621 |
Dor e qualidade de vida relacionada à saúde de pacientes com câncer: influência das citocinas pró-inflamatórias TNF-α, IL-6, IL-8 e IL -1β / Pain and health-related quality of life in patients with cancer: influence of pro-inflammatory cytokines TNF-α, IL-6, IL-8 e IL-1βFerreira, Karine Azevêdo São Leão 13 February 2008 (has links)
Objetivos: avaliar a associação entre dor oncológica crônica e as citocinas pró-inflamatórias interleucina-6 (IL-6), IL-8, IL-1β e TNF-α, e a interferência destas citocinas na relação entre dor, qualidade de vida relacionada à saúde (QVRS) e desempenho funcional (DF). Método: 220 pacientes ambulatoriais com câncer, que não haviam recebido nenhum tratamento antineoplásico nos últimos 30 dias, foram avaliados pelo Inventário Breve de Dor, Questionário de Dor McGill (MPQ), Inventário de Depressão de Beck, Escala de Desempenho Funcional de Karnofsky e a escala de QVRS, EORTC-QLQ-c30. Os níveis plasmáticos das citocinas foram dosados através do teste imunoenzimático ELISA e comparados entre pacientes com dor leve (G1), moderada a intensa (G2) e sem dor (G3) usando a ANOVA ou o teste de Kruskal-Wallis seguido por análise de múltiplas comparações. Os pacientes do G1 e G2 apresentavam apenas dor oncólogica e estavam em uso de analgésicos. Os do G3 tinham câncer, mas não apresentaram dor ou fizeram uso de analgésicos nos últimos 14 dias. 23 voluntários saudáveis (G4) foram incluídos como controle. A ANCOVA foi utilizada para avaliar o efeito das citocinas na relação dor, QVRS e DF. A análise de Árvore de Classificação e Regressão (CART) avaliou a relação entre citocinas e níveis de dor, ajustada por características clínicas, demográficas e sintomas. As correlações foram avaliadas pelos testes de Spearman e Pearson. Resultados: Os pacientes do G2 (n=49) apresentaram significativamente (p<0,05) maiores níveis de IL-6 e IL-8 que todos os demais grupos. Os níveis do TNF-α e da IL-1β foram maiores no G2 que no G1 (n=76) e G4, mas não diferiram significativamente do G3 (n=95). Entre pacientes com dor (n=125) foram observadas correlações significativas (p<0,05) ou com tendência a significância entre: IL-6 e a pior dor (r=0,23) e o escore total do MPQ (r=0,18); TNF-α e os descritores afetivos do MPQ (r=0,33); IL-8 e escore total do MPQ (r=0,16); dimensão emocional da QVRS e IL-8 (p=-0,26) e IL-6 (r=-0,17); escalas de sintomas de dor e IL-6 (r=0,21), e de fadiga com IL-8 (r=0,14). A ANOVA mostrou que os pacientes do G2 tiveram significativamente pior DF e QVRS que os do G1, G3 e G4, na maioria das escalas. Segundo a ANCOVA apenas a IL-8 moderou o efeito da dor sobre a escala de perda de apetite; e independentemente aumentou a fadiga. A análise de CART selecionou o estádio da doença, a IL-8, a insônia moderada a intensa, a fadiga leve a intensa e a idade <=48 anos como preditoras de dor. O maior percentual de casos com dor moderada a intensa foi observado entre os com estádio IV da doença e IL-8 > 5,20 pg/ml. Conclusões: o aumento das citocinas pró-inflamatórias IL-6, IL-8, IL-1β e TNF-α esteve relacionado ao aumento da dor. A IL-6 e IL-8 estavam associadas à ocorrência de dor moderada a intensa. A IL-8 moderou o efeito da dor sobre a perda de apetite em pacientes com dor, não interferindo no impacto da dor sobre o desempenho funcional, a QVRS geral e os domínios físico, emocional, social e cognitivo da QVRS. A IL-8 e IL-6 estavam independentemente correlacionadas com redução da QVRS emocional e a IL-8 com piora da fadiga em pacientes com dor oncológica. Os resultados sugerem que tratamento com antagonistas/inibidores das citocinas IL-6, IL-8, IL-1β e TNF-α pode contribuir para o alívio da dor em pacientes com câncer / Aims: to examine the association between chronic cancer pain and the pro-inflammatory cytokines interleukin-6 (IL-6), IL-8, IL-1β and TNF-α, as well as the interference of these cytokines in the relationship between pain, health-related quality of life (HRQOL), and performance status (PS). Methods: 220 cancer outpatients, who didn`t receive any antineoplastic treatment in the last 30 days, were evaluated by the Brief Pain Inventory (BPI), McGill Pain Questionnaire (MPQ), Beck Depression Inventory (BDI), Karnofsky Performance Scale (KPS), and a HRQOL measurement, the EORTC-QLQ-30. Plasma cytokine levels were measured using an enzyme-linked immunosorbent assay (ELISA) and were compared among patients with mild (G1), moderate to severe (G2) and without pain (G3) using one-way analysis of variance (ANOVA) or Kruskal-Wallis followed by multiple comparison tests. Patients in G1 and G2 had only cancer pain and were using analgesics. G3 members had cancer but felt no pain and didn`t use analgesics in the last 14 days. Twenty-three healthy volunteers (G4) were included as controls. ANCOVA was used to assess the effect of cytokines on the pain, HRQOL and PS relationship. Associations between pain and cytokines, adjusted by cancer symptoms and clinical and demographic characteristics were also examined using Classification and Regression Tree (CART) analysis. Correlations were assessed by Spearman\'s and Pearson\'s tests. Results: the IL-6 and IL-8 levels in G2 (n=49) patients was significantly (p<0.05) higher than of those in all other groups. The IL-1β and TNF-α levels were significantly higher in G2 than in G1 (n=76) and G4, but not significantly different when compared with G3 (n=95). Among patients with pain (n=125), it was observed significant, or almost significant, correlations between: IL-6 with worst pain (r=0.23) and with the total score of MPQ (r=0.18); TNF-α with MPQ affective domain (r=0.33); IL-8 with total score of MPQ (r=0.16); emotional HRQOL domain and IL-8 (p=-0.26) and IL-6 (r=-0.17) and; between HRQOL pain scale and IL-6 (r=0.21), and fatigue scale and IL-8 (r=0.14). ANOVA showed that PS and HRQOL were significantly worse in G2 than in G1, G3 and G4 in most scales. According to ANCOVA, there was an interaction between pain and IL-8 that increased loss of appetite. IL-8 independently increased fatigue. CART analysis selected disease stage, IL-8, moderate to severe insomnia, mild to severe fatigue and age <=48 years as markers for pain. The highest percentage of patients with moderate to severe pain was observed among those with disease stage IV and plasma level of IL-8 > 5.20 pg/ml. Conclusions: increase of pro-inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α was related to increase in pain. IL-6 and IL-8 were related to moderate to severe pain occurrence. IL-8 was a moderator to the pain effect on loss of appetite in patients with pain but has not interfered neither on pain effect over performance status, nor on general HRQOL nor its physical, emotional, social and cognitive domains. IL-8 and IL-6 were found to be independently correlated with the decrease of the emotional domain scores of HRQOL and the IL-8 with increased fatigue on patients with cancer pain. Results suggest that treatment with IL-6, IL-8, IL-1β and TNF-α cytokine inhibitors/antagonists may provide pain relief in cancer patients
|
622 |
Epigenetic abnormalities of EGFR/STAT/SOCS signaling-associated tumor suppressor genes (TSGs) in tumorigenesis. / 通過擬遺傳學方法鑑定位於EGFR/STAT/SOCS信息內的與腫瘤發病有關的抗癌基因 / Tong guo ni yi chuan xue fang fa jian ding wei yu EGFR/STAT/SOCS xin xi nei de yu zhong liu fa bing you guan de kang ai ji yinJanuary 2009 (has links)
Poon, Fan Fong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 109-124). / Abstract also in Chinese. / Abstract --- p.i / Acknowledgements --- p.v / Table of Content --- p.vi / List of Figures --- p.xi / List of Tables --- p.xiii / List of Abbreviations --- p.xiv / List of papers published during the study --- p.xvi / Chapter Chapter 1 --- Introduction and Aim of Study --- p.1 / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.2 --- Project objective and potential significances --- p.6 / Chapter Chapter 2 --- Literature Reviews --- p.8 / Chapter 2.1 --- Cancer genetics --- p.8 / Chapter 2.1.1 --- Oncogenes and TSGs --- p.8 / Chapter 2.1.2 --- Kundsońةs two-hit event of cancer gene --- p.9 / Chapter 2.2 --- Cancer Epigenetics --- p.9 / Chapter 2.2.1 --- Types of Epigenetic regulation --- p.10 / Chapter 2.2.2 --- DNA methylation in TSGs --- p.10 / Chapter 2.2.2.1 --- Promoter CpG island in DNA methylation --- p.10 / Chapter 2.2.2.2 --- Protection system in DNA methylation --- p.11 / Chapter 2.2.2.3 --- Transcriptional silencing by DNA methylation --- p.11 / Chapter 2.2.2.4 --- DNA methylation of TSG silencing in cancers --- p.13 / Chapter 2.2.3 --- Hypomethylation of the cancer genome --- p.14 / Chapter 2.2.4 --- Clinical relevance of cancer epigenetic --- p.14 / Chapter 2.3 --- EGFR/STAT/SOCS pathway --- p.15 / Chapter 2.3.1 --- General Introduction of the EGFR pathway --- p.15 / Chapter 2.3.2 --- EGFR survival signaling pathways --- p.16 / Chapter 2.3.3 --- EGFR/STAT/SOCS signaling --- p.17 / Chapter 2.3.4 --- EGFR/STAT/SOCS signaling and cancers --- p.18 / Chapter 2.3.4.1 --- EGF and cancers --- p.18 / Chapter 2.3.4.2 --- EGFR/STAT/SOCS pathway and cancers --- p.18 / Chapter 2.3.4.3 --- EGF survival signaling as a target for cancer therapy --- p.19 / Chapter 2.4 --- TSGs in the EGFR/STAT/SOCS pathway --- p.20 / Chapter 2.4.1 --- Suppressors of cytokine signaling (SOCS) family --- p.20 / Chapter 2.4.2 --- Signal transducers and activators of transcription (STATs) family --- p.22 / Chapter 2.4.3 --- Sprouty (SPRY) family --- p.23 / Chapter 2.4.4 --- Protein Inhibitor of Activated STAT (PIASs) family --- p.25 / Chapter 2.4.5 --- Ras and Rab Interactor (RIN) family --- p.26 / Chapter 2.4.6 --- Ras-association domain family (RASSF) --- p.26 / Chapter 2.4.7 --- Glycine N-methyltransferase (GNMT) --- p.28 / Chapter 2.5 --- Nasopharyngeal carcinoma (NPC) --- p.30 / Chapter 2.5.1 --- Epidemiology of NPC --- p.30 / Chapter 2.5.2 --- Histopathology of NPC --- p.30 / Chapter 2.5.3 --- Genetic and epigenetic alteration in NPC --- p.31 / Chapter 2.5.4 --- EGFR signaling in NPC --- p.32 / Chapter 2.6 --- Esophageal squamous cell carcinoma (ESCC) --- p.33 / Chapter 2.6.1 --- Epidemiology of ESCC --- p.34 / Chapter 2.6.2 --- Histopathology of ESCC --- p.34 / Chapter 2.6.3 --- Genetic and epigenetic alteration in ESCC --- p.35 / Chapter 2.6.4 --- EGFR signaling in ESCC --- p.36 / Chapter Chapter 3 --- Materials and Methods --- p.38 / Chapter 3.1 --- General Materials --- p.38 / Chapter 3.1.1 --- "Cell lines, tumor and normal tissue samples" --- p.38 / Chapter 3.1.2 --- Maintenance of cell lines --- p.38 / Chapter 3.1.3 --- Drugs treatment of cell lines --- p.39 / Chapter 3.1.4 --- Total RNA extraction --- p.39 / Chapter 3.1.5 --- Genomic DNA extraction --- p.40 / Chapter 3.2 --- General techniques --- p.40 / Chapter 3.2.1 --- Agarose gel electrophoresis of DNA --- p.40 / Chapter 3.2.2 --- TA cloning and blunt end cloning of PCR product --- p.40 / Chapter 3.2.3 --- Transformation of cloning products to E. coli competent cells --- p.41 / Chapter 3.2.4 --- Preparation of plasmid DNA --- p.41 / Chapter 3.2.4.1 --- Mini-prep plasmid DNA extraction --- p.41 / Chapter 3.2.4.2 --- Midi-prep of plasmid DNA --- p.42 / Chapter 3.2.5 --- Measurement of DNA or RNA concentrations --- p.42 / Chapter 3.2.6 --- DNA sequencing of plasmid DNA and PCR products --- p.42 / Chapter 3.3 --- Preparation of reagents and medium --- p.43 / Chapter 3.4 --- Semi-quatitative Reverse-Transcription (RT) PCR expression analysis --- p.44 / Chapter 3.4.1 --- Reverse transcriptin reaction --- p.44 / Chapter 3.4.2 --- Semi-quantitative RT-PCR --- p.44 / Chapter 3.4.2.1 --- Primers design --- p.44 / Chapter 3.4.2.2 --- PCR reaction --- p.46 / Chapter 3.5 --- Methylation analysis of candidate genes --- p.47 / Chapter 3.5.1 --- Bisulfite treatment of genomic DNA --- p.47 / Chapter 3.5.2 --- Methylation-specific PCR (MSP) --- p.48 / Chapter 3.5.2.1 --- Bioinformatics prediction of CpG island --- p.48 / Chapter 3.5.2.2 --- Primers design --- p.48 / Chapter 3.5.2.3 --- PCR reaction --- p.49 / Chapter 3.5.3 --- Bisulfite Genomic Sequencing (BGS) --- p.50 / Chapter 3.6 --- Construction of expression vectors of candidate genes --- p.51 / Chapter 3.6.1 --- Sub-cloning of expression vector of candidate genes --- p.51 / Chapter 3.6.1.1 --- Mouse Socsl expression vector --- p.51 / Chapter 3.6.1.2 --- SPRY1 expression vector --- p.51 / Chapter 3.6.1.3 --- GNMT expression vector --- p.52 / Chapter 3.6.2 --- Restriction digestion of cloning vectors and expression --- p.52 / Chapter 3.6.3 --- Ligation of cloning fragments --- p.53 / Chapter 3.6.4 --- Colony formation assay on monolayer culture --- p.53 / Chapter 3.6.5 --- Statistical analysis --- p.54 / Chapter Chapter 4 --- Screening of candidate TSGs in EGFR pathway --- p.55 / Chapter 5.3.3 --- Restoration of GNMT expression by pharmacological demethylation --- p.89 / Chapter 5.3.4 --- Confirmation of the methylation status of GNMT promoter by BGS --- p.90 / Chapter 5.3.5 --- Methylation status of GNMT in ESCC and NPC primary tumors --- p.90 / Chapter 5.3.6 --- GNMT inhibited the growth of tumor cells in-vitro --- p.90 / Chapter 5.3.7 --- Discussion --- p.95 / Chapter Chapter 6 --- General Discussion --- p.100 / Chapter Chapter 7 --- Summary --- p.105 / Chapter Chapter 8 --- Future Study --- p.107 / Reference --- p.109
|
623 |
Delineation Of Signal Transduction Events During The Induction Of SOCS3 By Mycobacterium Bovis BCG : Possible Implications For Immune Subversion MechanismsYeddula, Narayana 07 1900 (has links)
Pathogenic Mycobacteria are among the most unrelenting pathogens known to mankind as one-third of the world population is latently infected with Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis. Despite many species of mycobacteria elicits robust host T cell responses as well as production of cytokines like interferon-γ (IFN- γ) that are essential for the control of infection, the mounted immune response contain, but does not eliminate the infection. One potential mechanism by which mycobacteria may achieve a state of long-term persistence amid a robust host immune response is by modulating the signaling cascades leading to macrophage activation. Activation of proinflammatory responses by the host macrophages upon infection with mycobacteria requires the involvement of a variety of signaling events. Studies have indicated that macrophages infected with pathogenic mycobacteria produce significantly less tumor necrosis factor (TNF)-α and other proinflammatory molecules compared with infection with nonpathogenic mycobacteria, which likely play a role in enhancing mycobacterial survival in vivo. Furthermore, macrophages infected with mycobacteria become refractory to many cytokines including IFN-γ and modulation of host cell signaling responses is critical for the suppression of a generalized inflammatory response which might influence the persistence of mycobacteria within the host. In this context, Suppressor of cytokine signaling (SOCS) 3, a member of SOCS family function as negative regulators of multiple cytokine and toll like receptor induced signaling. The SOCS3 has been shown to specifically inhibit signaling by IFN-γ, IL-6 family of cytokines and can act as a negative regulator of inflammatory responses. In this regard, many species of mycobacteria including M. bovis BCG triggers the inducible expression of SOCS3. Further, it has been suggested that M. bovis BCG triggered SOCS3 and SOCS1 proteins leads to the inhibition of IFN- γ stimulated JAK/STAT signaling in macrophages. Albeit JAK/STAT signaling pathway is generally believed to be involved, STAT-independent signals are suggested to take part in the induction of SOCS proteins in many systems signifying the involvement of multiple signal pathways in regulation of SOCS expression. Further little is known about the early, receptor proximal signaling mechanisms underlying mycobacteria-mediated induction of SOCS3.
Albeit mycobacteria reside within phagolysosomes of the infected macrophages, many cell wall antigens like LAM, PIM, TDM, PE family antigens etc are released and traffic out of the mycobacterial phagosome into endocytic compartments as well as can gain access to the extra cellular environment in the form of exocytosed vesicles. In this context, PIM represent a variety of phosphatidyl-myo-inositol mannosides (PIM) 1-6 containing molecules and are integral component of the mycobacterial envelope. PIM are suggested to be the common anchor of LM and LAM as PIM, LM, and LAM originate from identical biosynthetic pathway. PIM are present in virulent M. tuberculosis H37Rv as well as in M. bovis BCG and a number of biological functions have been recently credited to PIM2. PIM2 is suggested to trigger the activation of cells via Toll like receptor (TLR)-2 and stimulation resulted in activation of NF-κB, AP-1, and mitogen-activated protein (MAP) kinases. PIM2 induces proinflammatory stimuli such as TNF-α and IL-12 in murine and human macrophages in a TLR2 dependent manner. PIM exhibited pulmonary granuloma-forming activities as well as was shown to be responsible for the recruitment of NKT cells to granulomas. Accordingly, mycobacterial envelope antigen PIM2 could initiate or affect the inflammatory responses similar to mycobacteria bacilli. In this perspective, we explored whether M. bovis BCG or novel cell surface antigens like PIM2 or Rv0978c, a PE-PGRS protein with unknown function can contribute to M. bovis BCG triggered molecular signaling events leading to SOCS3 expression in macrophages.
Our studies clearly demonstrated that M. bovis BCG can trigger SOCS3 expression in macrophages. The inception of signaling by M. bovis BCG is TLR2-MyD88 dependent, but not TLR4 dependent. The perturbation of TLR2 signaling and the downregulation of MyD88 resulted in significant decrease in SOCS3 expression implicating the role of TLR2-MyD88 axis in M. bovis BCG triggered signaling. Experiments with cycloheximide and neutralizing antibodies to IL-10 evinced that M. bovis BCG triggered SOCS3 expression is a primary response and requires direct activation of signaling cascades. In the current study, we show for the first time that infection of macrophages with M. bovis BCG activates NOTCH1 signaling events, which leads to expression of SOCS3. The perturbation of NOTCH signaling in infected macrophages either by siRNA mediated down regulation of NOTCH1 or RBP-Jk or by inhibition with pharmacological inhibitor gamma secretase-I, resulted in the marked reduction in the expression of SOCS3. Further, the enforced expression of the NOTCH1 intracellular domain (NICD) in RAW264.7 macrophages induces the expression of SOCS3, which can be further potentiated by M. bovis BCG. Furthermore, the inhibition of TLR2 signaling by a TLR2 dominant-negative construct resulted in inhibition of NOTCH1 activation. Additionally, our results demonstrates for the first time that physical association of TLR2 with both Phosphoinositide-3 Kinase (PI3K) and NOTCH1, which suggest the significant role of TLR2 triggering by of M. bovis BCG in the activation of PI3K and NOTCH1. More importantly, signaling perturbations data suggest the involvement of cross-talk among the members of PI3K and MAPK cascades with NOTCH1 signaling in SOCS3 expression. In addition, SOCS3 expression requires the NOTCH1 mediated recruitment of CSL/RBP-Jk and Nuclear Factor-B (NF-B) to the SOCS3 promoter.
A number of biological functions triggered by mycobacteria are often attributed to many of the cell wall antigens. As part of our current investigation, we explored whether two novel cell wall associated antigens namely PIM2 and a PE-PGRS antigen, Rv0978c could play as significant or crucial cell wall ingredients which imparts ability to M. bovis BCG to trigger activation of NOTCH signaling leading to SOCS3 expression. Akin to M. bovis BCG, PIM2 activates NOTCH1 signaling resulting NICD formation which leads to the expression of SOCS3 in a TLR2-MyD88 dependent manner. PIM2 mediated NOTCH1 activation, both directly influences the SOCS3 expression by serving as coactivator in RBP-Jk complex and indirectly triggers SOCS3 expression by activating PI3K-MAPK-NF-κB cascade.
One important outcome of the genome sequencing project of M. tuberculosis was the discovery of two new multigene families designated PE and PPE, named for the Pro-Glu (PE) and Pro-Pro-Glu (PPE) motifs near the N-terminus of their gene products. Many PE and PPE proteins are composed only of PE or PPE homologous domains. However, in other proteins, the PE domain is often linked to a unique domain of various lengths that is rich in alanine and glycine amino acids, termed the PGRS domain (PE-PGRS subfamily). PE family genes were suggested to play roles in the virulence of the pathogen and many members of PE family proteins are reported be localized on the surface of M. tuberculosis bacilli. Some of the PE proteins may play a role in immune evasion and antigenic variation or may be linked to virulence. Additionally, it has been suggested that the PE-PGRS subfamily of PE genes is enriched in genes with a high probability of being essential for M. tuberculosis. The uniqueness of the PE genes is further illustrated by the fact that these genes are restricted to mycobacteria. However, despite their abundance in mycobacteria, very little is known regarding the expression or the functions of PE family genes. In this context, we have chosen to study Rv0978c as a typical member of PE-PGRS family based on the following observations. Rv0978c was upregulated in TB bacilli upon infection of macrophages. Rv0978c was demonstrated to be a member of a group of genes called in vivo-expressed genomic island, which were shown to be upregulated in M. tuberculosis bacilli during infection of mice. Rv0978c was also shown to be upregulated, at least eightfold, in human brain microvascular endothelial cell-associated M. tuberculosis infection, suggesting a role for endothelial cell invasion and intracellular survival.
In the current investigation, we have demonstrated that Rv0978c is hypoxia responsive gene based on promoter analysis and upregulated in M. tuberculosis during the infection of macrophages. Further, Rv0978c is associated with cell wall and is exposed outside the surface of the bacterium suggesting the possible access to intracellular compartments of the infected macrophages. In this perspective, our results clearly demonstrate that Rv0978c triggers SOCS3 expression by activating PI3K-ERK1/2-NF-B cascade in mouse macrophages. Additionally, Rv0978c elicited humoral antibody reactivities in a panel of human sera or in cerebrospinal fluid samples obtained from different clinical categories of tuberculosis patients. DNA immunizations experiments in mice clearly suggested that Rv0978c is an immunodominant antigen demonstrating significant T cell and humoral reactivites. These observations clearly advocate that Rv0978c protein is expressed in vivo during active infection with M. tuberculosis and that the Rv0978c is immunogenic.
These results clearly describe the cross-talk of NOTCH1 signaling with signaling pathways like PI3K and MAPK pathways during infection of macrophages with M. bovis BCG eventually resulting in regulation of specific gene expressions, such as SOCS3. These observations lead to a possibility of differential effects of NOTCH1 signaling activated upon infection by an intracellular bacillus, which could be involved in modulation of macrophage functions depending on a local immunological milieu. Taken together, our findings suggest that, induction of Suppressors of Cytokine Signaling 3 molecule by M. bovis BCG or by its cell wall antigens represents a crucial immune subversion mechanism in order to suppress or attenuate host responses to cytokines to generate the conditions that favor survival of the mycobacteria.
|
624 |
Assoziation von Genpolymorphismen der 5 flankierenden Region des Interleukin-10-Gens auf das Überleben oder die Remissionsrate beim aggressiven Non-Hodgkin-Lymphom / Association of gen polymorphism of the 5Hua, Thanh Duc 15 September 2009 (has links)
No description available.
|
625 |
Die Zytokine IL-6 und IL-8 und deren Wert in der Analyse einer Infektion von Lymphozelen / The cytokines IL-6 and IL-8 and their value in the analysis of an infection of lymphocelesHeider, René 04 July 2012 (has links)
No description available.
|
626 |
Plasma Factors as Endogenous Agonists and Modulators of TLR4 Signaling in Microglia / Plasma Faktoren als Endogene Agonisten und Modulatoren von TLR4 Signalen in Mikroglia ZellenScheffel, Jörg 21 June 2010 (has links)
No description available.
|
627 |
EFFETS DE LA PRIVATION AIGUE DE SOMMEIL SUR LA REGULATION DE LA PRESSION ARTERIELLE ET LE CONTROLE DE LA VASOMOTRICITESauvet, Fabien 14 December 2011 (has links) (PDF)
Les troubles du sommeil sont associés à une augmentation de l'activité du système nerveux sympathique, de la pression artérielle (PA) et une inflammation qui peuvent induire une dysfonction endothéliale. Les mécanismes impliqués dans cette dysfonction et les effets de la privation aiguë et totale de sommeil (PTS) ne sont pas encore élucidés. L'objectif de ce travail est d'évaluer l'effet de la PTS sur la vasomotricité et les liens avec des modifications de la PA et de la réponse immuno-inflammatoire. Dans une première partie, chez l'homme sain, nous observons au cours de 40 heures de PTS, une diminution de la vasodilatation cutanée induite par l'acétylcholine et une augmentation des concentrations plasmatiques de marqueurs de l'activation endothéliale. Cette dysfonction apparait avant les modifications de la PA et est associée à une augmentation de la concentration plasmatique de TNF-α et de la production d'ARNm du TNF-α par les cellules de la lignée blanche. Nous montrons également au cours d'un test d'immersion de la main dans l'eau froide (30 minutes, 5°C) et la récupération, une diminution de la température digitale et de la conductance vasculaire cutanée, associées à l'augmentation de la concentration plasmatique d'endothéline-1. Dans une deuxième partie, réalisée chez des rats sympathectomisés (réserpine), nous démontrons que la diminution des vasodilatations dépendante de l'endothélium, après 24 heures de PTS, est indépendante des modifications de la PA. Cette altération est liée à une diminution de l'activité des voies de production du NO et des prostacyclines (PGI2) et est associé à une augmentation des concentrations plasmatiques de TNF-α et d'IL-6. En conclusion, l'ensemble des résultats suggère que la PTS est un stress suffisant pour induire une dysfonction endothéliale, responsable d'une altération de la vasomotricité. Celle-ci semble être est initialement la conséquence de la réponse immuno-inflammatoire.
|
628 |
CXCL16 and CD137 in atherosclerosisWågsäter, Dick January 2005 (has links)
Atherosclerosis is a progressive inflammatory disease that is characterized by the accumulation of lipids, infiltrated cells and fibrous elements in large arteries. This thesis focuses on the molecular mechanisms behind foam cell formation and inflammation, two central processes in the development of atherosclerosis. More specific, we studied the effects of proinflammatory cytokines on CXCL16 expression and its role as scavenger receptor on macrophages and smooth muscle cells in atherogenesis. CXCL16 is defined as a chemokine and a scavenger receptor, regulating adhesion and chemoattraction of CXCR6 expressing cells and uptake of oxLDL. We show that the expression of CXCL16 and its receptor CXCR6 are more pronounced in human atherosclerotic lesions compared with non-atherosclerotic vessels. Increased expression of CXCL16 was also seen in atherosclerotic aortas of apoE-/- mice compared with aortas of non-atherosclerotic, age-matched C57BL/6 mice. In vitro, IFN gamma induced CXCL16 expression in primary human monocytes and smooth muscle cells which resulted in an increased uptake of oxLDL. Treatment of mice with IFN gamma also induced CXCL16 expression in atherosclerotic lesions. Thus, we have demonstrated a role for IFN gamma in foam cell formation through upregulation of CXCL16. The expression of CXCR6 was defined to the same regions as for CXCL16 in the lesion, indicating the presence of cells able to respond to CXCL16. Consequently, CXCL16 could serve as a molecular link between lipid metabolism and immune activity in atherosclerotic lesion. CD137 belongs to the TNF family and mediates several important processes in inflammation. CD137 is involved in the activation of T cells, NK cells, B cells and monocytes and regulate cytokine production, proliferation and apoptosis in these cells. A limited number of studies have demonstrated CD137 expression on smooth muscle cells and endothelial cells. Our results show that CD137 mRNA is higher expressed in human atherosclerotic lesions compared with unaffected vessels. We found that endothelial cells express CD137 in atherosclerotic lesions and that cultured endothelial cells and smooth muscle cells express CD137 and CD137 ligand in vitro. CD137 was regulated differentially by proinflammatory cytokines (i.e. IFN gamma, TNF alpha, IL-1 beta) and bacterial lipopolysaccharide depending on cell type. Furthermore, we investigated the effects of CD137 signalling, demonstrating that binding of the CD137 ligand to its receptor increases proliferation and migration of smooth muscle cells. In summary, this thesis has focused on the expression, regulation and role of CXCL16 and CD137, two genes that have not been described earlier in the concept of atherosclerosis. The findings demonstrate some of the molecular mechanisms involved in vascular inflammation and may increase our knowledge about the development of atherosclerosis.
|
629 |
Performance, metabolic and hormonal alterations during overreachingHalson, Shona L. January 2003 (has links)
Many athletes incorporate high training volumes and limited recovery periods into their training regimes. This may disrupt the fragile balance and the accumulation of exercise stress may exceed an athlete's finite capacity of resistance. A state of elevated fatigue, increased mood disturbance and decreased exercise performance can result. This is commonly known as overreaching and if increased training and limited recovery is continued, it is believed that the more serious state of overtraining may develop. This is relatively commonly experienced in athletes, however little scientific investigation has been conducted to determine the characteristics and underlying mechanisms. The overall aim of this thesis was to gain a greater understanding of the state of overreaching and to specifically provide new information on potential markers of this state as well as possible mechanisms. To study the cumulative effects of exercise stress and subsequent recovery on performance changes, fatigue indicators and possible mechanisms, the training of endurance cyclists was systematically controlled and monitored in two separate investigations. A number of variables were assessed including performance, physiological, biochemical, psychological, immunological and hormonal variables. In addition heart rate variability and serotonergic responsiveness were also assessed. Some of the more pertinent effects of overreaching included an increase in heart rate variability, a reduction in carbohydrate oxidation, an increase in serotonergic responsiveness and a reduction in stress hormone concentrations. These results suggest that autonomic imbalance in combination with decreased hormonal release appears to be related to the decline in performance and elevated fatigue apparent in overreached athletes. Additionally it also appears that alterations in the hypothalamic-pituitary adrenal axis may occur in overreached athletes.
|
630 |
Investigating cell lineage specific biosynthesis of tenascin-C during inflammationGiblin, Sean January 2018 (has links)
The extracellular matrix (ECM) is a complex network of molecules secreted by cells, which is essential for providing structural support and facilitating cell processes including adhesion, migration and survival. Tenascin-C is an immunomodulatory ECM protein that exhibits limited expression in healthy tissues, but is transiently elevated at sites of tissue injury, and is persistently expressed in chronic inflammatory diseases and tumours. Alternative splicing of 9 of tenascin-C's fibronectin type III-like domains (FnIII- A1, A2, A3, A4, B, AD2, AD1, C and D) generates enormous diversity in form; yielding 511 possible isoforms. Post-transcriptional modification of tenascin-C has been studied in cancer and during development where disease and tissue specific isoforms exhibit distinct adhesive, migratory and proliferative effects. However, little is known of how tenascin-C is expressed or alternatively spliced during inflammation. This study characterises inflammation and disease specific tenascin-C isoforms made by immune cells and fibroblasts, and investigates their functional relevance. Biosynthesis and alternative splicing of tenascin-C was examined using standard curve qPCR, ELISA, Western blot and confocal immunocytochemistry in resting and activated primary human immune cells, dermal fibroblasts, and in synovial fibroblasts isolated from healthy controls and from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Based on these data, three recombinant proteins comprising FnIII domains AD2-AD1, B-C-D and B-AD2-AD1-C-D were cloned, expressed and purified, and their impact on cell behaviour including adhesion, morphology and migration was assessed. Basal tenascin-C expression was lower in myeloid and lymphoid cells than fibroblasts, and was induced in all following inflammatory stimulation. Tenascin-C expression was elevated in disease with RA and OA synovial fibroblasts containing higher levels than healthy controls. Alternative splicing following cell activation was cell-type specific: all FnIII except AD2 and AD1 were upregulated in dendritic cells and macrophages, in T-cells all FnIII remained unchanged with FnIII A1 absent; and no change in splicing was observed in activated dermal fibroblasts. Normal and OA synovial fibroblasts exhibited similar tenascin-C splicing patterns, but FnIII B and D were specifically elevated in RA. Functional analysis revealed differences in the adhesion, morphology and migration of myeloid cells and dermal fibroblasts cultured on FnIII AD2-AD1, B-C-D, B-AD2-AD1-C-D and full length tenascin-C substrates; FnIII B-C-D promoted MDDC migration while B-AD2-AD1-C-D promoted fibroblast adhesion, compared to full length tenascin-C. For the first time, this study reveals differences in tenascin-C biosynthesis and alternative splicing by immune cells and fibroblasts following activation with inflammatory stimuli; and starts to reveal how alternative splicing of tenascin-C may influence the behaviours of both stromal and immune cells types during inflammation and in inflammatory diseases.
|
Page generated in 0.0335 seconds