• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 28
  • 22
  • 19
  • 16
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 245
  • 39
  • 36
  • 34
  • 26
  • 24
  • 24
  • 23
  • 23
  • 21
  • 21
  • 21
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Determining Factors for Bonded Warehouse Implementation : Case study exploring the key resources in bonded warehouse implementation

Olsson Löwerot, Agnes, Nilsson, Linnéa January 2022 (has links)
Background: Globalization has created new opportunities for firms to import and export goods across the world, international trade has gained significant importance to many. Although global trade between countries has many positive aspects, it has also demanded the right type of warehousing to store the goods as cost-efficiently as possible. Warehousing is the second largest cost within a company’s logistics areas after transportation. One way of lowering logistics costs is to implement a bonded warehouse. A bonded warehouse is a storage location where companies can store imported goods where the payment of duty costs to be postponed as long as needed, which provides companies with more liquidity and yield many cost-saving benefits. However, bonded warehouse operations and implementation are more complex than that of a non-bonded warehouse because special requirements for monitoring and auditing must be followed and executed correctly. It is, therefore, vital to choose a suitable strategy and proper implementation in order not to waste valuable resources. Manufacturers and retailers could as a result benefit from a resource and implementation framework to mitigate the risk of an inadequate implementation process. Purpose: The purpose of this study is to explore the requirements for implementing a bonded warehouse from a resource-based perspective. The aim is to derive a set of resources that are necessary for the implementation of a bonded warehouse. Further, the study will examine both tangible and intangible resources. Lastly, a framework that will illustrate the steps and requirements to implement a bonded warehouse is created. Method: This study takes on a qualitative research method, guided by a constructionist perspective this exploratory study uses a multiple case study approach to obtain thorough knowledge on the topic. Through semi-structured interviews with several companies, the topic of bonded warehouse implementation is explored. Moreover, the analysis was consistent with a grounded analysis approach where themes could emerge and provide answers to our research questions. Conclusion: The results illustrate the ten key resources required for bonded warehouse implementation: 1) Bonded Warehouse Project Plan 2) Bonded Warehouse Administration 3) Bonded Warehouse Reporting 4) Bonded Warehouse Layout Specifications 5) Bonded Warehouse Project Team 6) Bonded Warehouse Process Knowledge 7) Customs Knowledge 8) Customs IT-system.
182

Crack Path Selection in Adhesively Bonded Joints

Chen, Buo 23 November 1999 (has links)
This dissertation is to obtain an overall understanding of the crack path selection in adhesively bonded joints. Using Dow Chemical epoxy resin DER 331® with various levels of rubber concentration as an adhesive, and aluminum 6061-T6 alloy with different surface pretreatments as the adherends, both symmetric and asymmetric double cantilever beam (DCB) specimens are prepared and tested under mixed mode fracture conditions in this study. Post-failure analyses conducted on the failure surfaces indicate that the failure tends to be more interfacial as the mode II component in the fracture increases whereas more advanced surface preparation techniques can prevent failure at the interface. Through mechanically stretching the DCB specimens uniaxially until the adherends are plastically deformed, various levels of T-stress are achieved in the specimens. Test results of the specimens with various T-stresses demonstrate that the directional stability of cracks in adhesive bonds depends on the T-stress level. Cracks tend to be directionally stable when the T-stress is compressive whereas directionally unstable when the T-stress is tensile. However, the direction of crack propagation is mostly stabilized when more than 3% mode II fracture component is present in the loading regardless of the T-stress levels in the specimens. Since the fracture sequences in adhesive bonds are closely related to the energy balance in the system, an energy balance model is developed to predict the directional stability of cracks and the results are consistent with the experimental observations. Using the finite element method, the T-stress is shown to be closely related to the specimen geometry, indicating a specimen geometry dependence of the directional stability of cracks. This prediction is verified through testing DCB specimens with various adherend and adhesives thicknesses. By testing the specimens under both quasi-static and low-speed impact conditions, and using a high-speed camera to monitor the fracture sequence, the influences of the debond rate on the locus of failure and the directional stability of cracks are investigated. Post-failure analyses suggest that the failure tends to be more interfacial when the debond rate is low and tends to be more cohesive when the debond rate is high. However, this rate dependence of the locus of failure is greatly reduced when more advanced surface preparation techniques are used in preparing the specimens. The post-failure analyses also reveal that cracks tend to be more directionally unstable as the debond rate increases. Finally, employing interface mechanics and extending the criteria for the direction of crack propagation to adhesively bonded joints, the crack trajectories for directionally unstable cracks are predicted and the results are consistent with the overall features of the crack paths observed experimentally. / Ph. D.
183

Passive Damping in Stiffened Structures Using Viscoelastic Polymers

Ahmad, Naveed 16 April 2016 (has links)
Noise and vibration suppression is an important aspect in the design process of structures and machines. Undesirable vibrations can cause fatigue in a structure and are, therefore, a risk to the safety of a structure. One of the most effective and widely used methods of mitigating these unwanted vibrations from a system is passive damping, by using a viscoelastic material. This dissertation will primarily focus on constrained layer passive damping treatments in structures and the investigation of associated complex modes. The key idea behind constrained damping treatment is to increase damping as affected by the presence of a highly damped core layer vibrating mainly in shear. Our main goal was to incorporate viscoelastic material in a thick stiffened panel with plate-strip stiffeners, to enhance the damping characteristics of the structure. First, we investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the principle of virtual work, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the viscoelastic material was modeled using the complex modulus approach. We used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, by including complex modulus in the base and constraining layers. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically damped and non-proportionally damped structures. Secondly, we studied the free vibration response of an integrally stiffened and/or stepped plate. The stiffeners used here were plate-strip stiffeners, unlike the rib stiffeners often investigated by researchers. Both plate and stiffeners were analyzed using the first-order shear deformation theory. The deflections and rotations were assumed as a product of Timoshenko beam functions, chosen appropriately according to the given boundary conditions. Unlike Navier and Levy solution techniques, the approach used here can also be applied to fully clamped, free and cantilever supported stiffened plates. The governing differential equations were solved using the Rayleigh-Ritz method. The development of the stiffness and the mass matrices in the Ritz analysis was found to consume a huge amount of CPU time due to the recursive integration of Timoshenko beam functions. An approach is suggested to greatly decrease this amount of CPU time, by replacing the recursive integration in a loop structure in the computer program, with the analytical integration of the integrand in the loop. The numerical results were compared with the exact solutions available in the literature and the commercially available finite-element software ABAQUS. Some parametric studies were carried out to show the influence of certain important parameters on the overall natural frequencies of the stiffened plate. Finally, we investigated the damped response of an adhesively bonded plate employing plate-strip stiffeners, using FSDT for both the plate and stiffeners. The problem was analyzed using the principle of virtual work. At first, we did not consider damping in the adhesive in order to validate our code, by comparing our results with those available in the literature as well as with the results obtained using ABAQUS 3D model. The results were found to be highly satisfactory. We also considered the effect of changing the stiffness of the adhesive layer on the vibration of the bonded system. As a second step, we included damping in the stiffened structure using complex modulus approach, a widely used technique to represent the rheology of the viscoelastic material. We observed an overall increase in the natural frequencies of the system, due to the damping provided by the viscoelastic material. Moreover, it was noticed that when the thickness of the adhesive layer is increased, the natural frequencies and loss factor of the stiffened structure decrease. A viscoelastic material with high loss factor and small thickness will be a perfect design variable to obtain overall high damping in the structure. / Ph. D.
184

Development of Bi-Directional Module using Wafer-Bonded Chips

Kim, Woochan 06 January 2015 (has links)
Double-sided module exhibits electrical and thermal characteristics that are superior to wire-bonded counterpart. Such structure, however, induces more than twice the thermo-mechanical stress in a single-layer structure. Compressive posts have been developed and integrated into the double-sided module to reduce the stress to a level acceptable by silicon dice. For a 14 mm x 21 mm module carrying 6.6 mm x 6.6 mm die, finite-element simulation suggested an optimal design having four posts located 1 mm from the die; the z-direction stress at the chip was reduced from 17 MPa to 0.6 MPa. / Ph. D.
185

Impact of Device Parametric Tolerances on Current Sharing Behavior of a SiC Half-Bridge Power Module

Watt, Grace R. 22 January 2020 (has links)
This paper describes the design, fabrication, and testing of a 1.2 kV, 6.5 mΩ, half-bridge, SiC MOSFET power module to evaluate the impact of parametric device tolerances on electrical and thermal performance. Paralleling power devices increases current handling capability for the same bus voltage. However, inherent parametric differences among dies leads to unbalanced current sharing causing overstress and overheating. In this design, a symmetrical DBC layout is utilized to balance parasitic inductances in the current pathways of paralleled dies to isolate the impact of parametric tolerances. In addition, the paper investigates the benefits of flexible PCB in place of wire bonds for the gate loop interconnection to reduce and minimize the gate loop inductance. The balanced modules have dies with similar threshold voltages while the unbalanced modules have dies with unbalanced threshold voltages to force unbalanced current sharing. The modules were placed into a clamped inductive DPT and a continuous, boost converter. Rogowski coils looped under the wire bonds of the bottom switch dies to observe current behavior. Four modules performed continuously for least 10 minutes at 200 V, 37.6 A input, at 30 kHz with 50% duty cycle. The modules could not perform for multiple minutes at 250 V with 47.7 A (23 A/die). The energy loss differential for a ~17% difference in threshold voltage ranged from 4.52% (~10 µJ) to -30.9% (~30 µJ). The energy loss differential for a ~0.5% difference in V_th ranged from -2.26% (~8 µJ) to 5.66% (~10 µJ). The loss differential was dependent on whether current unbalance due to on-state resistance compensated current unbalance due to threshold voltage. While device parametric tolerances are inherent, if the higher threshold voltage devices can be paired with devices that have higher on-state resistance, the overall loss differential may perform similarly to well-matched dies. Lastly, the most consistently performing unbalanced module with 17.7% difference in V_th had 119.9 µJ more energy loss and was 22.2°C hotter during continuous testing than the most consistently performing balanced module with 0.6% difference inV_th. / Master of Science / This paper describes the design, construction, and testing of advanced power devices for use in electric vehicles. Power devices are necessary to supply electricity to different parts of the vehicle; for example, energy is stored in a battery as direct current (DC) power, but the motor requires alternating current (AC) power. Therefore, power electronics can alter the energy to be delivered as DC or AC. In order to carry more power, multiple devices can be used together just as 10 people can carry more weight than 1 person. However, because the devices are not perfect, there can be slight differences in the performance of one device to another. One device may have to carry more current than another device which could cause failure earlier than intended. In this research project, multiple power devices were placed into a package, or "module." In a control module, the devices were selected with similar properties to one another. In an experimental module, the devices were selected with properties very different from one another. It was determined that the when the devices were 17.7% difference, there was 119.9 µJ more energy loss and it was 22.2°C hotter than when the difference was only 0.6%. However, the severity of the difference was dependent on how multiple device characteristics interacted with one another. It may be possible to compensate some of the impact of device differences in one characteristic with opposing differences in another device characteristic.
186

Transition metal complexes of NHE ligands [(CO)4W-{NHE}] with E = C – Pb as tracers in environmental study: structures, energies, and natural bond orbital of molecular interaction / Hợp chất của kim loại chuyển tiếp chứa phối tử NHE đóng vai trò là những hợp chất điển hình trong nghiên cứu môi trường [(CO)4W- NHE}] với E = C – Pb: Cấu trúc, năng lượng, và orbital liên kết tự nhiên của tương tác phân tử

Nguyen, Thi Ai Nhung 09 December 2015 (has links) (PDF)
Quantum chemical calculations at BP86/TZVPP//BP86/SVP have been carried out for the Nheterocylic carbene and analogues complexes (tetrylene) [(CO)4W-NHE] (W4-NHE) with E = C – Pb. The tetrylene complexes W4-NHE possess end-on-bonded NHE ligands (E = C, Si), while for E = Ge and Sn, they possess slightly side-on-bonded ligands. The strongest side-on-bonded ligand when E = Pb has a bending angle of 102.9°. The trend of the bond dissociations energies (BDEs) for the W-E bond is W4-NHC > W4-NHSi > W4-NHGe > W4-NHSn > W4-NHPb. Analysis of the bonding situation suggests that the NHE ligands in W4-NHE are strong σ-donors and weak π-donors. This is because the tetrylenes have only one lone-pair orbital available for donation. The polarization of the W-E bond and the hybridization at atom E explain the trend in the bond strength of the tetrylene complexes W4-NHE. The W-E bonds of the heavier systems W4-NHE are strongly polarized toward atom E giving rise to rather weak electrostatic attraction with the tungsten atom which is the main source for the decreasing trend of the bond energies. The theoretical calculations suggest that transition-metal complexes tetrylenes [(CO)4W-{NHE}] (E = C – Pb) should be synthetically accessible compounds with tetrylenes NHE act as two-electron-donor ligands in complexes. / Phân tích cấu trúc và bản chất liên kết hóa học của hợp chất với kim loại chuyển tiếp chứa phối tử N-heterocyclic carbene và các đồng đẳng (tetrylene) [(CO)4W–NHE] (W4-NHE) với E = C – Pb sử dụng tính toán hóa lượng tử ở mức BP86/TZVPP//BP86/SVP. Cấu trúc của phức W4-NHE cho thấy các phối tử NHE với E = C, Si tạo với phân tử W(CO)4 một góc thẳng α = 180,0°, trong khi đó các phức W4-NHE thì phối tử NHE với E = Ge – Pb tạo liên kết với nhóm W(CO)4 một góc cong α < 180,0° và góc cong càng trở nên nhọn hơn khi E = Pb (α = 102.9°). Năng lượng phân ly liên kết của liên kết W-E giảm dần: W4-NHC > W4-NHSi > W4-NHGe > W4-NHSn > W4-NHPb. Tính toán hóa lượng tử trong phức [(CO)4W-{NHE}] (E = C – Pb) cho thấy phối tử tetrylene là chất cho electron. Điều này có thể do phối tử tetrylene chỉ giữ lại một cặp electron tại nguyên tử E để đóng vai trò là chất cho điện tử. Độ bền liên kết của phức W4-NHE được giải thích nhờ vào độ phân cực của liên kết W-E và sự lai hóa của nguyên tử trung tâm E. Nguyên nhân chính làm giảm dần năng lượng liên kết là do liên kết W-E của các phức nặng hơn W4-NHE bị phân cực mạnh về phía nguyên tử E dẫn đến lực hút tĩnh điện với nguyên tử W yếu dần. Hệ phức nghiên cứu được coi là hợp chất điển hình cho các nghiên cứu thực nghiệm.
187

Optimum design for sustainable 'green' overlays : controlling flexural failure

Lin, Y. January 2014 (has links)
The target of the ‘Green Overlays’ research was a cost effective, minimal disruption, sustainable and environmentally friendly alternative to the wholesale demolition, removal and complete reconstruction of the existing structural concrete pavement. The important problem of flexural resistance for strengthening concrete pavements with structural overlays has been scrutinised. A new mix design method for steel fibre reinforced, roller compacted, polymer modified, bonded concrete overlay has been proposed. The mixes developed were characterized of high flexural strength and high bond strength with the old concrete substrate. ‘Placeability’ and ‘compactability’ of the mix were two dominant issues during laboratory investigation. An innovative approach for establishing the relationship between Stress and Crack Face Opening Displacement for steel fibre reinforced concrete beams under flexure was developed. In addition, a new and simple method for calculating the interfacial Strain Energy Release Rate of both, a two-dimensional specimen and a three-dimensional model of the overlay pavement system were developed. This method can be readily and easily used by practicing engineers. Finally, a new test specimen and its loading configuration for measuring interfacial fracture toughness for concrete overlay pavements were established. The interfacial fracture toughness of a composite concrete beam, consisted of steel fibre-reinforced roller compacted polymer modified concrete bonded on conventional concrete and undergoing flexure, was assessed. In summary, this thesis presents four key findings: A new mix design method for steel fibre-reinforced roller compacted polymer modified concrete bonded on conventional concrete. A new method for establishing the fibre bridging law by an inverse analysis approach. A new, simplified method for calculating strain energy release rate at the interface of a composite beam. A new, innovative technique for calculating strain energy release rate at the interface of an overlaid pavement. The thesis contains a plethora of graphs, data-tables, examples and formulae, suitable for future researchers.
188

Comparaison de la force d'adhésion de deux types de résines de collage appliquées sur des surfaces métalliques traitées de différentes façons : une étude in vitro

Naseri, Lyna 09 1900 (has links)
L’objectif de cette étude était d’évaluer et de comparer la force d’adhésion de deux résines de collage: le ClearfilTM Esthetic Cement & DC Bond Kit (C) et le RelyXTM Unicem (R), sur trois adhérents différents : une surface d’émail, un alliage de métaux non précieux (Np) et un alliage de métaux semi-précieux (Sp). La surface des échantillons des alliages métalliques a subi différents traitements de surface. Sur l’émail (n=15) ainsi que sur les plaquettes d’alliages Np et Sp (n=15), des cylindres de résine étaient appliqués et polymérisés. Suite au processus de collage, les échantillons ont été incubés à 37°C pendant 24 heures, puis ont subi 500 cycles de thermocyclage. Des tests de cisaillement ont été effectués, suivi par l’analyse de la surface des échantillons au microscope à balayage électronique. Une comparaison de type T-test et des comparaisons multiples post hoc, ont été effectuées pour l’analyse statistique (p 0,05). Sur l’émail, les résultats ont démontré que la résine C présentait une force d'adhésion moyenne statistiquement supérieure (33,97±17,18 MPa) à la résine R (10,48±11,23 MPa) (p 0,05). Le type d’alliage utilisé n’influençait pas la force d’adhésion, et ce, peu importe le type de résine de collage (p>0,05). Pour le groupe Sp, la résine C a démontré une adhésion statistiquement supérieure à la résine R, et ce, pour tous les traitements de surface (p 0,05). En conclusion, la résine C a démontré des résultats d’adhésion significativement supérieurs à la résine R sur l’émail ainsi que sur presque toutes les surfaces traitées des alliages de métaux. / The objective of this study was to assess and compare the shear bond strength of two types of resin cements: ClearfilTM Esthetic Cement & DC Bond Kit (C) and RelyXTM Unicem (R) when these resins cements were applied to three different surfaces: enamel, non precious metal alloy (Np) and semi-precious metal alloy (Sp). Both types of alloy surfaces were treated differently. On both enamel (n=15) and alloy plates Np and Sp (n=15) surfaces, cylinder shaped resin cements were bonded and lightpolymerized. After the adhesion process, all samples were placed into an incubator at 37°C for 24 hours and 500 thermal cycles were accomplished. Shear bond strength tests followed by electron microscopy analysis were performed. Statistical analysis was done using a T-test comparison followed by a post hoc multiple comparisons (p 0.05). The results on enamel showed that the C resin cement had a statistically significant higher bond strength (33.97±17.18 MPa) than the R resin cement (10.48±11.23 MPa) (p 0.05). The type of alloy did not influence the bond strength regardless the type of resin cement (p 0.05). For the Sp group, the bond strength was statistically higher for the C resin than for the R resin and those results are valuable for all treated surfaces (p 0.05). To conclude, the C resin cement showed a statistically significant higher bond strength than the R resin cement with enamel and most of the metal alloy treated.
189

Durabilité des interfaces collées béton/renforts composites : développement d'une méthodologie d'étude basée sur un dispositif de fluage innovant conçu pour être couplé à un vieillissement hygrothermique / Durability of the stuck interfaces composite concretes-reinforcements

Houhou, Noureddine 28 September 2012 (has links)
Le programme de recherche développé dans le cadre de cette thèse a pour principal objectif de concevoir, réaliser et valider une méthodologie d'étude des effets du vieillissement des interfaces collées, basée sur l'utilisation d'un dispositif de fluage innovant pouvant être couplé à un vieillissement hygrothermique. Celui-ci reprend la configuration classique de joint à double recouvrement mais permet de solliciter sous charge constante l'assemblage collé béton/composite. Il présente de plus certaines spécificités (zones de joint non sollicitées, compatibilité avec une machine d'essai à simple recouvrement existante,...) qui permettent de recueillir un grand nombre de résultat expérimentaux complémentaires. En premier lieux, nos travaux présentent une synthèse bibliographique retraçant le contexte du renforcement par composites collés et précisant les principaux mécanismes physico-chimiques susceptibles d'affecter la durabilité des adhésifs. Le manuscrit décrit ensuite les travaux expérimentaux menés pour étudier le comportement mécanique et physico-chimique des deux adhésifs sélectionnés pour la réalisation des joints collés béton/composites. Finalement, une approche prédictive basée sur i) des tests de fluage thermo-stimulés, ii) sur l'application du Principe de Superposition Temps-Température et iii) sur l'utilisation du modèle rhéologique de Burger, a permis de proposer un modèle de fluage non linéaire pour chacun des deux systèmes de colle. La seconde partie des travaux expérimentaux concerne la conception et la validation d'un dispositif innovant destiné à la caractérisation du comportement en fluage des interfaces collées béton/composite. Un élément important du cahier des charges de ce dispositif était d'en limiter l'encombrement, de sorte qu'il soit possible de tester plusieurs corps d'épreuve dans une chambre climatique au volume réduit, en vue d'étudier les effets synergiques du fluage et du vieillissement environnemental sur la durabilité des joints collés. Dans ce contexte, un prototype capable de solliciter en fluage trois corps d'épreuves à double recouvrement réalisés avec le procédé de renforcement Sika®Carbodur®S et connectés sur un unique circuit hydraulique, a été conçu et réalisé. Les résultats issus du prototype ont permis de le valider, en vérifiant notamment le maintient dans le temps de la charge appliquée, et le comportement symétrique des corps d'épreuve à double recouvrement. Le comportement mécanique des interfaces collées s'est révélé répétable, symétrique et conforme aux diverses modélisations réalisées, soit en calculant la réponse instantanée de l'interface au moyen d'un logiciel aux Eléments Finis (E.F.) ou à partir du modèle analytique de Volkersen, soit en calculant la réponse différée de l'interface en intégrant le modèle de fluage non linéaire de l'adhésif identifié précédemment dans le calcul aux E.F.. La dernière partie des travaux présentés dans le manuscrit concerne la réalisation d'un banc complet de fluage impliquant 14 corps d'épreuves à double recouvrement. Ces corps d'épreuve sont réalisés pour moitié avec le système de renforcement Sika®Carbodur®S et pour l'autre moitié avec le système Compodex. Le banc de fluage est installé dans la salle de vieillissement hygrothermique du Département Laboratoire d'Autun (40°C ; 95% H.R.). Tous les corps d'épreuves sont sollicités en fluage par un système de chargement alimenté par un circuit hydraulique similaire à celui utilisé pour le prototype, mais complété par une centrale hydraulique régulant la pression à partir de la mesure d'un capteur de pression. Pour compléter ces caractérisations sur interfaces collées, des essais de vieillissement sont également menés sur des éprouvettes d'adhésifs massiques stockées dans la salle climatique, certaines d'entre elles étant simultanément soumises à des sollicitations de fluage / The main objective of the present research is to design, realize and validate a methodology for studying ageing of bonded interfaces, based on the development of an innovative experimental creep device that can be coupled to hydrothermal aging. This device is based on the double-lap joint shear test configuration and enables to apply a constant load to the bonded assembly. In addition, this device combines other complementary features (unsolicited bonded joint zones, compatibility with an existing single lap shear test machine ...) that allows collecting useful complementary data. First, our work presents a literature review outlining the context of strengthening by bonded composite and specifying the main physicochemical mechanisms that may affect the durability of adhesive joints. Then, the manuscript describes the experimental characterizations carried out to assess both mechanical and physicochemical behaviors of the two adhesives selected for this study and which will be used to bond the composite on RC specimens in a later stage. Finally, a predictive approach based on i) thermo-stimulated creep tests, ii) on the application of the Time-Temperature-Superposition Principle and iii) on the use of the Burger's rheological model, allowed us to propose a non-linear creep model for each of the two adhesive systems. The second part of the experimental work is devoted to the design and validation of an innovative device for characterizing the creep behavior of concrete / composite adhesively bonded interfaces. An important requirement in the specifications was to reduce the size of the experimental device, so that several test specimens could be installed in a climatic room of limited volume, in order to study the synergistic effects of creep and hydrothermal ageing on the joint durability. In this line, a prototype involving three double-shear test-specimens loaded by flat jacks actuated by a centralized hydraulic system, was designed and realized (test-specimens were prepared using the Sika®Carbodur® S strengthening system). Collected data made it possible to validate the creep setup, by checking the constancy of the applied load over time, and the symmetrical behavior of the double lap shear test bodies. The mechanical behavior of the bonded interfaces was found to be repeatable, symmetrical and in a fair agreement with numerical and analytical modeling, done either by calculating the instantaneous response of the interface using a finite element (FE) approach and the analytical Völkersen's model, or by simulating the delayed creep response of the interface using a FE model in which the non-linear creep behavior of the adhesive layer had been implemented. The last chapter of the manuscript presents the realization of a full-scale creep setup involving fourteen double lap test specimens. Half of the test specimens were strengthened with Sika®Carbodur ® S and the other half with Compodex® C12 reinforcing composite system. This creep setup was installed in the climatic room of the Département Laboratoire d'Autun (40°C, 95% R.H.). Test specimens are creep loaded thanks to flat jacks powered by a hydraulic system similar to that used in the prototype, but supplemented by an electronic station that ensures pressure regulation in the circuit, based on the measurements of a pressure sensor. Beside these characterizations of bonded interfaces, complementary tests are also conducted on samples of the buk adhesive material stored in the climatic room, some of these samples being simultaneously subjected to creep loading
190

POLYMERIC BONDED PHASES FOR PROTEIN EXTRACTION AND INTACT GLYCOPROTEIN ANALYSIS

Edwin Jhovany Alzate Rodriguez (7010366) 12 August 2019 (has links)
Polymer brushes are extremely versatile materials, as monomer choice allows the user to design a material with the desired physiochemical properties. Given the wide variety in monomer functionality, polymers can be fine-tuned for a specific application. In this work, polymer brushes bound to a silica support are designed and utilized to enhance performance of protein extraction and chromatographic separations. <br> The effectiveness of an analytical method is strongly affected by matrix composition, however, the presence of species other than the target analyte is usually unavoidable. An excellent technique will be able to identify and/or quantify the analyte even when its concentration is low compared with interfering molecules. Protein analysis is particularly challenging, since many proteins of clinical and scientific significance are present in complicated matrices such as plasma or cell lysates. <br>A common method to specifically separate a protein from a complicated matrix is solid phase extraction. In this method, a species (such as an antibody) with high specificity towards the target is immobilized onto a solid substrate (commonly beads or small particles for greater surface area). Next, the target is collected onto the surface, bound by the species. The solid substrate is rinsed of the liquid matrix, before elution of the target. Only the active species should interact with the analyte, and the surface should be otherwise inactive. However, nonspecific interactions lead to binding/adsorption of undesirable compounds. Therefore, an optimal substrate for protein extraction must be 1) easily and completely removable from the liquid phase, 2) have a high concentration of active sites for specific binding, and 3) exhibit low nonspecific binding. As part of this work, commercial magnetic particles were coated with a nonporous silica layer that tolerates the acid bath and silane coating necessary to attach a polymer layer. On the silane coating, a polymer layer was covalently bound; this layer contains epoxide active groups for immobilizing antibodies. These antibodies bind to the target molecule with high specificity, and low nonspecific binding. Obtained particles were evaluated for protein extraction, where antibodies as well as specifically engineered drug compounds were successfully bound to the particle surface.<br>Glycosylation influences several physiopathological processes in proteins. Glycans can act as receptors, modify protein solubility, and participate in folding conformation. Altered glycosylation is a common feature in tumorous cells. As such, many modifications in glycoproteins have been related to cancer, including increased branching of N-glycans or augmented units of sialic acid. Therefore, characterization of glycoproteins is important not only as a diagnostic tool, but also to monitor patients’ response to treatment. Furthermore, it is important in the growing field of monoclonal antibodies as drug carriers. <br>Among different methods used for glycosylation analysis, Hydrophilic Interaction Liquid Chromatography (HILIC) has showed important advantages over time-consuming digestion-MS based techniques. An adequate HILIC stationary phase can be used to rapidly differentiate glycoforms present in a sample. In the second part of this work, a polymer brush based bonded phase was developed as a HILIC stationary phase. The new polymer improved the separation of a model glycoprotein compared with a commercial HILIC column, while also exhibiting enhanced stability over a previous bonded phase synthetized in our group.<br><br>

Page generated in 0.3185 seconds