• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 14
  • 3
  • Tagged with
  • 69
  • 69
  • 42
  • 15
  • 13
  • 12
  • 12
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modifications de la structure des télomères des cellules cancéreuses par le cis-platine / Changes in the structure of telomeres cells cancer with cis-platin

Saker, Lina 25 November 2013 (has links)
Les télomères sont des structures nucléoprotéiques localisées aux extrémités des chromosomes. Ils jouent un rôle important dans le maintien de l’information génétique, la stabilité et la protection des extrémités chromosomiques. Les télomères sont composés de séquences d’ADN répétées riches en guanines (TTAGGG) et des protéines télomériques qui les protègent. Parmi celles-ci, TRF1 et TRF2 se fixent directement sur le double brin. Toute modification de la structure des télomères (composition en protéines télomériques, raccourcissement de leur longueur, dommages) peut entrainer la mort des cellules cancéreuses. Ainsi les télomères sont considérés comme des cibles thérapeutiques. Etant riches en guanines adjacentes, les télomères sont donc des cibles potentielles du cis-platine, agent pharmacologique utilisé dans le traitement d’un certain nombre de tumeurs. Nous avons analysé, sur deux lignées de cancer d’ovaire A2780 sensibles et résistantes au cis- platine, les modifications éventuelles de la structure de leurs télomères après traitement par le cis-platine et quantifié le cis-platine fixé au niveau des télomères afin de déterminer s’il pourrait être l’origine de ces perturbations. Suite au traitement par le cis-platine, une délocalisation de TRF2 des télomères (maximum 55%) a été mise en évidence dans les deux lignées, accompagnée de dommages au niveau des télomères (2-3 dommages/cellule) mais elle est cependant insuffisante pour induire leur raccourcissement. Ensuite, la quantification par ICP-MS du cis-platine fixé au niveau de l’ADN télomérique purifié montre que le cis-platine se fixe bien au niveau des télomères. Cependant cette quantité fixée est 5 fois moins importante que celle trouvée au niveau de l’ADN génomique et 12 fois moins importante que celle attendue d’après les études in vitro, suggérant que les guanines de l’ADN télomérique sont moins accessibles que celles de l’ADN génomique. D’autre part, la quantité de cis-platine fixé par base est trop faible pour expliquer le déplacement de TRF2. Ces résultats suggèrent que la fixation du cis-platine au niveau des télomères ne peut donc pas être le mécanisme majoritaire responsable du déplacement de TRF2 des télomères et de la mort des cellules. Ce travail ouvre ainsi la voie à la conception de nouveaux complexes anti-tumoraux de platine qui cibleraient plus spécifiquement les télomères des cellules cancéreuses afin de les déstructurer plus efficacement. / Telomeres are nucleoprotein structures located at the ends of chromosomes. They play an important role in the maintenance of the genetic information, the stability and protection of chromosome’s ends. Telomeres consist of repeated DNA sequences G-rich (TTAGGG)n, and telomeric proteins that protect them. Among them, TRF1 and TRF2 bind directly to double-stranded. Any change in the structure of telomeres (telomeric protein composition, shortening their length, damage) can cause the death of cancer cells. Thus telomeres are considered as therapeutic targets. Since they are rich in adjacent guanines, telomeres are therefore potential targets for cis-platin, a pharmacological agent used in the treatment of a certain number of tumours. We looked for, at the cellular level, using two lines of ovarian cancer A2780: sensitive and resistant to cis-platin any changes in the structure of their telomeres after cis-platin treatment. And we checked the amount of cis-platin bound to telomeres to determine if it could be the cause of these perturbations. Following treatment with cis-platin, a delocalisation of TRF2 from telomere (maximum 55%) was observed within both cell lines, with damages at telomeres (2-3 damages / cell). But it is still not enough to induce their shortening. Then, the quantification by ICP-MS of the cis-platin fixed at purified telomeric DNA, shows that cis-platin binds well at telomeres. However, this amount is 5 times less than that the one found at genomic DNA and 12 times less than the one expected from in vitro studies, suggesting that the guanines of the telomeric DNA are less accessible than those of the genomic DNA. On the other hand, the amount of cis-platin bound by base is too small to explain the displacement of TRF2. So, these results suggest that the binding of cis-platin at telomeres cannot be the principal mechanism responsible of cell death, and that the displacement of TRF2 from telomere is not related directly to this phenomenon. Thus, this work opens the way for the design of new anti-tumour platinum complexes that target telomeres of cancer cells more specifically, in order to induce more efficiently their dysfunction.
62

Le métabolisme des acides gras monoinsaturés et la prolifération des cellules cancéreuses coliques : rôle de la Stéaroyl-CoA Désaturase-1 et effets des isomères conjugués de l'acide linoléique / Monounsaturated fatly acid metabolism and colon cancer cells proliferation : role of Stearoyl-CoA desaturase-1 and effect of conjugated linoleic acid isomers

Pierre, Anne-Sophie 21 December 2012 (has links)
Le métabolisme de la cellule cancéreuse s’adapte aux besoins en macromolécules de cette cellule en prolifération et en réponse aux signaux du microenvironnement tumoral. Ainsi, la biosynthèse des acides gras monoinsaturés (AGMI), est augmentée dans les cellules cancéreuses coliques et associée à une augmentation de l’activité de la stéaroyl-CoA désaturase (SCD), enzyme limitante de cette synthèse. Les acides gras polyinsaturés (AGPI) comme les isomères conjugués de l’acide linoléique (CLA), c9,t11 CLA et t10,c12 CLA possèdent à la fois un effet inhibiteur sur l’activité SCD et un effet anti-tumoral dont les mécanismes moléculaires restent à préciser. Dans ce contexte, les objectifs de ce travail furent d’évaluer le rôle de SCD-1 dans la survie de la cellule cancéreuse colique (CCC) et les mécanismes de régulation sous-jacents mais également d’apporter des éléments nouveaux sur les régulations à l’origine de l’effet anti-prolifératif des CLA. Nous avons tout d’abord montré que l’extinction de l’expression de SCD-1 conduit à l’apoptose des CCC dépendante de CHOP. En revanche l’extinction de SCD 1 n’affecte en rien les cellules non cancéreuses. Par ailleurs, nous avons étudié les effets sur la viabilité des CCC de deux isomères de l’acide linoléique le c9,t11-CLA et le t10,c12-CLA in vitro. Nos résultats montrent que seul le t10,c12-CLA induit une mort cellulaire par apoptose des CCC sans affecter la survie de cellules coliques non transformées. Il apparait aussi être le seul isomère à réduire la biosynthèse des AGMI dans les CCC. La mort induite par le t10,c12 CLA dans les CCC est dépendante de l’activation d’un stress du RE via la production d’espèces réactives de l’oxygène.Nos travaux apportent des éléments nouveaux dans la compréhension du rôle de SCD 1 dans la survie des cellules cancéreuses coliques et les mécanismes d’action du t10,c12 CLA. Notre étude soutient l’hypothèse de faire de la biosynthèse des AGMI une cible thérapeutique possible dans le traitement des cancers colorectaux / Cancer cells adapt their metabolism in response to signals from the microenvironment and proliferation. Thus, MonoUnsaturated Fatty Acid (MUFA) synthesis is increased in colon cancer cells, and associated with increased Stearoyl-CoA Desaturase (SCD) activity, the rate limiting enzyme of MUFA biosynthesis. Polyunsaturated Fatty Acid (PUFA), as isomers of conjugated linoleic acid (CLA), exert inhibitor activity on SCD-1 and have anti-cancer properties, but their mechanisms are not yet clear. In this context, the aim of this work was first to evaluate the role of SCD-1 in the proliferation of colon cancer cells (CCC) and to define the underlying mechanisms. In a second time, we provide new information about regulation of the anti-proliferative effect of CLA. In a first time we showed that extinction of SCD-1 induces CCC apoptosis through CHOP expression. In contrast, the extinction of SCD-1 has no effect on viability of non cancerous cells. In addition, we studied effects of two isomers of CLA, c9,t11-CLA and t10,c12 CLA, on CCC viability in vitro. We showed that only t10,c12 CLA induces apoptotic CCC death without affecting survival of untransformed colon cells. t10,c12 CLA seems to be also the only to repress MUFA synthesis. It is also shown that cell death induced by t10,c12 CLA is ER stress dependent through reactive oxygen species generation. This work provides new information about SCD 1 role in colon cancer cells survival and mechanism of t10,c12 CLA. This study supports the hypothesis to consider MUFA biosynthesis as a potential therapeutic target in colorectal cancer treatment.
63

Optophysiologie SERS : analyse in vitro d’environnement cellulaire en Raman exalté par les surfaces

Lussier, Félix 03 1900 (has links)
No description available.
64

Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome / The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

Treps, Lucas 02 September 2015 (has links)
Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. / Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.
65

Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome / The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

Treps, Lucas 02 September 2015 (has links)
Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. / Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.
66

Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome / The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

Treps, Lucas 02 September 2015 (has links)
Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. / Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.
67

Le métabolisme des acides gras monoinsaturés et la prolifération des cellules cancéreuses coliques : rôle de la Stéaroyl-CoA Désaturase-1 et effets des isomères conjugués de l'acide linoléique

Pierre, Anne-Sophie 21 December 2012 (has links) (PDF)
Le métabolisme de la cellule cancéreuse s'adapte aux besoins en macromolécules de cette cellule en prolifération et en réponse aux signaux du microenvironnement tumoral. Ainsi, la biosynthèse des acides gras monoinsaturés (AGMI), est augmentée dans les cellules cancéreuses coliques et associée à une augmentation de l'activité de la stéaroyl-CoA désaturase (SCD), enzyme limitante de cette synthèse. Les acides gras polyinsaturés (AGPI) comme les isomères conjugués de l'acide linoléique (CLA), c9,t11 CLA et t10,c12 CLA possèdent à la fois un effet inhibiteur sur l'activité SCD et un effet anti-tumoral dont les mécanismes moléculaires restent à préciser. Dans ce contexte, les objectifs de ce travail furent d'évaluer le rôle de SCD-1 dans la survie de la cellule cancéreuse colique (CCC) et les mécanismes de régulation sous-jacents mais également d'apporter des éléments nouveaux sur les régulations à l'origine de l'effet anti-prolifératif des CLA. Nous avons tout d'abord montré que l'extinction de l'expression de SCD-1 conduit à l'apoptose des CCC dépendante de CHOP. En revanche l'extinction de SCD 1 n'affecte en rien les cellules non cancéreuses. Par ailleurs, nous avons étudié les effets sur la viabilité des CCC de deux isomères de l'acide linoléique le c9,t11-CLA et le t10,c12-CLA in vitro. Nos résultats montrent que seul le t10,c12-CLA induit une mort cellulaire par apoptose des CCC sans affecter la survie de cellules coliques non transformées. Il apparait aussi être le seul isomère à réduire la biosynthèse des AGMI dans les CCC. La mort induite par le t10,c12 CLA dans les CCC est dépendante de l'activation d'un stress du RE via la production d'espèces réactives de l'oxygène.Nos travaux apportent des éléments nouveaux dans la compréhension du rôle de SCD 1 dans la survie des cellules cancéreuses coliques et les mécanismes d'action du t10,c12 CLA. Notre étude soutient l'hypothèse de faire de la biosynthèse des AGMI une cible thérapeutique possible dans le traitement des cancers colorectaux
68

Involvement of sigma receptors and thri ligands in the biology of cancers / Implication des récepteurs sigma et de leurs ligands dans la biologie des cancers

Megalizzi, Véronique 30 June 2011 (has links)
Parmi les tumeurs cérébrales primaires, les gliomes sont les tumeurs les plus fréquemment rencontrées. Les glioblastomes (GBM) représentent 60 à 70% de ces tumeurs et malgré de récents progrès dans leur traitement, leur pronostic reste sombre. Les gliomes malins sont caractérisés par une prolifération cellulaire importante, un taux élevé de néo-angiogenèse et une migration diffuse des cellules tumorales gliales dans le parenchyme cérébral, ce qui rend impossible une résection chirurgicale complète. De plus, les cellules gliales tumorales migrantes opposent une résistance particulière aux traitements chimiothérapiques de type pro-apoptotique, causant une récidive quasi inévitable de ce type de tumeur. La compréhension des aspects moléculaires à la base de la prolifération, de la migration et de la chimiorésitance des cellules gliales tumorales est donc essentielle pour élaborer des approches ciblées capables d’entraver ces processus. La littérature mentionne plusieurs stratégies qui permettraient, en théorie, de court-circuiter la résistance à l’apoptose des cellules tumorales gliales migrantes. Il s’agirait entre autres :<p>- de réduire le taux d’activation des voies de signalisation contrôlées par PI3K /Akt /mTOR et NFkappaB, qui diminuerait le taux de croissance des gliomes malins, ainsi que le taux de migration des cellules tumorales isolées dans le parenchyme cérébral;<p>- de réduire le taux de migration des cellules tumorales gliales afin de restaurer un certain degré de sensibilité à des agents chimiothérapiques pro-apoptotiques;<p>- d’endiguer l’export des agents chimiothérapiques par les pompes à efflux surexprimées dans les gliomes <p>- d'induire d’autres processus de mort cellulaire que l’apoptose, car les cellules tumorales gliales migrantes sont plus sensibles à d’autres formes de mort cellulaire.<p>Ces besoins de nouvelles stratégies thérapeutiques ont motivé ce travail qui se focalisera sur le potentiel antitumoral des ligands du R-sigma1 dans les glioblastomes. Ainsi, nous montrerons que les ligands des Rs-sigma sont capables de produire certains des effets visés dans les stratégies ci-dessus, dont la réduction de la prolifération et de la migration des cellules cancéreuses avec une certaine potentialisation des chimiothérapies. Ces propriétés ouvrent de nouvelles perspectives en thérapie anticancéreuse pour cette famille de ligands, dont plusieurs membres sont déjà utilisés depuis de nombreuses années comme antipsychotique. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
69

Studying the Role of Peroxiredoxin 1 in ROS Modulation and Drug Resistance / Etude du rôle de la Peroxiredoxine 1 dans la modulation redox et la résistance aux drogues anticancéreuses

He, Tiantian 04 July 2014 (has links)
Les peroxyrédoxines sont des enzymes essentielles de la cellule. Outre leur rôle d’antioxydant, elles sont aussi des régulateurs de la signalisation cellulaire et des suppresseurs de tumeurs. La péroxiredoxine 1 (Prx1) est la plus abondante parmi les six isoformes de peroxyrédoxines humaines. Elle est fréquemment surexprimée dans plusieurs types de cellules cancéreuses, et on a pu associer Prx1 aux processus de carcinogenèse et de métastase, ainsi qu’à la résistance à la radiothérapie ou la chimiothérapie. Ainsi, Prx1 pourrait donc être une cible anticancéreuse intéressante. Au cours de ce travail de thèse, nous avons d’abord évalué l'impact d’une diminution de Prx1 (Prx1 knockdown (Prx1–)) sur la sensibilité cellulaire à des dizaines de médicaments anticancéreux dont la vinblastine, le taxol, la doxorubicine, la daunorubicine, l’actinomycine D, et le 5-fluorouracile, et d’agents connus pour provoquer la production d’espèces réactives de l’oxygène (ROS), dont le peroxyde d'hydrogène, le 2-phényléthyle isothiocyanate, le β-lapachone (β-lap) et la ménadione. Nous avons mis en évidence qu’une diminution de Prx1 augmente significativement la sensibilité des cellules à l'effet cytotoxique de la β-lap et de la ménadione, deux naphtoquinones possédant une activité anti-tumorale.Nous avons étudié les mécanismes responsables de l'augmentation de la cytotoxicité de la β-lap dans un contexte Prx1–. Nous montrons que la toxicité accrue de la β-lap dans des cellules Prx1– est due à une accumulation intracellulaire de ROS. Cet effet est dépendant de l’activité NADPH quinone oxydoréductase (NQO1) et s’accompagne d’une phosphorylation de c-Jun N-terminal kinases (JNK), protein 38 (p38), extracellular signal-regulated kinases (Erk) et des mitogen-activated protein kinases (MAPK), mais aussi d’une diminution des niveaux protéiques de la thiorédoxine 1. En se basant sur le fait que Prx1 est une enzyme antioxydante et un partenaire d'au moins ASK1 et JNK, deux éléments clés de la voie MAPK, nous proposons que la sensibilisation à la β-lap, observée après diminution de Prx1, est provoquée par une action synergique entre l'accumulation de ROS et l'induction de la voie MAPK, conduisant ainsi à l'apoptose.Nous avons ensuite étudié les mécanismes responsables de l'augmentation de la cytotoxicité de la ménadione dans le contexte Prx1–. La sensibilité accrue des cellules à l'effet cytotoxique de la ménadione et également associée à l'accumulation rapide et massive des ROS intracellulaire et à une mort cellulaire ressemblant à la nécrose programmée (necroptosis). L’accumulation de ROS induite par la ménadione et très rapidement détectée dans le cytosol, le noyau, et de façon encore plus importante, dans la matrice mitochondriale. Ce phénomène est en corrélation avec l'oxydation importante des thiorédoxine 2 et peroxiredoxine 3, deux protéines antioxydantes localisées dans la mitochondrie. La diminution de l’expression de Prx1 s’accompagne d’une augmentation des quantités tant de l’ARNm que de la protéine NRH: quinone oxydoréductase 2 (NQO2). Cette augmentation de l'activité de NQO2 est en grande partie responsable de l'accumulation intracellulaire de ROS et de la mort cellulaire après le traitement à la ménadione. Nos données révèlent que l’accumulation de ROS dans les cellules Prx1– provient de la résultante entre l’augmentation de leur production par NQO2 au cours du métabolisme de la ménadione et la diminution de leur élimination par Prx1. Enfin et de façon surprenante, selon la nature des naptoquinones (β-lap ou ménadione), les voies métaboliques qui conduisent à l'accumulation des ROS, ou les voies de signalisation et les mécanismes de mort cellulaire impliqués semblent être distincts. / Peroxiredoxins have multiple cellular functions as major antioxidants, signaling regulators, molecular chaperones and tumor suppressors. Peroxiredoxin 1 (Prx1) is the most abundant among the six isoforms of human peroxiredoxins. It is frequently over-expressed in various cancer cells, which is known associated with carcinogenesis, metastasis and resistance to radiotherapy or chemotherapy. Prx1 could thus be an interesting anticancer target. In this study, we first evaluated the impact of Prx1 knockdown (Prx1–) on cellular sensitivity to dozens of anticancer drugs including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D, and 5-fluorouracil, and of reactive oxygen species (ROS)-generating agents, including hydrogen peroxide, 2-phenylethyl isothiocyanate, β-lapachone (β-lap) and menadione. We observed that Prx1 knockdown significantly enhanced cancer cell sensitivity to β-lap and menadione, two naphthoquinones with anti-cancer activity.We first investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to β-lap in a Prx1 knockdown context. Prx1 knockdown markedly potentiated β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent and associated with the phosphorylation of c-Jun N-terminal kinases (JNK), protein 38 (p38) and extracellular signal-regulated kinases (Erk) proteins in mitogen-activated protein kinase (MAPK) pathways, and a decrease in thioredoxin 1 protein levels. Based on the fact that Prx1 is a major ROS scavenger and a partner of apoptosis signaling kinase 1 (ASK1) and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through the combined action of ROS accumulation and MAPK pathway activation, leading to cell apoptosis.We then investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to menadione in Prx1– cells. Enhanced sensitivity to menadione was associated with a rapid and significant intracellular ROS accumulation and necroptotic-like cell death. Menadione-induced ROS accumulation occurred immediately in the cytosol, the nucleus, and even more noticeably in the mitochondrial matrix, correlated with significant oxidation of both mitochondria-localized thioredoxin 2 and peroxiredoxin 3. Prx1 knockdown significantly up-regulated mRNA and protein levels of NRH: quinone oxidoreductase 2 (NQO2). Increased activity of NQO2 was largely responsible for menadione-induced ROS accumulation and consequent cell death. Our data indicate that massive ROS accumulation results from the combined effect of increased ROS generation by higher NQO2 activity during menadione metabolism, and diminished Prx1 scavenging activity. Finally and noteworthy, the metabolic pathways that lead to ROS accumulation, downstream signaling pathways and cell death mechanisms appear to be distinct for β-lap and menadione.

Page generated in 0.0426 seconds