Spelling suggestions: "subject:"coeur/coquille"" "subject:"soeur/coquille""
11 |
Élaboration, caractérisation et étude des propriétés de particules cœur-coquilles de diamant / Elaboration, Characterization and Study of Diamond Core-shells PropertiesVenerosy, Amélie 04 December 2018 (has links)
Le diamant de synthèse présente un intérêt croissant pour des applications diverses dans les domaines de l’optique, la catalyse, la biologie ou encore l’électronique. Par dépôt chimique en phase vapeur (CVD) ou par haute pression et haute température (HPHT), il peut être synthétisé sous forme de films. Les particules de diamant sont généralement produites par détonation ou par broyage de diamant massif. Cependant, il n’existe pas actuellement de particules de diamant combinant à la fois sphéricité, monodispersité et qualité cristalline contrôlée. Dans ce contexte, l’objectif de ce travail de thèse est d’élaborer un matériau diamant répondant à ces critères. Pour cela, des cœur-coquilles de diamant nanocristallin sphériques et monodisperses de taille micrométrique ont été synthétisés à partir de billes de silice ensemencées par des nanodiamants. Le revêtement de diamant nanocristallin a été obtenu dans un réacteur CVD spécifique dédié au traitement de poudres. En faisant varier la composition du mélange gazeux, la nature du revêtement a pu être modifiée, du diamant nanocristallin à un matériau hybride composé de nanodiamants enrobés d’une matrice graphitique. Des méthodes de caractérisations complémentaires comme la spectroscopie Raman et le HR-TEM ont permis de déterminer la structure cristalline de ces différents revêtements. Un traitement d’oxydation des cœur-coquilles a permis de les disperser en suspension colloïdale dans l’eau. En utilisant un traitement basique, des sphères creuses ont pu être obtenues et mises en suspension. Des études préliminaires des performances de ces différents matériaux ont ensuite été menées : les propriétés photo-électrocatalytiques pour la réduction du CO2 et la cytotoxicité in vitro pour des applications en biologie. La méthode d’élaboration des cœur-coquilles de diamant mise au point a été enfin étendue à des cœurs magnétiques de maghémite. / Synthetic diamond is now considered in various fields of applications like optics, catalysis, biology or even electronic. Thin films can be synthesized by Chemical Vapor Deposition (CVD) or by High Pressure/ High Temperature (HPHT), while particles are produced by detonation synthesis or milling of bulk diamond. Nevertheless, among all these diamond materials, there is no material available combining sphericity, monodispersity and crystalline quality. This is the purpose of this thesis work. Core-shell systems made of nanocrystalline diamond shell surrounding a silica core have been synthesized, starting from nanodiamond-seeded silica particles. These particles have been grown in a dedicated home-made CVD reactor, specifically developed to treat powders. Varying the gas composition, the nature of the coating has been tuned, from nanocrystalline diamond to a hybrid material made of nanodiamond particles surrounded by organized graphite. Complementary techniques such as Raman spectroscopy and High Resolution Transmission Electronic Microscopy (HR-TEM) have been used to characterize the crystalline structures. Colloidal suspensions were also obtained with these new diamond core-shells, by oxidation of their surface. Dissolving the silica core, diamond shells were also synthesized, exhibiting stable colloidal properties. Preliminary studies on diamond core-shells performances are also presented in this manuscript: their photocatalytic properties toward CO2 reduction and their in-vitro cytotoxicity considering further biological applications. Finally, the manuscript also reports on the extension of the process to magnetic silica cores for the synthesis of magnetic diamond core-shells.
|
12 |
Avenues de synthèse d’un matériau magnétique multifonctionnel à des fins de catalyse hétérogèneParadis Fortin, Laura January 2016 (has links)
La catalyse est à la base de la fabrication de médicaments, de produits textiles, d‘engrais, des pots d’échappement, et une multitude d’autres applications de notre quotidien. En effet, dans les pays industrialisés jusqu’à 80% des produits manufacturés utilisés au quotidien ont nécessité au moins une étape de catalyse lors de leur fabrication. Outre être actif, il est primordial pour un catalyseur performant d’être résistant à la désactivation qui se traduit par la perte d’activité ou de sélectivité d’un catalyseur au cours du temps. La synthèse d’un matériau multifonctionnel permet de répondre à ces différents critères. L’objectif d’un design intelligent de matériaux est de mener à des effets synergiques de chacune des composantes. Pour un catalyseur, en plus d’être actif et sélectif pour le produit désiré, il faut en plus qu’il soit durable, stable dans le temps, et permette d’être réutilisable. L’objectif de ce projet est de faire une synthèse originale, simple et reproductible d’un catalyseur actif et résistant à la désactivation. De base, un catalyseur se compose d’un support et d’un matériau actif. La nature, la morphologie et l’agencement de ces derniers dictent le comportement chimique du catalyseur final. Comme matériau actif, les nanoparticules d’or sont très prisées en raison de leur potentiel de catalyse élevée pour de nombreuses réactions. Cependant, aux températures de fonctionnement de la catalyse, les nanoparticules d’or ont tendance à se désactiver par coalescence. Pour remédier à cela, il est possible de déposer une couche de silice mésoporeuse afin de protéger les NPs d’or des rudes conditions de réaction tout en étant perméables aux espèces réactives. Plusieurs types de matériaux peuvent servir de support aux nanoparticules d’or. À ce titre, les particules d’oxydes de fer magnétiques telles que la magnétite (Fe[indice inférieur 3]O[indice inférieur 4]) sont intéressantes pour leur potentiel hyperthermique, phénomène par lequel des nanoparticules (NPs) magnétiques transforment de l’énergie électromagnétique provenant d’un champ externe haute fréquence en chaleur, créant ainsi des nano-fours. Une première couche de silice est utilisée comme matrice de greffage afin de fixer les nanoparticules d’or sur la magnétite. La structure visée est illustrée à la Figure ci-dessous. Figure 1 Structure du catalyseur de Fe2O4@SiO2-Au-SiO2m (Ge, Zhang, Zhang, & Yin, 2008) Plusieurs avenues d’assemblage et de synthèse sont explorées pour chacune des composantes de la structure visée. Les avantages et inconvénients ainsi que des mécanismes sont proposés pour chaque voie de synthèse. Le matériau est utilisé comme catalyseur pour la réaction de réduction du 4-Nitrophénol par du NaBH4. Pour ce qui est de la synthèse de magnétite par voie solvothermique, il a été démontré qu’il était important d’être dans un milieu sous pression puisque l’étape limitante de la réaction est la solubilité des particules de magnétites dans le milieu. Cela est en accord avec le principe de mûrissement d’Ostwald selon lequel les petites particules ont tendance à se dissoudre dans le milieu et précipiter à la surface des plus grosses particules de façon à diminuer l’énergie interfaciale. Cette synthèse a été reproduite avec succès et a mené à la production de nanoparticules de Fe[indice inférieur 3]O[indice inférieur 4] sphériques creuses d’une taille de 150 [plus ou moins] 30nm. Ces sphères creuses ont été recouvertes d’une couche de silice dense par une méthode de Stöber modifiée. Le recouvrement forme des amas de particules et est non uniforme en raison de la présence de poly(éthlyène glycol) à la sur face de la magnétite, un adjuvant présent lors de sa synthèse afin d’améliorer la dispersion de la magnétite. La synthèse et le greffage d’AuNPs sont bien maîtrisés : les AuNPs ont une taille de 17 [plus ou moins] 6nm et la quantité d’or greffé est assez élevée. Ultimement, une méthode de greffage alternative tel que le greffage par croissance in situ de nanoparticules d’or pourrait être emprunté afin d’obtenir des particules plus petites. Pour ce qui est de la formation d’une couche de silice mésoporeuse, la méthode par calcination est une meilleure option que par gravure chimique en raison de sa sélectivité envers la couche externe de silice plus élevée ainsi que la formation apparente de pores.
|
13 |
Effets de température sur les nanoparticules de CoAg : structure et effets de ségrégation / Temperature effects on CoAg nanoparticles : structure and segregation effectsKataya, Zeinab 18 December 2013 (has links)
Cette étude a pour objectif de comprendre comment les effets de température, de cinétiques de croissance, ou les effets d’environnement peuvent influencer la structure (cristalline ou non cristalline) et la configuration chimique (mélange/ ségrégation/ séparation de phase) de nanoparticules supportées d’Ag et de CoAg. Pour cela, des nanoparticules de CoAg de différentes tailles et compositions ont été préparées par condensation sous ultravide selon différents modes de croissance (co-dépôt ou dépôts séquentiels des deux métaux). Afin d’accéder à l’ensemble des caractéristiques des nanoparticules, des techniques complémentaires ont été couplées: la diffusion de rayons X aux petits et aux grands angles en incidence rasante et les techniques de microscopie en mode d’imagerie haute résolution ou filtrée en énergie. L’analyse préliminaire de particules d’Ag a montré l’existence de structures cristallines et non cristallines (icosaédriques) pour les petites (2-2.5nm) et grandes tailles (6-8nm). Une dominance de la structure décaédrique a été montrée entre ces deux extrêmes. Cette dernière disparaît complètement lors de l’élaboration en température. Pour le système bimétallique Co-Ag, à température ambiante et indépendamment de la taille, de la composition et du mode d’élaboration, les nanoparticules présentent une ségrégation avec une configuration de type coeur d’argent entouré d’une coquille plus ou moins continue à base de Co métallique et d’oxyde de Co. Lorsque les échantillons sont soumis à un traitement thermique, une transition s’opère conduisant à une ségrégation plus importante de type Janus. / This study aims to understand how the temperature, the kinetic growth conditions or the environment can influence the structure (crystalline or non-crystalline) and the chemical order (mixing/ segregation/phase separation) of Ag and CoAg supported nanoparticles. Different samples of CoAg nanoparticles with different sizes and compositions were prepared by condensation under ultrahigh vacuum with different growth modes (co-deposition or sequential deposition of the two metals) and different thermal treatements. To access all the characteristics of the nanoparticles, complementary techniques were coupled: the X ray scattering at small and wide angles under grazing incident X Ray beam and the electron microscopy techniques: (high resolution and energy filtered modes). Preliminary analysis of Ag particles prepared at room temperature showed the existence of crystalline and non-crystalline (icosahedral) structures for small (2-2.5nm) and large sizes (6-8nm). A dominant feature of the decahedral structure was shown between these two extremes. This structure disappears completely when increasing elabration temperature. For the bimetallic Co-Ag system, at room temperature and independently of the size, composition and growth mode, the nanoparticles present a segregated configuration with a silver core surrounded by a more or less continuous shell, based on metallic Co or cobalt oxyde. After heating the samples, a transition takes place, leading to a more important segregation such as Janus one.
|
14 |
Effets de température sur les nanoparticules de CoAg : structure et effets de ségrégationKataya, Zeinab 18 December 2013 (has links) (PDF)
Cette étude a pour objectif de comprendre comment les effets de température, de cinétiques de croissance, ou les effets d'environnement peuvent influencer la structure (cristalline ou non cristalline) et la configuration chimique (mélange/ ségrégation/ séparation de phase) de nanoparticules supportées d'Ag et de CoAg. Pour cela, des nanoparticules de CoAg de différentes tailles et compositions ont été préparées par condensation sous ultravide selon différents modes de croissance (co-dépôt ou dépôts séquentiels des deux métaux). Afin d'accéder à l'ensemble des caractéristiques des nanoparticules, des techniques complémentaires ont été couplées: la diffusion de rayons X aux petits et aux grands angles en incidence rasante et les techniques de microscopie en mode d'imagerie haute résolution ou filtrée en énergie. L'analyse préliminaire de particules d'Ag a montré l'existence de structures cristallines et non cristallines (icosaédriques) pour les petites (2-2.5nm) et grandes tailles (6-8nm). Une dominance de la structure décaédrique a été montrée entre ces deux extrêmes. Cette dernière disparaît complètement lors de l'élaboration en température. Pour le système bimétallique Co-Ag, à température ambiante et indépendamment de la taille, de la composition et du mode d'élaboration, les nanoparticules présentent une ségrégation avec une configuration de type coeur d'argent entouré d'une coquille plus ou moins continue à base de Co métallique et d'oxyde de Co. Lorsque les échantillons sont soumis à un traitement thermique, une transition s'opère conduisant à une ségrégation plus importante de type Janus.
|
15 |
Croissance de nanofils III-V par épitaxie par jets moléculairesLe Thuy, Thanh Giang 09 July 2014 (has links) (PDF)
Ce travail a pour objectif la fabrication, en épitaxie par jets moléculaires, de nanofils coeurcoquilleà base de GaAs et AlGaAs déposés sur des substrats Si(111), en vue de réaliser desréseaux de fils pour de nouvelles cellules solaires, et pour des fils photoniques permettant uneapproche bottom-up d'émetteurs de photons uniques.La première partie de ce travail est une étude systématique des paramètres clés qui contrôlent lacroissance uni-dimensionnelle de fils GaAs élaborés par un mécanisme vapeur-liquide-solideauto-catalysé, à savoir le rapport des flux As/Ga, la température du substrat, et la vitesse decroissance.La seconde partie se concentre sur la croissance et la caractérisation de fils GaAs recouvertsd'une coquille d'alliages AlGaAs (35% Al) afin de s'affranchir des recombinaisons de surface.Ces coquillesde AlGaAs sont fabriquées en conditions riche-As (rapport As/Ga > 10) afin deconsommer les gouttes de catalyseur gallium et de promouvoir une croissance radiale (le taux decroissance maximal axial/radial est égal à 6). Diverses caractérisations optiques sont réalisées àbasse température sur ces ensembles de fils : cathodoluminescence, photoluminescence etspectroscopie résolue en temps. L'intensité de luminescence et la durée de vie des porteursaugmentent fortement avec la présence de la coquille : une épaisseur de 7 nm de cette dernièreest suffisante pour optimiser la passivation des nanofils et supprimer les recombinaisons liéesaux états de surface. Une fine couche extérieure de GaAs est nécessaire pour éviter touteoxydation de la coquille d'alliage AlGaAs.De plus, grâce à des mesures de CL résolues spatialement, les longueurs de diffusion desexcitons dans ces fils ont été obtenues, allant de 0.7 μm à 1.5 μm pour des épaisseurs decoquilles comprises entre 20 et 50 nm. Des valeurs plus petites sont mesurées pour des coquillesplus épaisses, ce qui tend à montrer l'introduction de défauts dans l'alliage qui pourraientlimiter la qualité de l'interface. Le décalage en énergie de l'émission fournit des informationssur la génération de contraintes dans ces fils coeur-coquille et sur le champ piézo-électrique quien découle.
|
16 |
Photoluminescence et couplage plasmonique des nanocristaux d'AgInS2-ZnS / Photoluminescence and plasmonic coupling of AgInS2-ZnS nanocristalsChevallier, Théo 16 October 2015 (has links)
Les nanocristaux d'AgInS2-ZnS sont des candidats prometteurs pour le développement de nano-luminophores non-toxiques et performants. Grâce à leur taille et à leur forte absorption, ces nano-luminophores permettent l'exploitation d'effets nano-optiques pouvant augmenter leur efficacité à l'absorption ou à l'émission. Ce document présente, dans un premier temps, une méthode d'analyse qui couple la mesure du rendement quantique à celle du temps de vie de luminescence et permet l'étude des contributions radiatives et non-radiatives des différents mécanismes de luminescence des nanocristaux d'AgInS2-ZnS. En modifiant la taille, la chimie de surface et la structure du cœur de ces nanocristaux, nous construisons un modèle global expliquant le rôle de leur composition et soulignant l'importance de leur surface. De nouvelles stratégies sont identifiées pour optimiser ces nanomatériaux. Leur application conjointe permet d'envisager des rendements quantiques proches de 90%. Dans un second temps, une méthode de simulation numérique générale a été développée pour prédire l'effet produit par le couplage nano-optique entre une particule plasmonique et un luminophore. Cette méthode a été appliquée au cas des structures cœur/coquille/coquille (métal/isolant/AgInS2-ZnS) et les configurations optimales du système ont été déterminées. Une nanostructure particulièrement performante permettant de combiner les effets du couplage à l'absorption et à l'émission a été identifiée. Une méthode de synthèse de ces nanostructures est développée. Les résultats expérimentaux obtenus sont en accord à la fois avec la compréhension de la fluorescence des nanocristaux d'AgInS2-ZnS et la prédiction obtenue par simulation. / AgInS2-ZnS nanocrystals are promising materials for the development of non-toxic, highly efficient nano-phosphors. Their size and strong absorption allow them to exploit nano-optical effects potentially enhancing both their absorption and emission processes. This work presents a method combining quantum yield measurements with time resolved emission spectroscopy allowing for the study of both radiative and non-radiative properties of each recombination pathways. Modifying the size, surface chemistry, and core structure of the nanocrystals, we construct a global model explaining the role of their composition and emphasizing the critical aspect of their surface. New strategies are identified to increase the internal quantum yield of these materials. Combining these approaches, it is now possible to expect 90% efficiencies. In a second step, a simulation method was developed to predict the nano-optical effects induced by a plasmonic nanostructure on a given phosphor. We applied this method on core/shell/shell (metal/insulator/AgInS2-ZnS) nanostructures and theoretically determined optimal configurations of the system. A particularly efficient nanostructure achieving coupling on both absorbed and emitted light is identified. Hybrid plasmonic nanostructures are synthesized. Their performances are in accordance with both our understanding of the fluorescence mechanisms of AgInS2-ZnS nanocrystals and the predictions made via simulation.
|
17 |
Organisation et ségrégation lors de la formation de nanoalliages d'AgCo étudiés par diffusion aux petits et aux grands angles et effet anomal / Organization and segregation during the growth of AgCo nanoalloys studied by small and wide angle scattering and anomalous effectLemoine, Asseline 17 December 2015 (has links)
Ce travail de thèse a pour objectif d'étudier les rôles de la taille, de la composition et de la cinétique de croissance sur la morphologie, la structure, et l'état de mélange de l'argent et du cobalt dans des nanoparticules bimétalliques supportées AgCo. Dans ce but, des mesures in-situ et en temps réel par diffusion des rayons X aux petits et aux grands angles en géométrie d'incidence rasante, et en condition anomale, ont été effectuées au cours de la croissance des nanoparticules AgCo dans des conditions de dépôt simultané ou successif des métaux. Des recuits ont ensuite été réalisés afin d'étudier la stabilité des structures obtenues à température ambiante, et d'observer d'éventuelles transitions activées thermiquement. Pour l'ensemble des modes de dépôt, les nanoparticules (dans une gamme de taille comprise entre 2 et 7nm) présentent une configuration chimique ségrégée. Pour des dépôts successifs de Co puis d'Ag, les nanoparticules sont constituées d'un (ou plusieurs) domaine(s) d'Ag juxtaposé(s) à un domaine de Co, tandis que pour un dépôt d'Ag puis de Co les particules présentent une configuration de type coeur-coquille (Co-Ag). Pour les dépôts simultanés, la configuration cœur-coquille est obtenue à très faible composition en Ag (< ou =20%), au-delà la configuration multidomaines monométalliques est observée. Quelle que soit la configuration initiale, le recuit conduit à une séparation de phase des métaux sous forme de particules Janus et à des réorganisations structurales. / The aim of this work is to study the role of size, composition and growth kinetic conditions on the morphology, the structure and the chemical configuration of AgCo bimetallic supported nanoparticles. Thus, in-situ and in real-time anomalous grazing incidence small and wide angle X-ray scattering measurements were performed during AgCo nanoparticles growth. Two types of growth conditions were studied : simultaneous or successive deposition of the two metals. Samples were also annealed to study the stability of the structures observed at room temperature, and to investigate if structural transitions occur due to thermal activation. For all kind of deposition modes, the nanoparticles (in a size range between 2 and 7 nm) exhibit a segregated chemical configuration. For the deposition of Co followed by Ag deposition, the nanoparticles are constituted of one (or several) Ag domain(s) juxtaposed with a Co domain, whereas for Ag deposition followed by Co deposition, the nanoparticles present a (Co-Ag) core-shell configuration. For simultaneous depositions and Ag poor compositions (< or =20%), the core-shell configuration is obtained. For richer compositions, the multidomain configuration is observed. Whatever the initial configuration, annealing leads to a phase separation of the two metals towards Janus particles and some structural reorganizations occur.
|
18 |
Croissance de nanofils III-V par épitaxie par jets moléculaires / Realization of III-V semiconductor nanowires by molecular beam epitaxy growthLe Thuy, Thanh Giang 09 July 2014 (has links)
Ce travail a pour objectif la fabrication, en épitaxie par jets moléculaires, de nanofils coeurcoquilleà base de GaAs et AlGaAs déposés sur des substrats Si(111), en vue de réaliser desréseaux de fils pour de nouvelles cellules solaires, et pour des fils photoniques permettant uneapproche bottom-up d’émetteurs de photons uniques.La première partie de ce travail est une étude systématique des paramètres clés qui contrôlent lacroissance uni-dimensionnelle de fils GaAs élaborés par un mécanisme vapeur-liquide-solideauto-catalysé, à savoir le rapport des flux As/Ga, la température du substrat, et la vitesse decroissance.La seconde partie se concentre sur la croissance et la caractérisation de fils GaAs recouvertsd’une coquille d’alliages AlGaAs (35% Al) afin de s’affranchir des recombinaisons de surface.Ces coquillesde AlGaAs sont fabriquées en conditions riche-As (rapport As/Ga > 10) afin deconsommer les gouttes de catalyseur gallium et de promouvoir une croissance radiale (le taux decroissance maximal axial/radial est égal à 6). Diverses caractérisations optiques sont réalisées àbasse température sur ces ensembles de fils : cathodoluminescence, photoluminescence etspectroscopie résolue en temps. L’intensité de luminescence et la durée de vie des porteursaugmentent fortement avec la présence de la coquille : une épaisseur de 7 nm de cette dernièreest suffisante pour optimiser la passivation des nanofils et supprimer les recombinaisons liéesaux états de surface. Une fine couche extérieure de GaAs est nécessaire pour éviter touteoxydation de la coquille d’alliage AlGaAs.De plus, grâce à des mesures de CL résolues spatialement, les longueurs de diffusion desexcitons dans ces fils ont été obtenues, allant de 0.7 μm à 1.5 μm pour des épaisseurs decoquilles comprises entre 20 et 50 nm. Des valeurs plus petites sont mesurées pour des coquillesplus épaisses, ce qui tend à montrer l’introduction de défauts dans l’alliage qui pourraientlimiter la qualité de l’interface. Le décalage en énergie de l’émission fournit des informationssur la génération de contraintes dans ces fils coeur-coquille et sur le champ piézo-électrique quien découle. / This report focuses on the fabrication of GaAs nanowires and GaAs/AlGaAs core-shellstructures by molecular beam epitaxy, deposited on Si (111) substrates in order to providearrays of wires for innovative solar cells and bottom-up photonic wires for efficient singlephoton emitters.The first part of this work is a systematic study of the key parameters which control the onedimensionalgrowth of bare GaAs NWs with a self-assisted vapor-liquid-solid growth process,namely the As-to-Ga flux ratio, the substrate temperature, and the deposition rate.The second part concentrates on the growth and characterization of GaAs wires covered with ashell of AlGaAs alloy (35 % Al) in order to get rid of the surface recombinations. These shellswere fabricated under As-rich condition with ratio As/Ga >10 in order to consume the Gadropletscompletely and to promote a radial growth. The obtained axial-to-radial growth ratio is6. The optical characterizations on ensemble were carried out at low temperature via thecathodoluminescence (CL), photoluminescence (PL), and time-resolved PL measurements. Theresults show that the lifetime of carriers and luminescence intensity increase significantly withshell coverage. About 7 nm thick shell is enough to optimize the passivation and suppress thesurface state recombination. A thin outer cap of GaAs is required in order to prevent someoxidation of the AlGaAs alloy shell.In addition, the exciton diffusion lengths of these NWs, studied via the spatially resolved CL,are in the range of 0.7 - 1.5 μm for NWs with shell thicknesses between 20 - 50 nm. Thesevalues are smaller for thicker shells due to the defect formation, leading to limit the quality ofcore-shell interface. The shift in optical emission experiments provides the information of thestrain generation of core-shell when we vary the shell thickness. The piezoelectric field wasnoticed in these samples.
|
19 |
Dispersions de nanoparticules magnétiques de structure coeur/coquille : propriétés magnétiques et thermodiffusion / Dispersions of core-shell magnetic nanoparticles : magnetic properties and thermodiffusionCabreira Gomes, Rafael 17 December 2014 (has links)
Nos objectifs sont ici de comprendre comment les propriétés magnétiques de nanoparticules (NPs) sont affectées par la diminution de leur taille et par leur composition chimique, et comprendre ce qui régit leur mouvement thermophorétique et l'effet magnéto-calorique. Des ferrofluides composés de NPs de structure cœur-couronne sont synthétisés ici avec un cœur de ferrite de Mn, de Co ou de ferrite mixte Zn-Mn, recouvert d'une couronne de maghémite. Les mesures magnétiques révèlent une composition magnétique mixte conduisant à l'observation d'un exchange bias qui se manifeste par des cycles d'hystérésis décalés à basses températures. Nous comparons ce phénomène dans le cas de NPs à cœur magnétiquement dur (CoFe2O4) et à cœur magnétiquement mou (MnFe2O4). Indépendamment de la nature du cœur, ce champ d'échange augmente jusqu'à un maximum, obtenu quand le champ de refroidissement est de l'ordre de la moitié du champ d'anisotropie. Les propriétés thermophorétiques des dispersions, sondées par diffusion Rayleigh forcée, sont gouvernées par la physico-chimie du colloïde (ligand de surface, contre-ions, interactions entre NPs) indépendamment de la composition chimique et des propriétés magnétiques en champ nul. Le coefficient Soret est ici négatif (NPs thermophiles) et est relié à la compressibilité osmotique donnée par un formalisme de Carnahan-Starling effectif. On modélise la friction en régime dilué par la loi d'Einstein et en régime concentré, à l'approche de la transition vitreuse, par un modèle de Vogel-Fulcher. Les mesures de l’effet magnéto-calorique démontrent une similarité avec les matériaux commerciaux, avec une forte influence de la composition chimique du cœur. / Our objective is to understand how the magnetic properties of nanoparticles (NPs) can be affected by their size reduction and their chemical composition, and also to determine their role on their thermophoretic motion and on the magneto-caloric effect. For this purpose, aqueous ferrofluids are synthesized with core-shell NPs based on a core of Mn-ferrite, Co-ferrite and mixed Zn-Mn ferrites, coated with a maghemite shell. The magnetic measurements evidence a ferrimagnetic core, covered with disordered frozen spins (SGL), driving an exchange bias phenomenon shifting the hysteresis loops, when the system is cooled under a field Hfc. This exchange bias is measured as a function of Hfc, in samples with NPs having either a hard (CoFe2O4) or a soft (MnFe2O4) magnetic core. Whatever the nature of the magnetic core, the exchange bias field grows up to reach a maximum, always found at Hfc of the order of half of the anisotropy field. The thermophoretic properties of the dispersions, probed by Forced Rayleigh Scattering, are ruled by colloidal physico-chemical features (surface ligand, counter ions, interparticle interactions) whatever the chemical composition and the magnetic properties in zero magnetic field. The Soret coefficient is found here negative (thermophilic NPs) and is related to the osmotic compressibility, modeled by an effective Carnahan-Staring formalism. In the dilute regime, the friction follows an Einstein law, while a Vogel-Fulcher formalism describes the concentrated regime, at the approach of the glass transition. The magneto-caloric measurements demonstrate a similarity with commercial materials. They are strongly influenced by the core composition.
|
20 |
étude du couplage élastique au sein d'hétérostructures cœur-coquille à base d'analogues du bleu de Prusse / Study of the elastical coupling in core-shell heterostructures combining prussian blue analogsAdam, Adeline 18 October 2017 (has links)
Le contrôle optique des propriétés physiques d’un matériau suscite l’intérêt des scientifiques pour des enjeux aussi bien fondamentaux qu’appliqués. L’axe de recherche original que nous avons développé dans le cadre de ce travail de thèse visait à la réalisation et l’étude d’hétérostructures moléculaires photo-magnétiques dans des gammes de température susceptibles d’applications. L’approche proposée consistait à élaborer des hétérostructures de type multiferroïque constituées de deux phases, l’une piézomagnétique et l’autre photo-strictive. L’idée était d’optimiser le couplage, d’origine élastique, entre ces propriétés pour permettre l’observation d’effets photo-magnétiques à des températures plus élevées que celles rapportées pour les matériaux monophasés. La couche photo-strictive peut se déformer sous irradiation lumineuse, générant des contraintes biaxiales dans la couche magnétique. Si celle-ci présente une forte réponse piézomagnétique, son aimantation peut être fortement modifiée, notamment au voisinage du point de Curie, allant jusqu’à un éventuel décalage de la température critique sous contrainte. Les composés moléculaires analogues du Bleu de Prusse, de formule générique AxM[M’(CN)6]y . zH2O (où A est un alcalin et M,M’ des métaux de transition), semblaient particulièrement adaptés à l’élaboration de telles hétérostructures. Nous avons utilisé le composé Rb0,5Co[Fe(CN)6]0,8 . zH2O pour la phase photo-strictive, au coeur, et Rb0,2Ni[Cr(CN)6]0,7 . z’H2O ou K0,2Ni[Cr(CN)6]0,7 . z’H2O pour la phase magnétique, en coquille. Ces deux phases présentent un désaccord paramétrique de 5,3%.L’objectif principal de ce travail de thèse était de comprendre et de contrôler le couplage élastique entre le cœur et la coquille. Nous avons ainsi dans un premier temps mis en évidence l’existence de ce couplage, la présence de la coquille modifiant les propriétés de photo-commutation du cœur et la déformation du réseau cristallin du cœur étant partiellement transmise à la coquille, induisant des modifications structurales et magnétiques de la coquille. Nous nous sommes dans un second temps intéressés à différents paramètres pouvant influence le couplage. D’abord en étudiant des paramètres géométriques, en faisant varier la taille des particules de cœur, l’épaisseur de la coquille et la microstructure de la coquille. Nous avons à cette occasion mis en évidence les facteurs régissant la croissance des particules de cœur et de la coquille. Ces études ont révélé que le rapport volumique entre le cœur et la coquille contrôlait la qualité du couplage, et que des modifications de la microstructure avait une influence à la fois sur les propriétés de photo-commutation du cœur, mais aussi sur la réponse de la coquille. Enfin, nous avons étudié des coquilles de nature chimique différente pour changer le désaccord paramétrique entre le cœur et la coquille. Il en ressort qu’en diminuant le désaccord, on améliore le couplage, mais cela se traduit notamment par une rétroaction de la coquille plus forte. Si cette rétroaction devient trop importante, le réseau du cœur ne peut plus se déformer. Il s’agit donc de trouver un compromis entre force du couplage et force de la rétroaction de la coquille. Finalement, nous avons mis en évidence le fait que l’on ne peut pas simplement associer l’effet de la coquille à un effet de pression hydrostatique, mais que le couplage des réseaux cristallins joue un rôle important dans la synergie entre les deux phases. / The optical control of the physical properties of a material has drawn considerable attention during the past few years for a fundamental point of view and for applications. The originality of the project developed during this thesis was based on the synthesis and the study of photo-magnetic heterostructures in a temperature range convenient for applications. The approach consisted of developing multiferroic-like heterostructures that associate a piezomagnetic phase and a photo-strictive phase. The idea was to exploit the coupling of elastic origin between these properties, to allow the observation of photo-magnetic effects at temperatures higher than those reported for single-phase materials. The photo-strictive phase can deform under light irradiation, generating biaxial strain in the magnetic phase. If the piezomagnetic response of the latter is high enough, its magnetization could be modulated, especially at the vicinity of the Curie temperature, with a possible shift of the critical temperature under stress. In this project, we focused on molecular solids based on polycyanometallates, namely Prussian blue analogues, whose generic formula is AxM[M’(CN)6]y . zH2O (where A is an alkali metal and M,M transition metals). We used the compound Rb0,5Co[Fe(CN)6]0,8 . zH2O for the photo-strictive phase and Rb0,2Ni[Cr(CN)6]0,7 . z’H2O or K0,2Ni[Cr(CN)6]0,7 . z’H2O for the magnetic phase. These two phases have a lattice mismatch of 5.3%The main objective of this work was to understand and to control the elastic coupling between the core and the shell. We first highlighted the existence of this coupling, the presence of the shell changing the photo-switching properties of the core, and the deformation of the crystalline lattice of the core inducing structural and magnetic modifications in the shell. Then, we focused on the study of different parameters which can have an impact on the behavior of the heterostructures under light irradiation. We showed that the volumic ratio between the core and the shell is a key factor to control the efficiency of the coupling. The microstructure of the shell can also play an important role, but is not as well understood. In the end, we studied other Prussian blue analogs shells in order to change the lattice mismatch between the core and the shell. We could evidence that by reducing the lattice mismatch we tend to increase the coupling, but if this coupling is to strong, the retroaction of the shell hinders completely the dilatation of the core lattice. The idea is also to find a compromise between the strength of the coupling and the strength of the shell retroaction. In the end, we proved that we cannot associate the effect of the shell to an hydrostatic pressure, but that the coupling of the crystalline lattices play an important role in the synergy between the two phases.
|
Page generated in 0.0587 seconds