fuel consumption and harmful emissions of their newly produced vehicles as a result of new research showing the detrimental effects these emissions have on the environment. These pressures are encouraging manufactures and researchers to invest billions of dollars into the development of new advanced vehicle technologies. Some of these investments have resulted in substantial progress in powertrain technologies that have led to the preliminary adoption of electrified powertrain vehicles. Other areas of research are actively working to reduce the energy consumption of a vehicle, regardless of its powertrain, by influencing driver behavior and by optimizing the way a vehicle travels between an origin and destination. This intelligent vehicle routing is done by analyzing a range of possible routes and selecting the route that consumes the least amount of fuel. An accurate method for predetermining vehicle energy expenditure along a given route before it is driven is needed to effectively implement intelligent vehicle routing systems. One common method is the generation of a road network-wide database with energy use figures for each section of road. This method requires expensive experimentation trials or network simulation software. Individual-level vehicle predictive energy estimation eliminates the need for costly fuel use generation by utilizing vehicle velocity generation techniques and vehicle powertrain models. Estimation of individual vehicle energy consumption along a route is done by identifying an origin-destination pair, detecting required full-stops along the path, and synthesizing multiple stop-to-stop velocity modes between each set of stops. The resulting velocity profile is paired with a specific vehicle powertrain model to determine fuel consumption. A drawback of this route generation technique is that the vehicle path is assumed to be one-dimensional and lacks inclusion of road curves and their associated velocity changes to maintain passenger comfort. This thesis evaluates the merit of discounting road curves in predictive vehicle energy consumption analyses and presents a technique for modeling common road corners that require velocity changes to limit passenger discomfort. The resulting corner synthesis method is combined with a validated vehicle powertrain model to complete full route consumption modeling. Two routes, an urban and highway, are modeled and driven to evaluate the accuracy of the full simulation model when compared with on-road data. The results show that corners can largely be ignored during energy consumption analysis for highways. The cornering effects on a vehicle during urban driving, however, should be included in urban route analyses with multiple road curves. Inclusion of the cornering effects during an example urban route analysis decreased the error between the on-road consumption data and the simulation results. / Master of Science
13

Elbilar, en livscykelanalysav två alternativa tekniker : Bränslecellsbilar och batteribilar

Nordén, Simon January 2021 (has links)
In this thesis, two electric vehicles are compared, a fuel cellpowered vehicle and a battery powered vehicle with a conventionalvehicle with an internal combustion engine. The comparison wasdone as a life cycle assessment and consisted of two stages, avehicle stage and a fuel stage. The vehicle stage consisted ofeverything from mining minerals to recycling of the vehicles,every aspect that’s connected to the car. The fuel stage consistedof fuel production and use during the vehicle’s lifetime. The fuelconsist of electricity and hydrogen produced through electrolysis. The goal of the thesis was to understand what aspects of thelifecycle matters most in terms greenhouse gases for each of theelectric vehicles. Since there are no emissions in terms ofgreenhouse gases while driving the electric vehicles, only fuelproduction, electricity and hydrogen through electrolysis, countedtowards the fuel stage. For the vehicle with an internalcombustion engine the fuel stage consisted of gasoline productionand emissions from driving. The results showed that when comparing electric vehicles withinternal combustion vehicles, the most important aspect was theelectricity mix, with a Nordic electricity mix for most use casesthe electric vehicles where more climate friendly then theinternal combustion vehicles. The fuel cell powered vehicle usedmore electricity than the battery powered vehicle when usingelectrolysis to create hydrogen, and therefore was more sensitiveto increases in emissions from the electricity mix. When comparingthe vehicle stage, battery production causes the most emissionsfor the battery powered vehicle and the hydrogen tank caused themost emissions for the fuel cell powered vehicle.
14

Developing Infrastructure to Promote Electric Mobility

Sandin, Carl-Oscar January 2010 (has links)
Electric mobility, E-mobility, will play a central role in a sustainable future transport system. The potential of curbing climate change in both short and long term are significant. Emobility will also offer the possibility to leapfrog the Internal Combustion car, IC-car, economy for developing countries. The low dependence of oil will be a benefit but E-mobility will demand a well functional electricity grid. Development of this grid will be beneficial for the developing world. For the European society E-mobility will in long term offer lower operating costs, decreased dependence of oil and lower emission of pollutants and Green House Gases, GHGs. All these factors are beneficial for the European society. The transition to E-mobility will depend upon a set of different factors and will call for different actions in order to overcome the barriers of E-mobility. A well developed charging infrastructure will be important in order to offer the full potential of E-mobility. The infrastructure will develop along with the market introduction of Electrical Vehicles, EVs. It is important that there are existing charging alternatives in the early introduction phase of EV in order to avoid the stagnation in the transition toward E-mobility. In order to provide the proper conditions for E-mobility, the determining factors must be investigated and evaluated. The four main factors are economical, social, R&D and infrastructure. The European driving patterns meet the offered operating range of an EV with ease. This means that EV has the potential to become an inner city vehicle under existing conditions. The investigation of the four determining factors leads to a base from which an implementation plan is suggested. The implementation plan is directed toward governments, energy utilities and other active participants in the development. The key factors of the implementation plan are to actively engage in the market, see E-mobility as a disruptive technology, use spin-off companies and social transparency. In order to gain the most from the implementation plan it is important that the correct actions are taken at the correct time. Therefore the transition period is divided into three phases; the introduction phase, the commercial phase and the re-development phase. The introduction phase will create the basic conditions for E-mobility. Government’s main action will be to invest in EVs and offer subsidies and other incentives to major companies that will equip their vehicle fleets with EVs. These actions will send signals toward vehicle Original Equipment Manufactures, OEMs, and other actors that the market of EVs is worth investing in. During the introduction phase try-out sessions, demonstrations and hearings will be important in order to communicate the advantages of E-mobility to society. Energy utilities will work to create roaming deals and standardization of important components and characteristics. The commercial phase is the most important phase for social adoption of E-mobility. During this phase commercial businesses will use EV charging a competitive advantage. New business models will be one of the keys to fully adoption of E-mobility. Cross industry alliances will reduce the initial cost, offer the service of a vehicle without owning it and leasing deals. The perception of travelling will shift and reduction of operating cost will be evaluated against travel time and planning. The re-development phase is based on a society that has adopted E-mobility. The development will proceed in order to offer more advantages to drivers but also to increase efficiency and to use the full potential of E-mobility.
15

Enhancing Reaction System for Hydrolysis on Aluminum / Förbättring av reaktionssystemet för hydrolys av vatten på aluminium

Madem, Akhil January 2019 (has links)
A range extender in a battery electric vehicle supplements the existing drive system as an add-on module. Range extenders can comprise of any combination of conventional fuel, battery or fuel cell driven modules. The idea of a sub-system changes with the type of range extender. In this work, hydrogen generation is studied, a fuel is used to power the range extender via a fuel cell.The thesis presents the work in progress for development of the sub-system for a range extender based on on-board production of hydrogen for automobiles. Several aspects of chemistry play equally pivotal role in control, hassle-free operation and safety of the system. Aftertreatment of the fuel by-products is the notorious issue that limits the reusing the reactor effecting the range extender. Along with this, reducing the reaction time with minimal usage of fuel is investigated. Both of these pressing issues are resolved correspondingly to an extent with the addition of several chemicals. In addition, with the help of characterization techniques, a robust circular economy outlook of the range extender system has been initiated. / En distansförlängare i ett eldrivet fordon kompletterar det befintliga drivsystemet som en tilläggsmodul. Distansförlängaren kan vara olika kombinationer av konventionella bränsle-, batteri- och bränslecelldrivna moduler. Utformningen av de övriga delarna av undersystemet beror på vilken distansförlängare som används. I detta arbete drivs distansförlängaren av en bränslecell, bränslet till bränslecellen genereras i distansförlängaren. Avhandlingen presenterar det pågående arbetet för utvecklingen av undersystemet hos en distansförlängare. Undersystemet baseras på ombordsproduktion av väte för bilar. Flera aspekter av kemi spelar en lika viktig roll i kontroll, problemfri drift och säkerhet. Efterbehandling av bränslets biprodukter är det ständiga problemet som begränsar reaktorns återanvändbarhet vilket påverkar distansförlängaren. Tillsammans med detta undersöks minskning av reaktionstiden med minimal användning av bränsle. Båda dessa pressande problem löses i en utsträckning med tillsatsen av flera kemikalier. Dessutom har en robust cirkulärekonomisk syn på distansförlängaren utvecklats med hjälp av olika karakteriseringstekniker.
16

En elektrifierad personbilsflotta : En hållbarhetsanalys / An electrified passenger car fleet : A sustainability analysis

Lagercrantz, Viktoria, Westling, Emma January 2021 (has links)
Idag står transportsektorn för cirka 30 % av Sveriges totala koldioxidutsläpp. Elbilen ses som en hållbar lösning då den skulle minska utsläppen från Sveriges transportsektor. Hållbarhet handlar dock inte bara om koldioxidutsläpp. Syftet med projektet är därför att ge en kritisk bild av ett framtida elektrifierat samhälle med fokus på elbilen. Arbetet syftar också till att undersöka vad som krävs för att elektrifiera den svenska personbilsflottan och om detta skulle leda till ett mer hållbart samhälle. De metoder som använts är litteraturstudie, workshop och en modifierad version av två befintliga Backcasting-metoder. De huvudsakliga resultaten är att elektrifiering av personbilsflottan i Sverige, utan vidare åtgärder, leder till att koldioxidutsläppen minskar. Elbilen är också avgasfri vilket gör att även partiklar och skadliga ämnen från avgaserna minskar. Dock finns en risk att problem som giftutsläpp samt dåliga arbetsvillkor vid framtagning av råvaror till elbilsbatterier förvärras när efterfrågan på råvarorna ökar. För de problem och aspekter som inte blir bättre har redan ett antal åtgärder börjat vidtas för att göra personbilsflottan mer hållbar. Dock är det svårt att säga hur stor inverkan åtgärderna har på problemen och fler åtgärder behöver vidtas för att hela produktionskedjan ska bli hållbar. Slutsatsen som dras i arbetet är att elbilen i sig inte leder till ett hållbart samhälle men att om en kombination av fler åtgärder vidtas finns potential att elbilen kan bidra till ett mer hållbart samhälle. / Today, the transport sector accounts for approximately 30 % of Sweden's total CO2-emissions. The battery electric vehicle is seen as a sustainable solution as it would reduce emissions from Sweden’s transport sector. However, sustainability is not just about CO2-emissions. The aim of the project is therefore to give a critical picture of a future electrified society with focus on the battery electric vehicle. The work also aims to investigate what is required to electrify the Swedish passenger car fleet and whether this would lead to a more sustainable society. The methods used in the report are literature study, workshop and a modified version of two existing Backcasting methods. The main results are that electrification of the passenger car fleet in Sweden, without further action, leads to a reduction in CO2-emissions. The battery electric vehicle is also exhaust-free, which means that particles and harmful substances from the exhaust gases are also reduced. However, there is a risk that problems such as toxic emissions and poor working conditions in the production of raw materials for electric vehicle batteries will worsen as demand for raw materials increases.  For the problems and aspects that are not getting better, a number of measures have already begun to be taken to make the passenger car fleet more sustainable. However, it is difficult to say how much impact the measures have on the problems and more measures need to be taken to make the entire production chain sustainable. The conclusion drawn from the work is that the battery electric vehicle itself does not lead to a sustainable society, but if measures are taken, there is the potential that the battery electric vehicle can contribute to a more sustainable society.
17

Cooling Fan Optimization for Heavy Electrified Vehicles : A study on performance and noise / Kylfläktoptimering för Tunga Elektrifierade Fordon : En studie om prestanda och buller

Khiabani, Amir, Acebo Alanis, Daniel January 2020 (has links)
Vehicle electrification plays a significant role in the effort to reduce the environmental impact of the automotive industry. Scania is one of the leading manufacturers ofheavy vehicles which is currently moving towards a sustainable transport system by manufacturing a new generation of heavy vehicles powered by batteries. Oneof the major concerns with these vehicles is related to the noise generated by the electric axial fans used in the cooling system. This project was conducted with thepurpose of investigating the factors that positively affect both noise and performance in the electric fans. Based on two different blade design methods and several noisecontrol techniques, 11 fan models were developed. The fan models created with design method 1 are equipped with cambered-plate blades, while the models madewith design method 2 consist of airfoil-shaped blades. Moreover, the performance of these models was analyzed by using theoretical methods and Computational FluidDynamics (CFD). In addition, two empirical approaches were used to estimate the acoustic energy emitted by the fan models. Furthermore, the developed modelswere compared with two commercially available fans. It was found that both design methods provide similar performance in low pressure differences. On the other hand,the efficiency and acoustic energy are influenced by the choice of the noise control methods. / Fordonselektrifiering har en väsentlig roll i arbetet med att minska bilindustrins miljöpåverkan. Scania är en av de ledande tillverkarna av tunga fordon som för närvarandegår mot ett hållbart transportsystem, genom att tillverka en ny generation tunga fordon drivna med batterier. Ett stort bekymmer med dessa fordon är relaterattill det ljud som genereras av de elektriska axialfläktarna som används i kylsystemet. Detta projekt genomfördes i syfte till att undersöka de faktorer som positivtpåverkar både buller och prestanda hos de elektriska fläktarna. Baserat på två olika bladdesignmetoder och flera brusstyrningstekniker, utvecklades 11 fläktmodeller.Fläktmodellerna som är utformade med konstruktionsmetod 1 är utrustade med krökformade plattor, medan modellerna som skapades med designmetod 2 bestårav vingprofil blad. Dessutom analyserades prestandan för dessa modeller med användning av teoretiska metoder och strömningsmekaniska beräkningar. Ytterligaretvå empiriska tillvägagångssätt användes för att uppskatta den akustiska energin som släppts ut av fläktmodellerna. Utöver det jämfördes de utvecklade modellernamed två kommersiellt tillgängliga fläktar. Detta visade att båda konstruktionsmetoderna resulterar i liknande prestanda vid lågtrycksskillnader, däremot påverkasverkningsgraden och den akustiska energin av valet av brusstyrningsmetoder.
18

Design nákladního automobilu s elektrickým pohonem / Design of Electric Cargo Truck

Blahynka, Roman January 2014 (has links)
This master‘s thesis pertains to the design of a cargo truck with battery electric drivetrain. The presented design offers a solution which respects the technical requirements of such a vehicle, ergonomic needs of its crew, and demands on the aesthetics of a modern commercial vehicle. In consideration of the chosen drivetrain, this solution is proposed as a concept with an outlook of 10 to 15 years in the future. In keeping with the specified goals, this vehicle offers a novel appearance which attempts to characterize the electric drivetrain with certain visual elements, includes solutions that are readily available or currently in development, and optimizes ergonomics for maximum user comfort and safety.
19

Interaction with Limited Resource Systems in the Context of Sustainable Mobility: User Experience when Dealing with Electric Vehicles in Critical Range Situations

Rauh, Nadine 20 June 2018 (has links)
Der globale Klimawandel gehört zu einem der wichtigsten Themen, die in Politik, Wirtschaft und Wissenschaft diskutiert werden. Der Reduzierung des weltweiten CO2-Ausstoßes wird dabei ein besonderer Stellenwert beigemessen. Auch im Transportsektor wird eine Verringerung der CO2-Emissionen angestrebt. Um dieses Ziel zu erreichen sollte die Nachhaltigkeit im Transportwesen erhöht werden. Elektrofahrzeuge können enorm zu diesem Ziel beitragen. Dies setzt voraus, dass sie während ihrer gesamten Nutzungsphase mit Strom aus regenerativen Energien geladen werden. In diesem Zusammenhang ist es wichtig, auch bei der Produktion auf eine möglichst hohe Nachhaltigkeit zu achten. Das bedeutet, dass die Ressourcen, die zur Produktion eines Elektrofahrzeugs (zum Beispiel Energieressourcen oder eingesetzte Materialien für die Batterieproduktion) möglichst gering gehalten werden sollten. Daher wird empfohlen, die maximale Kapazität einer Batterie und somit die verfügbare Reichweite eines Elektroautos gemäß der tatsächlichen Reichweitenanforderungen der Fahrer auszulegen. Dies bedeutet jedoch, dass Elektroautofahrer mit vergleichbar geringeren Reichweiten umgehen müssen als beim Verbrennerfahrzeug. Zusätzlich ist das Wiederherstellen der Reichweitenressourcen, also das Nachladen des Elektrofahrzeugs, mit höherem Aufwand verbunden als das Nachtanken eines Verbrennerfahrzeugs, da es heutzutage vergleichbar weniger öffentliche Schnelllademöglichkeiten gibt und das Nachladen relativ viel Zeit in Anspruch nimmt. Daher wird die Interaktion mit den Reichweitenressourcen eines Elektrofahrzeugs als relativ herausfordernd wahrgenommen. Dies führt dazu, dass die reichweitenbezogene Nutzerzufriedenheit und das Reichweitenerleben der Fahrer beeinträchtigt und die verfügbaren Reichweitenressourcen nicht optimal ausgenutzt werden. Darüber hinaus wird die limitierte Reichweite von Elektrofahrzeugen häufig auch als eine der wichtigsten Barrieren für die generelle Akzeptanz und Nutzung von Elektrofahrzeugen diskutiert. Um das Potenzial eines Elektrofahrzeugs hinsichtlich der Erhöhung der Nachhaltigkeit im Transportsektor voll auszuschöpfen ist es daher unerlässlich, Möglichkeiten zu finden um diese Barriere unter Beachtung der Anforderungen des Fahrers zu überwinden. Ergänzend zu technischen Lösungen wie zum Beispiel der Weiterentwicklung der Batterietechnology oder der Implementierung einer größeren Anzahl von öffentlichen Schnelllademöglichkeiten, sollten weitere Strategien entwickelt werden um das Reichweitenerleben der Elektroautofahrer zu verbessern und sie zu einer möglichst effizienten Ausreizung der verfügbaren Reichweitenressourcen zu befähigen. Reichweitenstress ist ein wichtiges Konzept in diesem Zusammenhang. Reichweitenstress ist besonders relevant in der Interaktion mit Elektrofahrzeugen auf Grund des relativ begrenzten Zugangs zu Schnellladestationen und relativ langer Ladedauern. Das Konzept ist aber auch auf anderen Arten der Mensch-Technik-Interaktion im Transportsektor übertragbar (z.B. auch auf Verbrennerfahrzeuge). Im Rahmen der vorliegenden Dissertation wird davon ausgegangen, dass sich Reichweitenstress und das breiter definierte Phänomen Reichweitenangst negativ auf die Zufriedenheit mit der Reichweite und der effizienten Nutzung von Elektrofahrzeugen auswirken. Um den maximalen Nachhaltigkeitseffekt von Elektrofahrzeugen ausschöpfen zu können, müssen daher Möglichkeiten gefunden werden um den erlebten Reichweitenstress zu verringern und der Entstehung von Stress vorzubeugen. Die vorliegende Dissertation trägt zu diesem Ziel bei, indem sie ein detailliertes Verständnis zu Reichweitenstress und dem Einfluss verschiedener Resilienzfaktoren im Rahmen von 5 Zeitschriftenartikeln (4 veröffentlich, 1 zur Veröffentlichung eingereicht) zur Verfügung stellt. Resilienzfaktoren meint dabei Faktoren, welche die Fähigkeit des Fahrers mit kritischen Situationen umzugehen erhöhen und somit das Erleben von Stress verringern. Das erste Forschungsziel dieser Arbeit bestand darin, das Konzept Reichweitenstress zur Beschreibung des Reichweitenerlebens in kritischen Reichweitensituationen (d.h., Situationen mit geringem Reichweitenpuffer) zu etablieren, ein theoretisches Rahmenmodell zur Erklärung von Reichweitenstress und möglichen Einflussfaktoren zur Verfügung zu stellen sowie eine Methode zur Erfassung von Reichweitenstress im experimentellen Kontext zu prüfen. Die Ergebnisse der Arbeit konnten zeigen, dass sich das Konzept Reichweitenstress dafür eignet, das Erleben der Fahrer zu beschreiben. Das bereits existierende Modell zur adaptiven Reichweitenkontrolle wurde auf den speziellen Fall einer Fahrt in einer kritischen Reichweitensituation angewendet und um das Konzept Reichweitenstress sowie möglicher, aus der Literatur abgeleiteter, Einflussfaktoren erweitert. Dies ermöglicht es, potenzielle stressreduzierende Faktoren abzuleiten um diese empirisch in einem Feldexperiment zu untersuchen, welches im Rahmen dieser Dissertation weiterentwickelt und getestet wurde. Es konnte gezeigt werden, dass es möglich ist, eine kritische Reichweitensituation in einem Feldexperiment herzustellen. Die Nutzung einer Coverstory ist in diesem Zusammenhang zu empfehlen (z.B. längere Strecke kommunizieren als dann tatsächlich gefahren werden muss). Das zweite Forschungsziel bestand darin, den Einfluss potenzieller Resilienzfaktoren auf den erlebten Reichweitenstress empirisch zu untersuchen. Basierend auf dem weiterentwickelten Modell der adaptiven Reichweitenkontrolle wurden mehrere Faktoren abgeleitet, die einen Einfluss auf das Reichweitenerleben haben sollten: (1) Wissen über Einflussfaktoren auf die Reichweitenentwicklung oder Wissen über Möglichkeiten zum energie-effizienten Fahren, (2) praktische Fahrerfahrung mit Elektrofahrzeugen sowie das Erleben einer kritischen Reichweitensituation, (3) Persönlichkeitseigenschaften wie zum Beispiel Kontrollüberzeugungen im Umgang mit Technik und schließlich (4) technische Systemeigenschaften wie zum Beispiel die wahrgenommene Verlässlichkeit des im Fahrzeug integrierten Systems zur Reichweitenschätzung. Die Ergebnisse zeigten, dass die Vermittlung von relevanten Informationen zur Reichweite eines Elektrofahrzeugs das Reichweitenerleben zum Teil verbessern kann. Insbesondere detaillierte Informationen zum energie-effizienten Fahren haben das Potenzial um Reichweitenstress zu verringern. Daher sollten dem Fahrer diese Informationen auf vielfältigen Wegen zur Verfügung gestellt werden. Dies könnte zum Beispiel über Informationsbroschüren, im Rahmen theoretischer Trainings zur Verbesserung der Interaktion mit dem Elektrofahrzeug, bereits vor dem Kauf durch den Berater oder eventuell sogar im Rahmen der theoretischen Fahrschulausbildung geschehen. Ein weiterer vielversprechender Ansatz wäre die Bereitstellung der relevanten Informationen direkt während der Fahrt durch Informations-, Assistenz- und Tutorsysteme. Praktische Fahrerfahrung sowie das Erleben und erfolgreiche Bewältigen einer kritischen Reichweitensituation in einer relativ geschützten Umgebung konnten Reichweitenstress ebenfalls verringern. Daher wird empfohlen Probefahrten mit Elektrofahrzeugen sowie Praxistrainings anzubieten, die im Idealfall auch eine unterstützte Fahrt in einer kritischen Reichweitensituation beinhalten sollten. Durch das aktive Auseinandersetzen mit den Grenzen der Reichweite kann ein Lernprozess angestoßen werden, der zu einem effizienteren Umgang mit den Reichweitenressourcen des Fahrzeugs führt. Auch in diesem Kontext bieten Assistenzsysteme im Fahrzeug ein großes Potenzial. Sie sollten so gestaltet sein, dass sie einen aktiven Umgang mit der Reichweite sowie eine kritische Auseinandersetzung mit der Reichweitendynamik ermöglichen und fördern. In der vorliegenden Dissertation konnte gezeigt werden, dass Persönlichkeitsmerkmal wie hohe Emotionale Stabilität und hohe Kontrollüberzeugungen im Umgang mit Technik mit einem geringeren erlebten Reichweitenstress zusammenhängen. Dies hat vor allem theoretische Implikationen und kann dazu beitragen, relative Unterschiede zwischen Individuen zu verstehen. Zudem konnte gezeigt werden, dass technische Systemeigenschaften wie die wahrgenommene Verlässlichkeit des Systems zur Reichweitenschätzung (z.B. zu Grunde liegender Algorithmus, Aktualität und Genauigkeit der angezeigten Reichweiteninformationen) ein wichtiger Faktor im Zusammenhang mit reduziertem Reichweitenstress darstellt. Daher sollte darauf geachtet werden, die verbliebene Reichweite eines Elektrofahrzeugs möglichst genau und verlässlich zu schätzen (z.B. Integration möglichst vieler Einflussfaktoren in den Algorithmus zur Reichweitenschätzung) sowie gut verständlich und nachvollziehbar zu präsentieren. Das dritte Forschungsziel bestand schließlich darin, die Relevanz des Konzepts Reichweitenstress auch jenseits des experimentellen Settings zu überprüfen. Bisherige Forschung konnte zeigen, dass der alltägliche Umgang mit Elektrofahrzeugen eher durch das Vermeiden kritischer Reichweitensituationen gekennzeichnet ist. Daher stellte sich die Frage, ob Reichweitenstress und der Einfluss der Resilienzfaktoren auch im Alltagserleben eine Rolle spielt. Die Ergebnisse einer Langzeit-Feldstudie konnten zeigen, dass Reichweitenstress in Form von Sorgen oder Bedenken bezüglich der Reichweite durchaus relevant im täglichen Umgang mit Elektrofahrzeugen ist. Zudem konnte gezeigt werden, dass die identifizierten Resilienzfaktoren (z.B. praktische Fahrerfahrung und technische Systemeigenschaften) auch unter alltäglichen Bedingungen das Erleben von Reichweitenstress verringern können. Zusammenfassend lässt sich sagen, dass Reichweitenstress ein relevantes Konzept im Zusammenhang mit der Interaktion mit Elektrofahrzeugen darstellt. Das Erleben von Reichweitenstress kann durch verschiedene Resilienzfaktoren wie zum Beispiel relevante Wissenselemente und Erfahrungen positiv beeinflusst werden. Aus den Ergebnissen lassen sich Strategien und Design-Empfehlungen für Informations- und Assistenzsysteme ableiten. Dadurch kann das Reichweitenerleben verbessert und ein effizienter Umgang mit der Reichweite gefördert werden. Dies trägt schließlich auch dazu bei, die Zufriedenheit mit Elektrofahrzeugen sowie deren Akzeptanz zu verringern. Somit kann ein Beitrag zur Erhöhung der Nachhaltigkeit im Transportsektor geleistet werden. Das Elektrofahrzeug stellt in dem Zusammenhang nur ein Beispiel für Systeme dar, die einen Umgang mit begrenzten Ressourcen erfordern. Die theoretischen Konzepte, Annahmen, Ergebnisse sowie Schlussfolgerungen der vorliegenden Dissertation können auch auf andere Formen der Mensch-Maschine-Interaktion übertragen werden, welche sich dadurch auszeichnen, dass eine Interaktion mit dem technischen System zu einer Verringerung der Ressourcen führt. Diese Arbeit kann also auch einen Betrag dazu leisten, den Stress und die mentale Beanspruchung beim Umgang mit diesen Systemen zu verringern sowie den effizienten Umgang mit begrenzten Ressourcen zu verbessern.:I Synopsis 1 Sustainability in the Context of Road Transport 2 The Challenge of Battery Electric Vehicles‘ Limited Range and the Contribution of the Present Dissertation 3 Overview of the Dissertation 4 Interaction with Battery Electric Vehicles' Range 4.1 Psychological Reference Values for the Regulation of Range Resources 4.2 The Adaptive Control of Range Resources (ACOR) Model 5 User Experience in Critical Range Situations 5.1 The Concept of Range Stress - Conceptual Framework and Empirical Investigation 5.1.1 Range Stress as One Facet of Drivers’ Experience in Critical Range Situations 5.1.2 Adaption of the ACOR Model with the Focus on Range Stress 5.1.3 Empirical Investigation of Range Stress and the Effects of Resilience Factors 5.2 Reduction of Range Stress - Influence of Inter-Individual Differences and Technical System Characteristics 5.2.1 The Influence of Domain Specific Knowledge on Range Stress 5.2.2 The Influence of Practical Driving Experience on Range Stress 5.2.3 The Influence of Personality Traits and Technical System Characteristics on Range Stress 5.3 Everyday Range Stress - Relevance of Range Stress and Resilience Factors in the Daily Interaction with Battery Electric Vehicles 6 Research Objectives of the Dissertation 6.1 Research Objective 1: Providing a Conceptual Framework and Validating a Methodology to Examine Range Stress and the Influence of Resilience Factors 6.2 Research Objective 2: Examining the Influence of Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics on Range Stress 6.3 Research Objective 3: Investigation of Range Stress and Specific Resilience Factors in the Everyday Usage of Battery Electric Vehicles 7 Overview of the Methodology 7.1 Field-Experimental Studies to Investigate Range Stress in a Critical Range Situation 7.1.1 General Setup of the Field Studies 7.1.2 Specific Characteristics of the Particular Field Studies 7.2 Long-Term Field Trial to Investigate Range Stress in Everyday BEV Interaction 8 Discussion and Critical Reflection of the Results 8.1 Research Objective 1: Providing a Conceptual Framework and Validating a Methodology to Examine Range Stress and the Influence of Resilience Factors 8.1.1 The Adapted ACOR Model (ACOR-c) with the Focus on Range Stress 8.1.2 Empirical Investigation of Range Stress in a Field-Experimental Setting 8.2 Research Objective 2: Examining the Influence of Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics on Range Stress 8.2.1 Influence of Range-Related Knowledge on Range Stress 8.2.2 Influence of Practical Driving Experience on Range Stress 8.2.3 Subjective Range Competence as Relevant Factor for Drivers’ Range Experience 8.2.4 Influence of Personality Traits and Technical System Characteristics on Range Stress 8.3 Research Objective 3: Investigation of Range Stress and Specific Resilience Factors in the Everyday Usage of Battery Electric Vehicles 9 Implications of the Results 9.1 Implications for the Conceptual Framework and the Methodology 9.2 Implications Regarding Range-Related Knowledge, Practical Driving Experience, Personality Traits and Technical System Characteristics 9.3 Implications Regarding Range Stress in the Everyday Interaction with Battery Electric Vehicles 10 Conclusion 11 References II Preliminary Study: Understanding the impact of electric vehicle driving experience on range anxiety III Paper 1: First-time experience of critical range situations in BEV use and the positive effect of coping information IV Paper 2: User experience with electric vehicles while driving in a critical range situation – a qualitative approach V Paper 3: Individual differences in BEV drivers’ range stress during first encounter of a critical range situation VI Paper 4: Positive influence of practical electric vehicle driving experience and range related knowledge on drivers' experienced range stress VII Paper 5: Which factors can protect against range stress in everyday usage of battery electric vehicles? Towards enhancing sustainability of electric mobility systems VIII Curriculum Vitae IX Publications
20

PARAMETRIC ANALYSIS AND OPTIMIZATION OF LONG-RANGE BATTERY ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEMS

Tyler James Shelly (9755702) 14 December 2020 (has links)
<p>Due to increasing regulation on emissions and shifting consumer preferences, the wide adoption of battery electric vehicles (BEV) hinges on research and development of technologies that can extend system range. This can be accomplished either by increasing the battery size or via more efficient operation of the electrical and thermal systems. This thesis endeavours to accomplish the latter through comparative investigation of BEV integrated thermal management system (ITMS) performance across a range of ambient conditions (-20 °C to 40 °C), cabin setpoints (18 °C to 24 °C), and six different ITMS architectures. A dynamic ITMS modelling framework for a long-range electric vehicle is established with comprehensive sub models for the operation of the drive train, power electronics, battery, vapor compression cycle components, and cabin conditioning. This modelling framework is used to construct a baseline thermal management system, as well as for adaptation to four common systems. Additionally, a novel low-temperature waste heat recovery (LT WHR) system is proposed and shown to have potential benefits at low ambient temperatures through the reduction of the necessary cabin ventilation loading. While this system shows performance improvements, the regular WHR system offers the greatest benefit for long-range BEV drive cycles in terms of system range and transient response. With an optimal thermal management system found for long range BEV’s this system is then used as a boundary condition for a study on cooling of the battery. Battery conditioning, health, and as a result their along cell and system lifetime remains an additional concern of consumers as well as thermal systems engineers seeking to ensure safety and ensure longevity of EV battery cells. Three typical coolant flow orientations are studied to compare them under different flow conditions and thermal interface material performance. The battery cooling model is then coupled to the previously established dynamic modelling environment to demonstrate the added modelling capability (and necessity) for incorporating module-level cooling performance in both battery cooling studies and transient ITMS environments. </p>

Page generated in 0.057 seconds