• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 15
  • 10
  • 8
  • 7
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 128
  • 77
  • 62
  • 50
  • 48
  • 33
  • 32
  • 29
  • 29
  • 29
  • 28
  • 28
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Abschlussbericht ESF Nachwuchsforschergruppe E-PISA: Energieautarke, drahtlose piezoelektrische MEMS Sensoren und Aktoren in der Medizintechnik und Industrie 4.0

Böttger, Simon, Bucher, Julien, Kriebel, David, Meinel, Katja, Solonenko, Dmytro, Stiebing, Martin, Stöckel, Chris 29 December 2020 (has links)
Im ESF geförderten Projekt E-PISA sind verschiedene, hoch innovative, von der globalen Forschungslandschaft ausgezeichnete und gleichzeitig industrierelevante technische Entwicklungen im Bereich der Mikrosystemtechnik, Medizintechnik und Industrie 4.0 vorangetrieben worden. Fokus der technischen Entwicklung waren zum einen Grundlagenforschung und zum anderen Applikationen von Mikrosystemen auf Basis piezoelektrischer Dünnschichten mit Aluminiumnitrid und Elektronik mit Carbon-Nano-Tubes.:Liebe LeserInnen, 5 E-PISA Team 6 Innovative Applikationen 11 Innovative Technologien 13 Regionaler Bezug 15 Wissenstransfer in Zahlen 17 Piezoelektrisches Dünnschicht-Aluminiumnitrid für Mikrosysteme 19 Mikro-opto-elektro-mechanische Systeme 23 Acoustic Emission Sensoren 29 Drucksensoren für medizinische Katheter 33 Kristallwachstum 37 Innovationssysteme, Märkte und Forschungsnetzwerke 45 Zuverlässigkeit piezoelektrischer Schichtsysteme der Mikrotechnologie 51 Veröffentlichungen und Auszeichnungen 53 Zukunftsfähigkeit 61 Danksagung 63
202

Electronic transport through defective semiconducting carbon nanotubes

Teichert, Fabian, Zienert, Andreas, Schuster, Jörg, Schreiber, Michael 12 December 2018 (has links)
We investigate the electronic transport properties of semiconducting (m, n) carbon nanotubes (CNTs) on the mesoscopic length scale with arbitrarily distributed realistic defects. The study is done by performing quantum transport calculations based on recursive Green's function techniques and an underlying density-functional-based tight-binding model for the description of the electronic structure. Zigzag CNTs as well as chiral CNTs of different diameter are considered. Different defects are exemplarily represented by monovacancies and divacancies. We show the energy-dependent transmission and the temperature-dependent conductance as a function of the number of defects. In the limit of many defetcs, the transport is described by strong localization. Corresponding localization lengths are calculated (energy dependent and temperature dependent) and systematically compared for a large number of CNTs. It is shown, that a distinction by (m − n)mod 3 has to be drawn in order to classify CNTs with different bandgaps. Besides this, the localization length for a given defect probability per unit cell depends linearly on the CNT diameter, but not on the CNT chirality. Finally, elastic mean free paths in the diffusive regime are computed for the limit of few defects, yielding qualitatively same statements.
203

Quantum Transport Through Carbon Nanotubes Functionalized With Antiferromagnetic Molecules

Schnee, Michael 12 August 2019 (has links)
The subject of this thesis is to study the interaction between carbon nanotubes (CNTs) and antiferromagnetic tetrametallic molecules attached to them. By employing quantum transport measurements, the sensitivity to sense the interactions is greatly increased, because the quantum dot is very susceptible to changes in its environment. The properties of carbon nanotubes can be altered by chemical functionalization with the aforementioned molecules, where the attachment is performed covalently via a ligand exchange with the CNT. The thesis is partitioned into two main parts: the first part presents experiments performed on tetramanganese functionalized CNTs, whereas for the second similar studies are conducted, except manganese is replaced by cobalt. Both complexes exhibit an antiferromagnetic ground state, yet the metal spin of manganese (S=5/2) is reduced to S=3/2 for cobalt. Additionally, an altered device preparation has been employed during the second part, leading to a strong suppression of the background signal. Quantum transport measurements at T=4K on manganese-functionalized CNTs show a very regular pattern of Coulomb diamonds, indicating only a mild disturbance of the quantum dot's electron system by the covalent bond. Moreover, the charging energy reveals a wave function extending over the entire device dimensions. However, at T=30mK in the tunneling current a strong noise emerges, when repeatedly measuring over an hour while keeping external biases constant. Additionally, these time traces are superimposed by a long-term background, which is removed by a correction algorithm plus a subsequent digitization. The remaining signal reveals a random telegraph signal (RTS) which is extensively studied and from its statistics the equivalent temperature of T=654mK for the excitation of the system is extracted. The quantum transport experiments conducted on cobalt-functionalized CNTs show a much better data quality of the coulomb diamonds, which is ascribed to the alteration in the device's preparation. From the line shape of the Coulomb oscillations as well as from the Coulomb staircases an electron temperature of about T=500mK is extracted. Moreover, a magnetic field dependence of the stability diagrams is apparent, attributable to Zeeman splitting. The respective Landé factor of g=1.73 is, compared to similar CNT quantum dot systems, unusually low. It is as attributed to an increased spin-orbit interaction between the conduction electrons and the cobalt's nuclei. The respective time traces exhibit or lack an RTS signal, depending on their external biases. Regarding the Coulomb diamonds, an essential prerequisite for the occurrence of an RTS is the proximity to a resonance, which is equatable to a high sensitivity of the quantum dot detector. Considering the available energy, the underlying process that is the cause for the emergence of the RTS is ascertained to be an internal excitation of the antiferromagnetic states of the metallic core.
204

Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications

Melzer, Marcel, Waechtler, Thomas, Müller, Steve, Fiedler, Holger, Hermann, Sascha, Rodriguez, Raul D., Villabona, Alexander, Sendzik, Andrea, Mothes, Robert, Schulz, Stefan E., Zahn, Dietrich R.T., Hietschold, Michael, Lang, Heinrich, Gessner, Thomas January 2013 (has links)
The following is the accepted manuscript of the original article: Marcel Melzer, Thomas Waechtler, Steve Müller, Holger Fiedler, Sascha Hermann, Raul D. Rodriguez, Alexander Villabona, Andrea Sendzik, Robert Mothes, Stefan E. Schulz, Dietrich R.T. Zahn, Michael Hietschold, Heinrich Lang and Thomas Gessner “Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications”, Microelectron. Eng. 107, 223-228 (2013). Digital Object Identifier: 10.1016/j.mee.2012.10.026 Available via http://www.sciencedirect.com or http://dx.doi.org/10.1016/j.mee.2012.10.026 © 2013 Elsevier B.V. Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that a decoration of the CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu can enhance the performance of CNT-based interconnects. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C. This paper focuses on different thermal in-situ pre-treatments of the CNTs with O2, H2O and wet O2 at temperatures up to 300°C prior to the ALD process. Analyses by transmission electron microscopy show that in most cases the CuxO forms particles on the multi-walled CNTs (MWCNTs). This behavior can be explained by the low affinity of Cu to form carbides. Nevertheless, also the formation of areas with rather layer-like growth was observed in case of an oxidation with wet O2 at 300°C. This growth mode indicates the partial destruction of the MWCNT surface. However, the damages introduced into the MWCNTs during the pre treatment are too low to be detected by Raman spectroscopy.
205

Resolving Local Magnetization Structures by Quantitative Magnetic Force Microscopy / Auflösung lokaler Magnetisierungsstrukturen mittels quantitativer Magnetkraftmikroskopie

Vock, Silvia 22 July 2014 (has links) (PDF)
Zur Aufklärung der lokalen Magnetisierungs- und magnetischen Streufeldstruktur in ferromagnetischen und supraleitenden Materialien wurden magnetkraftmikroskopische (Magnetkraftmikroskopie-MFM) Untersuchungen durchgeführt und quantitativ ausgewertet. Für eine solch quantitative Auswertung muss der Einfluß der verwendeten MFM-Spitzen auf das MFM-Bild bestimmt und in geeigneter Weise subtrahiert werden. Hierzu wurden Spitzenkalibrierungsroutinen und ein Verfahren zur Entfaltung der gemessenen MFM-Daten implementiert, das auf der Wiener Dekonvolution basiert. Mit Hilfe dieser Prozedur können sowohl die räumliche Ausdehnung als auch die Größe der Streufelder direkt aus gemessenen MFM-Bildern bestimmt werden. Gezeigt wurde diese Anwendung für die Durchmesserbestimmung von Blasendomänen in einer (Co/Pd)-Multilage und für die Bestimmung der temperaturabhängigen magnetischen Eindringtiefe in einem supraleitendem BaFe2(As0.24P0.76)2 Einkristall. Desweiteren konnte durch die Kombination von mikromagnetischen Rechnungen und der quantitativen MFM-Datenanalyse die Existenz einer dreidimensionalen Vortex-Struktur am Ende von Co48Fe52-Nanodrähten nachgewiesen werden. Damit ist es gelungen die Tiefensensitivität der Magnetkraftmikroskopie erfolgreich in die Rekonstruktion der vermessenen Magnetisierungsstruktur einzubeziehen.
206

Control of transmission system power flows

Kreikebaum, Frank Karl 13 January 2014 (has links)
Power flow (PF) control can increase the utilization of the transmission system and connect lower cost generation with load. While PF controllers have demonstrated the ability to realize dynamic PF control for more than 25 years, PF control has been sparsely implemented. This research re-examines PF control in light of the recent development of fractionally-rated PF controllers and the incremental power flow (IPF) control concept. IPF control is the transfer of an incremental quantity of power from a specified source bus to specified destination bus along a specified path without influencing power flows on circuits outside of the path. The objectives of the research are to develop power system operation and planning methods compatible with IPF control, test the technical viability of IPF control, develop transmission planning frameworks leveraging PF and IPF control, develop power system operation and planning tools compatible with PF control, and quantify the impacts of PF and IPF control on multi-decade transmission planning. The results suggest that planning and operation of the power system are feasible with PF controllers and may lead to cost savings. The proposed planning frameworks may incent transmission investment and be compatible with the existing transmission planning process. If the results of the planning tool demonstration scale to the national level, the annual savings in electricity expenditures would be $13 billion per year (2010$). The proposed incremental packetized energy concept may facilitate a reduction in the environmental impact of energy consumption and lead to additional cost savings.
207

Resolving Local Magnetization Structures by Quantitative Magnetic Force Microscopy

Vock, Silvia 09 May 2014 (has links)
Zur Aufklärung der lokalen Magnetisierungs- und magnetischen Streufeldstruktur in ferromagnetischen und supraleitenden Materialien wurden magnetkraftmikroskopische (Magnetkraftmikroskopie-MFM) Untersuchungen durchgeführt und quantitativ ausgewertet. Für eine solch quantitative Auswertung muss der Einfluß der verwendeten MFM-Spitzen auf das MFM-Bild bestimmt und in geeigneter Weise subtrahiert werden. Hierzu wurden Spitzenkalibrierungsroutinen und ein Verfahren zur Entfaltung der gemessenen MFM-Daten implementiert, das auf der Wiener Dekonvolution basiert. Mit Hilfe dieser Prozedur können sowohl die räumliche Ausdehnung als auch die Größe der Streufelder direkt aus gemessenen MFM-Bildern bestimmt werden. Gezeigt wurde diese Anwendung für die Durchmesserbestimmung von Blasendomänen in einer (Co/Pd)-Multilage und für die Bestimmung der temperaturabhängigen magnetischen Eindringtiefe in einem supraleitendem BaFe2(As0.24P0.76)2 Einkristall. Desweiteren konnte durch die Kombination von mikromagnetischen Rechnungen und der quantitativen MFM-Datenanalyse die Existenz einer dreidimensionalen Vortex-Struktur am Ende von Co48Fe52-Nanodrähten nachgewiesen werden. Damit ist es gelungen die Tiefensensitivität der Magnetkraftmikroskopie erfolgreich in die Rekonstruktion der vermessenen Magnetisierungsstruktur einzubeziehen.:Introduction 6 1 Contrast formation in Magnetic Force Microscopy (MFM) 9 1.1 Type of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.1 Relevant interaction forces . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.2 Magnetic interaction mechanisms . . . . . . . . . . . . . . . . . . . 11 1.2 Basic magnetostatics of the tip-sample system . . . . . . . . . . . . . . . . 12 1.2.1 General magnetostatic expressions . . . . . . . . . . . . . . . . . . . 12 1.2.2 Description of the tip sample system . . . . . . . . . . . . . . . . . 14 1.2.3 Magnetostatics in Fourier space . . . . . . . . . . . . . . . . . . . . 15 2 Instrumentation 20 2.1 Scanning Force Microscopy (SFM) . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.1 Measurement principle and operation modes . . . . . . . . . . . . . 20 2.1.2 Dynamic mode SFM . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Lift mode MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Non-contact MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Vibrating Sample Magnetometry . . . . . . . . . . . . . . . . . . . . . . . 26 3 Quantitative Magnetic Force Microscopy 28 3.1 The challenge of MFM image inversion . . . . . . . . . . . . . . . . . . . . 28 3.1.1 Description of the problem and state of the art . . . . . . . . . . . 28 3.1.2 The point probe approximations . . . . . . . . . . . . . . . . . . . . 31 3.1.3 The transfer function approach . . . . . . . . . . . . . . . . . . . . 33 3.2 Tip calibration: Adapted Wiener deconvolution . . . . . . . . . . . . . . . 39 3.2.1 Details of the procedure . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.2 Evaluation of possible errors . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 MFM probes and their specific characteristics . . . . . . . . . . . . . . . . 49 3.5 Calibration samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6 Detection of tip-sample modification . . . . . . . . . . . . . . . . . . . . . 55 4 Quantitative MFM with iron filled carbon nanotube sensors (Fe-CNT) 56 4.1 The monopole character of Fe-CNT sensors . . . . . . . . . . . . . . . . . . 57 4.1.1 Calibration within the point probe approximation . . . . . . . . . . 57 4.1.2 Calibration results and discussion . . . . . . . . . . . . . . . . . . . 59 4.1.3 Quantitative MFM on a [Co/Pt]/Co/Ru multilayer . . . . . . . . . 62 4.2 Inplane sensitive MFM with Fe-CNT sensors . . . . . . . . . . . . . . . . . 63 4.2.1 Bimodal MFM technique . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.2 Comparison between calculated and measured in-plane contrast . . 66 5 Quantification of magnetic nanoobjects in MFM measurements 70 5.1 Bubble domains in a [Co/Pd]80 multilayer . . . . . . . . . . . . . . . . . . 71 5.1.1 Micromagnetic model . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.2 MFM image simulation . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 Quantitative assessment of the magnetic penetration depth in superconductors 78 5.2.1 Comparison of methods . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.2 Experimental determination of the temperature dependent penetration depth in a BaFe2(As0:24P0:76)2 single crystal . . . . . . . . . . . 83 6 Magnetization studies of CoFe nanowire arrays on a local and global scale 87 6.1 Revisiting the estimation of demagnetizing fields in magnetic nanowire arrays 88 6.1.1 Available approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1.2 Calculation of demagnetizing fields in nanowire arrays . . . . . . . . 91 6.2 Micromagnetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Combination of demagnetizing field calculations and micromagnetic simulation100 6.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.5 Global hysteresis measurements of CoFe nanowire arrays with varying length 104 6.6 Local magnetic characterization of a CoFe nanowire array by quantitative MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.6.1 Magnetic structure of individual nanowires . . . . . . . . . . . . . . 107 6.6.2 Magnetization reversal of the nanowire array . . . . . . . . . . . . . 110 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Conclusions and Outlook 119 Bibliography 121 Acknowledgements 135
208

Evaluation of novel metalorganic precursors for atomic layer deposition of Nickel-based thin films / Evaluierung neuartiger metallorganischen Präkursoren für Atomlagenabscheidung von Nickel-basierten Dünnschichten

Sharma, Varun 04 June 2015 (has links) (PDF)
Nickel und Nickel (II) -oxid werden in großem Umfang in fortgeschrittenen elektronischen Geräten verwendet. In der Mikroelektronik-Industrie wird Nickel verwendet werden, um Nickelsilizid bilden. Die Nickelmono Silizid (NiSi) wurde als ausgezeichnetes Material für Source-Drain-Kontaktanwendungen unter 45 nm-CMOS-Technologie entwickelt. Im Vergleich zu anderen Siliziden für die Kontaktanwendungen verwendet wird NiSi wegen seines niedrigen spezifischen Widerstand, niedrigen Kontaktwiderstand, relativ niedrigen Bildungstemperatur und niedrigem Siliziumverbrauchs bevorzugt. Nickel in Nickelbasis-Akkus und ferromagnetischen Direktzugriffsspeicher (RAMs) verwendet. Nickel (II) oxid wird als Transistor-Gate-Oxid und Oxid in resistive RAM genutzt wird. Atomic Layer Deposition (ALD) ist eine spezielle Art der Chemical Vapor Deposition (CVD), das verwendet wird, um sehr glatte sowie homogene Dünnfilme mit hervorragenden Treue auch bei hohen Seitenverhältnissen abzuscheiden. Es basiert auf selbstabschließenden sequentielle Gas-Feststoff-Reaktionen, die eine präzise Steuerung der Filmdicke auf wenige Angström lassen sich auf der Basis. Zur Herstellung der heutigen 3D-elektronische Geräte, sind Technologien wie ALD erforderlich. Trotz der Vielzahl von praktischen Anwendungen von Nickel und Nickel (II) -oxid, sind einige Nickelvorstufen zur thermischen basierend ALD erhältlich. Darüber hinaus haben diese Vorstufen bei schlechten Filmeigenschaften führte und die Prozesseigenschaften wurden ebenfalls begrenzt. Daher in dieser Masterarbeit mussten die Eigenschaften verschiedener neuartiger Nickelvorstufen zu bewerten. Alle neuen Vorstufen heteroleptische (verschiedene Arten von Liganden) und Komplexe wurden vom Hersteller speziell zur thermischen basierend ALD aus reinem Nickel mit H 2 als ein Co-Reaktionsmittel gestaltet. Um die neuartige Vorläufer zu untersuchen, wurde eine neue Methode entwickelt, um kleine Mengen in einer sehr zeitsparend (bis zu 2 g) von Ausgangsstoffen zu testen. Diese Methodologie beinhaltet: TGA / DTA-Kurve analysiert der Vorstufen, thermische Stabilitätstests in dem die Vorläufer (<0,1 g) wurden bei erhöhter Temperatur in einer abgedichteten Umgebung für mehrere Stunden wurde die Abscheidung Experimenten und Film Charakterisierungen erhitzt. Die Abscheidungen wurden mit Hilfe der in situ Quarzmikrowaage überwacht, während die anwendungsbezogenen Filmeigenschaften, wie chemische Zusammensetzung, physikalische Phase, Dicke, Dichte, Härte und Schichtwiderstand wurden mit Hilfe von ex situ Messverfahren untersucht. Vor der Evaluierung neuartiger Nickelvorstufen ein Benchmark ALD-Prozess war vom Referenznickelvorläufer (Ni (AMD)) und Luft als Reaktionspartner entwickelt. Das Hauptziel der Entwicklung und Optimierung von solchen Benchmark-ALD-Prozess war es, Standard-Prozessparameter wie zweite Reaktionspartner Belichtungszeiten, Argonspülung Zeiten, gesamtprozessdruck, beginnend Abscheidungstemperatur und Gasströme zu extrahieren. Diese Standard-Prozessparameter mussten verwendet, um die Prozessentwicklung Aufgabe (das spart Vorläufer Verbrauch) zu verkürzen und die Sublimationstemperatur Optimierung für jede neuartige Vorstufe werden. Die ALD Verhalten wurde in Bezug auf die Wachstumsrate durch Variation des Nickelvorläuferbelichtungszeit, Vorläufer Temperatur und Niederschlagstemperatur überprüft. / Nickel and nickel(II) oxide are widely used in advanced electronic devices . In microelectronic industry, nickel is used to form nickel silicide. The nickel mono-silicide (NiSi) has emerged as an excellent material of choice for source-drain contact applications below 45 nm node CMOS technology. As compared to other silicides used for the contact applications, NiSi is preferred because of its low resistivity, low contact resistance, relatively low formation temperature and low silicon consumption. Nickel is used in nickel-based rechargeable batteries and ferromagnetic random access memories (RAMs). Nickel(II) oxide is utilized as transistor gate-oxide and oxide in resistive RAMs. Atomic Layer Deposition (ALD) is a special type of Chemical Vapor Deposition (CVD) technique, that is used to deposit very smooth as well as homogeneous thin films with excellent conformality even at high aspect ratios. It is based on self-terminating sequential gas-solid reactions that allow a precise control of film thickness down to few Angstroms. In order to fabricate todays 3D electronic devices, technologies like ALD are required. In spite of huge number of practical applications of nickel and nickel(II) oxide, a few nickel precursors are available for thermal based ALD. Moreover, these precursors have resulted in poor film qualities and the process properties were also limited. Therefore in this master thesis, the properties of various novel nickel precursors had to be evaluated. All novel precursors are heteroleptic (different types of ligands) complexes and were specially designed by the manufacturer for thermal based ALD of pure nickel with H 2 as a co-reactant. In order to evaluate the novel precursors, a new methodology was designed to test small amounts (down to 2 g) of precursors in a very time efficient way. This methodology includes: TGA/DTA curve analyses of the precursors, thermal stability tests in which the precursors (< 0.1 g) were heated at elevated temperatures in a sealed environment for several hours, deposition experiments, and film characterizations. The depositions were monitored with the help of in situ quartz crystal microbalance, while application related film properties like chemical composition, physical phase, thickness, density, roughness and sheet resistance were investigated with the help of ex situ measurement techniques. Prior to the evaluation of novel nickel precursors, a benchmark ALD process was developed from the reference nickel precursor (Ni(amd)) and air as a co-reactant. The main goal of developing and optimizing such benchmark ALD process was to extract standard process parameters like second-reactant exposure times, Argon purge times, total process pressure, starting deposition temperature and gas flows. These standard process parameters had to be utilized to shorten the process development task (thus saving precursor consumption) and optimize the sublimation temperature for each novel precursor. The ALD behaviour was checked in terms of growth rate by varying the nickel precursor exposure time, precursor temperature and deposition temperature.
209

Evaluation of novel metalorganic precursors for atomic layer deposition of Nickel-based thin films

Sharma, Varun 17 February 2015 (has links)
Nickel und Nickel (II) -oxid werden in großem Umfang in fortgeschrittenen elektronischen Geräten verwendet. In der Mikroelektronik-Industrie wird Nickel verwendet werden, um Nickelsilizid bilden. Die Nickelmono Silizid (NiSi) wurde als ausgezeichnetes Material für Source-Drain-Kontaktanwendungen unter 45 nm-CMOS-Technologie entwickelt. Im Vergleich zu anderen Siliziden für die Kontaktanwendungen verwendet wird NiSi wegen seines niedrigen spezifischen Widerstand, niedrigen Kontaktwiderstand, relativ niedrigen Bildungstemperatur und niedrigem Siliziumverbrauchs bevorzugt. Nickel in Nickelbasis-Akkus und ferromagnetischen Direktzugriffsspeicher (RAMs) verwendet. Nickel (II) oxid wird als Transistor-Gate-Oxid und Oxid in resistive RAM genutzt wird. Atomic Layer Deposition (ALD) ist eine spezielle Art der Chemical Vapor Deposition (CVD), das verwendet wird, um sehr glatte sowie homogene Dünnfilme mit hervorragenden Treue auch bei hohen Seitenverhältnissen abzuscheiden. Es basiert auf selbstabschließenden sequentielle Gas-Feststoff-Reaktionen, die eine präzise Steuerung der Filmdicke auf wenige Angström lassen sich auf der Basis. Zur Herstellung der heutigen 3D-elektronische Geräte, sind Technologien wie ALD erforderlich. Trotz der Vielzahl von praktischen Anwendungen von Nickel und Nickel (II) -oxid, sind einige Nickelvorstufen zur thermischen basierend ALD erhältlich. Darüber hinaus haben diese Vorstufen bei schlechten Filmeigenschaften führte und die Prozesseigenschaften wurden ebenfalls begrenzt. Daher in dieser Masterarbeit mussten die Eigenschaften verschiedener neuartiger Nickelvorstufen zu bewerten. Alle neuen Vorstufen heteroleptische (verschiedene Arten von Liganden) und Komplexe wurden vom Hersteller speziell zur thermischen basierend ALD aus reinem Nickel mit H 2 als ein Co-Reaktionsmittel gestaltet. Um die neuartige Vorläufer zu untersuchen, wurde eine neue Methode entwickelt, um kleine Mengen in einer sehr zeitsparend (bis zu 2 g) von Ausgangsstoffen zu testen. Diese Methodologie beinhaltet: TGA / DTA-Kurve analysiert der Vorstufen, thermische Stabilitätstests in dem die Vorläufer (<0,1 g) wurden bei erhöhter Temperatur in einer abgedichteten Umgebung für mehrere Stunden wurde die Abscheidung Experimenten und Film Charakterisierungen erhitzt. Die Abscheidungen wurden mit Hilfe der in situ Quarzmikrowaage überwacht, während die anwendungsbezogenen Filmeigenschaften, wie chemische Zusammensetzung, physikalische Phase, Dicke, Dichte, Härte und Schichtwiderstand wurden mit Hilfe von ex situ Messverfahren untersucht. Vor der Evaluierung neuartiger Nickelvorstufen ein Benchmark ALD-Prozess war vom Referenznickelvorläufer (Ni (AMD)) und Luft als Reaktionspartner entwickelt. Das Hauptziel der Entwicklung und Optimierung von solchen Benchmark-ALD-Prozess war es, Standard-Prozessparameter wie zweite Reaktionspartner Belichtungszeiten, Argonspülung Zeiten, gesamtprozessdruck, beginnend Abscheidungstemperatur und Gasströme zu extrahieren. Diese Standard-Prozessparameter mussten verwendet, um die Prozessentwicklung Aufgabe (das spart Vorläufer Verbrauch) zu verkürzen und die Sublimationstemperatur Optimierung für jede neuartige Vorstufe werden. Die ALD Verhalten wurde in Bezug auf die Wachstumsrate durch Variation des Nickelvorläuferbelichtungszeit, Vorläufer Temperatur und Niederschlagstemperatur überprüft.:Lists of Abbreviations and Symbols VIII Lists of Figures and Tables XIV 1 Introduction 1 I Theoretical Part 3 2 Nickel and Nickel Oxides 4 2.1 Introduction and Existence 5 2.2 Material properties of Nickel and Nickel Oxide 5 2.3 Application in electronic industry 5 3 Atomic Layer Deposition 7 3.1 History 8 3.2 Definition 8 3.3 Features of thermal-ALD 8 3.3.1 ALD growth mechanism – an ideal view 8 3.3.2 ALD growth behaviour 10 3.3.3 Growth mode 11 3.3.4 ALD temperature window 11 3.4 Benefits and limitations 12 3.5 Precursor properties for thermal-ALD 13 3.6 ALD & CVD of Nickel – A literature survey 13 4 Metrology 17 4.1 Thermal analysis of precursors 18 4.2 Film and growth characterization 21 4.2.1 Quartz Crystal Microbalance 21 4.2.2 Spectroscopic Ellipsometry 24 4.2.3 X-Ray Photoelectron Spectroscopy 28 4.2.4 Scanning Electron Microscopy 29 4.2.5 X-Ray Reflectometry and X-Ray Diffraction 29 4.2.6 Four Point Probe Technique 20 5 Rapid Thermal Processing 32 5.1 Introduction 33 5.2 Basics of RTP 33 5.3 Nickel Silicides-A literature survey 33 II Experimental Part 36 6 Methodologies 37 6.1 Experimental setup 38 6.2 ALD process 41 6.2.1 ALD process types and substrate setups 41 6.2.2 Process parameters 41 6.3 Experimental procedure 42 6.3.1 Tool preparation 42 6.3.2 Thermal analysis and ALD experiments from nickel precursors 43 6.3.3 Data acquisition and evaluation 44 6.3.4 Characterization of film properties 46 7 Results and discussion 48 7.1 Introduction 49 7.2 QCM verification with Aluminum Oxide ALD process 49 7.3 ALD process from the reference precursor 50 7.3.1 Introduction 50 7.3.2 TG analysis for Ni(amd) precursor 51 7.3.3 Thermal stability test for Ni(amd) 51 7.3.4 ALD process optimization 52 7.3.5 Film properties 54 7.4 Evaluating the novel Nickel precursors 55 7.4.1 Screening tests for precursor P1 55 7.4.2 Screening tests for precursor P2 62 7.4.3 Screening tests for precursor P3 66 7.4.4 Screening tests for precursor P4 70 7.4.5 Screening tests for precursor P5 72 7.5 Comparison of all nickel precursors used in this work 74 8 Conclusions and outlook 77 References 83 III Appendix 101 A Deposition temperature control & Ellipsometry model 102 B Gas flow plan 105 / Nickel and nickel(II) oxide are widely used in advanced electronic devices . In microelectronic industry, nickel is used to form nickel silicide. The nickel mono-silicide (NiSi) has emerged as an excellent material of choice for source-drain contact applications below 45 nm node CMOS technology. As compared to other silicides used for the contact applications, NiSi is preferred because of its low resistivity, low contact resistance, relatively low formation temperature and low silicon consumption. Nickel is used in nickel-based rechargeable batteries and ferromagnetic random access memories (RAMs). Nickel(II) oxide is utilized as transistor gate-oxide and oxide in resistive RAMs. Atomic Layer Deposition (ALD) is a special type of Chemical Vapor Deposition (CVD) technique, that is used to deposit very smooth as well as homogeneous thin films with excellent conformality even at high aspect ratios. It is based on self-terminating sequential gas-solid reactions that allow a precise control of film thickness down to few Angstroms. In order to fabricate todays 3D electronic devices, technologies like ALD are required. In spite of huge number of practical applications of nickel and nickel(II) oxide, a few nickel precursors are available for thermal based ALD. Moreover, these precursors have resulted in poor film qualities and the process properties were also limited. Therefore in this master thesis, the properties of various novel nickel precursors had to be evaluated. All novel precursors are heteroleptic (different types of ligands) complexes and were specially designed by the manufacturer for thermal based ALD of pure nickel with H 2 as a co-reactant. In order to evaluate the novel precursors, a new methodology was designed to test small amounts (down to 2 g) of precursors in a very time efficient way. This methodology includes: TGA/DTA curve analyses of the precursors, thermal stability tests in which the precursors (< 0.1 g) were heated at elevated temperatures in a sealed environment for several hours, deposition experiments, and film characterizations. The depositions were monitored with the help of in situ quartz crystal microbalance, while application related film properties like chemical composition, physical phase, thickness, density, roughness and sheet resistance were investigated with the help of ex situ measurement techniques. Prior to the evaluation of novel nickel precursors, a benchmark ALD process was developed from the reference nickel precursor (Ni(amd)) and air as a co-reactant. The main goal of developing and optimizing such benchmark ALD process was to extract standard process parameters like second-reactant exposure times, Argon purge times, total process pressure, starting deposition temperature and gas flows. These standard process parameters had to be utilized to shorten the process development task (thus saving precursor consumption) and optimize the sublimation temperature for each novel precursor. The ALD behaviour was checked in terms of growth rate by varying the nickel precursor exposure time, precursor temperature and deposition temperature.:Lists of Abbreviations and Symbols VIII Lists of Figures and Tables XIV 1 Introduction 1 I Theoretical Part 3 2 Nickel and Nickel Oxides 4 2.1 Introduction and Existence 5 2.2 Material properties of Nickel and Nickel Oxide 5 2.3 Application in electronic industry 5 3 Atomic Layer Deposition 7 3.1 History 8 3.2 Definition 8 3.3 Features of thermal-ALD 8 3.3.1 ALD growth mechanism – an ideal view 8 3.3.2 ALD growth behaviour 10 3.3.3 Growth mode 11 3.3.4 ALD temperature window 11 3.4 Benefits and limitations 12 3.5 Precursor properties for thermal-ALD 13 3.6 ALD & CVD of Nickel – A literature survey 13 4 Metrology 17 4.1 Thermal analysis of precursors 18 4.2 Film and growth characterization 21 4.2.1 Quartz Crystal Microbalance 21 4.2.2 Spectroscopic Ellipsometry 24 4.2.3 X-Ray Photoelectron Spectroscopy 28 4.2.4 Scanning Electron Microscopy 29 4.2.5 X-Ray Reflectometry and X-Ray Diffraction 29 4.2.6 Four Point Probe Technique 20 5 Rapid Thermal Processing 32 5.1 Introduction 33 5.2 Basics of RTP 33 5.3 Nickel Silicides-A literature survey 33 II Experimental Part 36 6 Methodologies 37 6.1 Experimental setup 38 6.2 ALD process 41 6.2.1 ALD process types and substrate setups 41 6.2.2 Process parameters 41 6.3 Experimental procedure 42 6.3.1 Tool preparation 42 6.3.2 Thermal analysis and ALD experiments from nickel precursors 43 6.3.3 Data acquisition and evaluation 44 6.3.4 Characterization of film properties 46 7 Results and discussion 48 7.1 Introduction 49 7.2 QCM verification with Aluminum Oxide ALD process 49 7.3 ALD process from the reference precursor 50 7.3.1 Introduction 50 7.3.2 TG analysis for Ni(amd) precursor 51 7.3.3 Thermal stability test for Ni(amd) 51 7.3.4 ALD process optimization 52 7.3.5 Film properties 54 7.4 Evaluating the novel Nickel precursors 55 7.4.1 Screening tests for precursor P1 55 7.4.2 Screening tests for precursor P2 62 7.4.3 Screening tests for precursor P3 66 7.4.4 Screening tests for precursor P4 70 7.4.5 Screening tests for precursor P5 72 7.5 Comparison of all nickel precursors used in this work 74 8 Conclusions and outlook 77 References 83 III Appendix 101 A Deposition temperature control & Ellipsometry model 102 B Gas flow plan 105

Page generated in 0.0177 seconds