Spelling suggestions: "subject:"covalent"" "subject:"kovalent""
291 |
MECHANOCHEMICAL INVESTIGATION OF INTERMOLECULAR MECHANICAL FORCE VIA SINGLE-MOLECULE FORCE SPECTROSCOPYPandey, Shankar 20 April 2023 (has links)
No description available.
|
292 |
Control of Crystallinity of Vinylene-Linked Two-Dimensional Conjugated Polymers by Rational Monomer DesignPastoetter, Dominik L., Liu, Yannan, Addicoat, Matthew A., Paasch, Silvia, Dianat, Arezoo, Bodesheim, David, Waentig, Albrecht L., Xu, Shunqi, Borrelli, Mino, Croy, Alexander, Richter, Marcus, Brunner, Eike, Cuniberti, Gianaurelio, Feng, Xinliang 04 June 2024 (has links)
The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2-carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C−C single bond formation.
|
293 |
Functionalization of Nanocarbons for Composite, Biomedical and Sensor ApplicationsKuznetsov, Oleksandr 24 July 2013 (has links)
New derivatives of carbon nanostructures: nanotubes, nano-onions and nanocrystalline diamonds were obtained through fluorination and subsequent functionalization with sucrose. Chemically modified nanocarbons show high solubility in water, ethanol, DMF and can be used as biomaterials for medical applications. It was demonstrated that sucrose functionalized nanostructures can find applications in nanocomposites due to improved dispersion enabled by polyol functional groups. Additionally, pristine and chemically derivatized carbon nanotubes were studied as nanofillers in epoxy composites. Carbon nanotubes tailored with amino functionalities demonstrated better dispersion and crosslinking with epoxy polymer yielding improved tensile strength and elastic properties of nanocomposites.
Reductive functionalization of nanocarbons, also known as Billups reaction, is a powerful method to yield nanomaterials with high degree of surface functionalization. In this method, nanocarbon salts prepared by treatment with lithium or sodium in liquid ammonia react readily with alkyl and aryl halides as well as bromo carboxylic acids. Functionalized materials are soluble in various organic or aqueous solvents. Water soluble nanodiamond derivatives were also synthesized by reductive functionalization of annealed nanodiamonds. Nanodiamond heat pretreatment was necessary to yield surface graphene layers and facilitate electron transfer from reducing agent to the surface of nanoparticles.
Other carbon materials such as activated carbon and anthracite coal were also derivatized using reductive functionalization to yield water soluble activated carbon and partially soluble in organic solvents anthracite. It was shown that activated carbon can be effectively functionalized by Billups method. New derivatives of activated carbon can improve water treatment targeting specific impurities and bio active contaminants.
It was demonstrated that functionalized carbon nanotubes are suitable for real time radiation measurements. Radiation sensor incorporating derivatized carbon nanotubes is lightweight and reusable.
In summary, functionalization of carbon nanomaterials opens new avenues for processing and applications ranging from biomedicine to radiation sensing in space.
|
294 |
Designing Cell-Free Protein Synthesis Systems for Improved Biocatalysis and On-Demand, Cost-Effective BiosensorsSoltani Najafabadi, Mehran 06 August 2021 (has links)
The open nature of Cell-Free Protein Synthesis (CFPS) systems has enabled flexible design, easy manipulation, and novel applications of protein engineering in therapeutic production, biocatalysis, and biosensors. This dissertation reports on three advances in the application of CFPS systems for 1) improving biocatalysis performance in industrial applications by site-specific covalent enzyme immobilization, 2) expressing and optimizing a difficult to express a mammalian protein in bacterial-based CFPS systems and its application for cost-effective, on-demand biosensors compatible with human body fluids, and 3) streamlining the procedure of an E. coli extract with built-in compatibility with human body fluid biosensors. Site-specific covalent immobilization stabilizes enzymes and facilitates recovery and reuse of enzymes which improves the net profit margin of industrial enzymes. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. This dissertation reports the reliability of several design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of a target enzyme, TEM-1 ?-lactamase. This work demonstrates that the design heuristics can successfully identify a subset of favorable locations for experimental validation. This approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to efficiently identify optimal enzyme immobilization sites. Additionally, this dissertation reports high-yield soluble expression of a difficult-to-express protein (murine RNase Inhibitor or m-RI) in E. coli-lysate-based CFPS. Several factors including reaction temperature, reaction time, redox potential, and presence of folding chaperones in CFPS reactions were altered to find suitable conditions for m-RI expression. m-RI with the highest activity and stability was used to develop a lyophilized CFPS biosensor in human body fluids which reduced the cost of biosensor test by ~90%. Moreover, an E. coli extract with RNase inhibition activity was developed and tested which further streamlines the production of CFPS biosensors compatible with human body fluids.
|
295 |
SURFACE CHEMISTRY CONTROL OF 2D NANOMATERIAL MORPHOLOGIES, OPTOELECRONIC RESPONSES, AND PHYSICOCHEMICAL PROPERTIESJacob Thomas Lee (12431955) 12 July 2022 (has links)
<p>This dissertation describes how the surface chemistries of 2D nanomaterials can be modified to alter overall material properties. Specifically, through a focus of the ligand-surface atom bonding in addition to the overall ligand structure we highlight the ability to direct morphological outcomes in lead free halide perovskites, maximize optoelectronic responses in substoichiometric tungsten oxide, and alter physicochemical properties titanium carbide MXenes. </p>
|
296 |
New Strategies to Enhance the Quality and Safety of Liquid Foods Based on the Use of Natural Antimicrobial CompoundsGómez Llorente, Héctor 02 September 2024 (has links)
Tesis por compendio / [ES] Los componentes de los aceites esenciales (CAEs) han demostrado ser eficaces contra una amplia variedad de microorganismos. Sin embargo, su aplicación plantea desafíos debido a su baja solubilidad y alteración de las propiedades organolépticas en los alimentos. Por tanto, la búsqueda de nuevas formas de dosificación es fundamental para promover su uso en la industria alimentaria.
La presente tesis doctoral está centrada en el desarrollo y aplicación de sistemas antibacterianos y antivirales basados en la inmovilización covalente de CAEs para mejorar la calidad y seguridad de alimentos líquidos.
El primer capítulo evaluó el efecto de la adición de componentes naturalmente presentes en los alimentos (proteínas, lípidos, carbohidratos, ácidos orgánicos y etanol) sobre la actividad antimicrobiana de diferentes CAEs (carvacrol, eugenol, geraniol, timol y vainillina) en su forma libre. Además, se evaluó la influencia de los componentes alimentarios sobre la vainillina inmovilizada. Los resultados mostraron que la albúmina sérica bovina (BSA), el aceite de girasol y algunos carbohidratos fueron los componentes que más inhibieron la actividad antimicrobiana de los CAEs libres, con algunas excepciones. En los medios que contienen BSA, no se inhibió la actividad antimicrobiana del geraniol. Lo mismo ocurrió con eugenol en aceite de girasol, o con carvacrol, eugenol, geraniol y timol en presencia de D-lactosa. La vainillina inmovilizada confirmó el efecto inhibidor de las proteínas, lípidos y carbohidratos sobre la actividad antimicrobiana, pero el ácido cítrico y el etanol mejoraron la actividad antimicrobiana. Estos resultados demuestran la importancia de considerar la composición de la matriz alimentaria al seleccionar un compuesto antimicrobiano.
El segundo capítulo evaluó la aplicación de CAEs frente al crecimiento y producción de guaiacol por un microorganismo alterante y termorresistente como Alyciclobacillus acidoterrestris en zumo de naranja. Para ello, se utilizaron CAEs inmovilizados con dos enfoques diferentes: como aditivos y como coadyuvantes tecnológicos. La presencia de CAEs provocó una reducción microbiana y una inhibición de la producción de guayacol, que fue mantenida tras la inmovilización. Este hecho es de gran interés, ya que la inmovilización evita el problema de alteración organoléptica del producto, derivado de la aplicación de estos antimicrobianos en forma libre.
En el tercer capítulo se estudió la actividad antiviral de los CAEs, tanto en forma libre como inmovilizada, frente al virus Tulane en agua. La aplicación de CAEs en forma libre logró una reducción de la infectividad de sólo 1 log10, mientras que concentraciones equivalentes de antimicrobiano inmovilizado redujeron la infectividad a más de 4,5 log10. Por otro lado, el mecanismo antiviral se basó en la modificación o alteración de cápside viral. Además, se determinó que los CAEs inmovilizados no son citotóxicos en concentraciones antivirales efectivas.
A pesar de la eficacia observada tras la inmovilización de los CAEs, su aplicación práctica en la industria alimentaria presenta varios desafíos, siendo uno de ellos la aceptación de esta tecnología por parte de los consumidores. El último capítulo estudió la percepción de los consumidores sobre el uso de la nanotecnología en el procesamiento de alimentos. La valoración de los distintos alimentos en los que se había aplicado nanotecnología en su procesamiento o envasado fue en general positiva. De todos los productos, aquellos en los que la nanotecnología no formaba parte de los alimentos recibieron la mejor valoración. Teniendo en cuenta este resultado, los CAEs inmovilizados aplicados como coadyuvantes tecnológicos serían los más valorados y, por tanto, podrían ser una excelente alternativa a los tratamientos de conservación convencionales, para controlar tanto virus como bacterias durante la producción y el almacenamiento de alimentos. / [CA] Els components dels olis essencials (COEs) han demostrat ser eficaços en fornt d'una àmplia varietat de microorganismes. Tot i això, la seua aplicació planteja desafiaments a causa de la seua baixa solubilitat i alteració de les propietats organolèptiques en els aliments. Per tant, la recerca de noves formes de dosificació és fonamental per promoure'n l'ús a la indústria alimentària.
Aquesta tesi doctoral està centrada en el desenvolupament i l'aplicació de sistemes antibacterians i antivirals basats en la immobilització covalent de COEs per a millorar la qualitat i la seguretat d'aliments líquids.
El primer capítol va avaluar l'efecte de l'addició de components naturalment presents als aliments (proteïnes, lípids, carbohidrats, àcids orgànics i etanol) sobre l'activitat antimicrobiana de diferents COEs (carvacrol, eugenol, geraniol, timol i vainillina) en la seua forma lliure. En aquesta primera part també es va avaluar la influencia dels components alimentaris sobre la vainillina immobilitzada. Els resultats van mostrar que l'albúmina sèrica bovina (BSA), l'oli de gira-sol i alguns carbohidrats van ser els components que van inhibir més l'activitat antimicrobiana dels COEs lliures, amb algunes excepcions. Als mitjans que contenen BSA no es va inhibir l'activitat antimicrobiana del geraniol. El mateix va passar amb eugenol en oli de gira-sol, o amb carvacrol, eugenol, geraniol i timol en presencia de D-lactosa. La vainillina immobilitzada va confirmar l'efecte inhibidor de les proteïnes, els lípids i els carbohidrats sobre l'activitat antimicrobiana, però l'àcid cítric i l'etanol van millorar l'activitat antimicrobiana. Aquests resultats demostren la importància de considerar la composició de la matriu alimentària quan s'ha de seleccionar un compost antimicrobià per a una aplicació concreta.
El segon capítol va avaluar l'aplicació de COEs en front del creixement i la producció de guaiacol per un microorganisme alterant i termorresistent com Alyciclobacillus acidoterrestris en suc de taronja. Per això, es van utilitzar COEs immobilitzats amb dos enfocaments diferents: com a additius i com a coadjuvants. La presència de COEs provoca una reducció microbiana i una inhibició de la producció de guaiacol, així com manté la seua eficàcia després de la immobilització. Aquest fet és de gran interès, ja que la immobilització evita el problema d'alteració organolèptica del producte, derivat de l'aplicació d'aquests antimicrobians en forma lliure.
Al tercer capítol es va estudiar l'activitat antiviral dels COEs, tant en forma lliure com immobilitzada, davant del virus Tulane en aigua. L'aplicació de COEs en forma lliure va aconseguir una reducció de la infectivitat de només 1 log10, mentre que concentracions equivalents d'antimicrobià immobilitzat van reduir la infectivitat a més de 4,5 log10. D'altra banda, es va comprobar que el mecanisme antiviral es va basar en la modificació o alteració de la càpside viral. A més, es va determinar que els COEs immobilitzats no són citotòxics en concentracions antivirals efectives.
Tot i l'eficàcia observada després de la immobilització dels COEs, la seua aplicació pràctica a la indústria alimentària presenta diversos desafiaments, un dels quals és l'acceptació d'questa tecnologia per part dels consumidors. El darrer capítol va estudiar la percepció dels consumidors sobre l'ús de la nanotecnologia en el processament d'aliments. La valoració dels diferents aliments en que s'havia aplicat nanotecnologia al seu processament o envasat va ser en general positiva. De tots els productes, aquells en que la nanotecnologia no formava part dels aliments van rebre la millor valoració. Tenint en compte aquest resultat, els COEs immobilitzats aplicats com a coadjuvants de processament serien els més valorats i, per tant, podrien ser una alternativa excel·lent als tractaments de conservació convencionals, per controlar tant virus com bacteris durant la producció i l'emmagatzematge d'aliments. / [EN] Essential oil components (EOCs) have proven to be effective against a wide variety of microorganisms. However, the direct application of these compounds poses challenges due to their low solubility and alteration of the organoleptic properties of foods. Therefore, the search for new dosage forms of these promising antimicrobials is essential to promote their use in the food industry.
The present doctoral thesis is focused on the development and application of antibacterial and antiviral systems based on the covalent immobilization of EOCs to improve the quality and safety of liquid foods.
The first chapter evaluated the effect of the addition of components naturally present in food (proteins, lipids, carbohydrates, organic acids and ethanol) on the antimicrobial activity of certain EOCs (carvacrol, eugenol, geraniol, thymol and vanillin) in their free form. In this first part, the influence of these food components on the antimicrobial activity of vanillin immobilized on silicon oxide particles was also evaluated. The results showed that bovine serum albumin (BSA), sunflower oil and some carbohydrates were the food components that most inhibited the antimicrobial activity of the free EOCs, with some exceptions. In media containing BSA the antimicrobial activity of geraniol was not inhibited. The same occurred with eugenol in media containing sunflower oil, or with carvacrol, eugenol, geraniol and thymol in media with D-lactose. Immobilized vanillin confirmed the inhibitory effect of the proteins, lipids and carbohydrates on the antimicrobial activity, but citric acid and ethanol enhanced the antimicrobial activity. These results demonstrate the importance of considering the composition of the food matrix when selecting an antimicrobial compound.
The second chapter evaluated the application of EOCs against the growth and production of guaiacol by a spoilage and heat-resistant microorganism such as Alyciclobacillus acidoterrestris in orange juice. For this purpose, EOCs immobilized on silicon oxide particles were used with two different approaches: as additives and as processing aids. The presence of EOCs causes a microbial reduction and an inhibition of guaiacol production, maintaining their effectiveness after immobilization. This fact is of great interest, since immobilization avoids the problem of organoleptic alteration of the product, derived from the application of these antimicrobials in free form.
In the third chapter, the antiviral activity of EOCs, both in free and immobilized form, against Tulane virus in water was studied. The application of EOCs in free form achieved a reduction in infectivity of only 1 log10, equivalent concentrations of immobilized antimicrobial reduced infectivity to more than 4.5 log10. On the other hand, it has been demonstrated that the antiviral mechanism is based on the ability of immobilized antimicrobials to modify or disrupt the viral capsid. Furthermore, it was determined that immobilized EOCs are not cytotoxic at effective antiviral concentrations.
Despite the efficacy observed after immobilization of EOCs against bacteria and viruses, their practical application in the food industry presents several challenges, one of them is the acceptance of this technology by consumers. Thus, the last chapter studied the perception of consumers regarding the use of nanotechnology in food processing. The evaluation of the different foods in which nanotechnology had been applied in their processing or packaging was generally positive, and most consumers would buy them. Of all the products, those in which nanotechnology was not part of the food received the best evaluation. Considering this result, immobilized EOCs applied as processing aids would be the most highly valued, and therefore could be an excellent alternative to conventional preservation treatments, to control both viruses and bacteria during food production and storage. / This research forms part of project PID2021-128141OB-C21 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”.
H.G.LL. acknowledges the Universitat Politécnica de València for his predoctoral
fellowship. The authors acknowledge native English translator Helen Warburton for
editing the text. The authors gratefully acknowledge the financial support from the project
PID2021-128141OB-C21 funded by MCIN/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe”. This work is also granted by the project TED2021-
132035B-I00, funded by MCIN/AEI/10.13039/501100011033 and by “European
Union NextGenerationEU/PRTR”. CG-B thanks the financial support received from
the Spanish State Agency of Research (PID2022-136963OBI00/AEI/10.13039/501100011033), the Xunta de Galicia [ED431C 2021/29 and
Centro singular de investigación de Galicia accreditation 2019-2022 (ED431G
2019/03)], and the European Regional Development Fund (ERDF). H.G.LL.
acknowledges the Universitat Politècnica de València for his predoctoral fellowship.
The authors gratefully acknowledge the financial support from the project PID2021-
128141OB-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way
of making Europe”. This work is also granted by the project TED2021-132035B-I00,
funded by MCIN/AEI/10.13039/501100011033 and by “European Union
NextGenerationEU/PRTR”. H.G.LL. acknowledges the Universitat Politècnica de
València for his predoctoral fellowship.The authors gratefully acknowledge the financial support for the experiment
reported herein from the Spanish Government (RTI2018-101599-B-C21-AR). Héctor
Gómez Llorente wishes to thank the Universitat Politècnica de València for the FPI
Grant. / Gómez Llorente, H. (2024). New Strategies to Enhance the Quality and Safety of Liquid Foods Based on the Use of Natural Antimicrobial Compounds [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207284 / Compendio
|
297 |
Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA) / Physikochemische Prozesse während der Reaktivleimung mit Alkenyl-Bernsteinsäure-Anhydrid (ASA)Porkert, Sebastian 27 February 2017 (has links) (PDF)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure.
The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors.
This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry.
The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.
|
298 |
Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)Porkert, Sebastian 09 December 2016 (has links)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure.
The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors.
This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry.
The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.:Acknowledgment I
Abstract III
Table of Content V
List of Illustrations XI
List of Tables XVI
List of Formulas XVII
List of Abbreviations XVIII
1 Introduction and Problem Description 1
1.1 Initial Situation 1
1.2 Objective 2
2 Theoretical Approach 3
2.1 The Modern Paper & Board Industry on the Example of Germany 3
2.1.1 Raw Materials for the Production of Paper & Board 5
2.2 The Sizing of Paper & Board 8
2.2.1 Introduction to Paper & Board Sizing 8
2.2.2 The Definition of Paper & Board Sizing 10
2.2.3 The Global Markets for Sized Paper & Board Products and Sizing Agents 11
2.2.4 Physical and Chemical Background to the Mechanisms of Surface-Wetting and Penetration 13
2.2.4.1 Surface Wetting 14
2.2.4.2 Liquid Penetration 15
2.2.5 Surface and Internal Sizing 17
2.2.6 Sizing Agents 18
2.2.6.1 Alkenyl Succinic Anhydride (ASA) 19
2.2.6.2 Rosin Sizes 19
2.2.6.3 Alkylketen Dimer (AKD) 23
2.2.6.4 Polymeric Sizing Agents (PSA) 26
2.2.7 Determination of the Sizing Degree (Performance Analysis) 28
2.2.7.1 Cobb Water Absorption 29
2.2.7.2 Contact Angle Measurement 30
2.2.7.3 Penetration Dynamics Analysis 31
2.2.7.4 Further Qualitative Analysis Methods 33
2.2.7.4.1 Ink Stroke 33
2.2.7.4.2 Immersion Test 33
2.2.7.4.3 Floating Test 34
2.2.7.4.4 Hercules Sizing Tester (HST) 34
2.2.8 Sizing Agent Detection (Qualitative Analysis) and Determination of the Sizing Agent Content (Quantitative Analysis) 35
2.2.8.1 Destructive Methods 35
2.2.8.2 Non Destructive Methods 36
2.3 Alkenyl Succinic Anhydride (ASA) 36
2.3.1.1 Chemical Composition and Production of ASA 37
2.3.1.2 Mechanistic Reaction Models 39
2.3.1.3 ASA Application 42
2.3.1.3.1 Emulsification 42
2.3.1.3.2 Dosing 44
2.3.1.4 Mechanistic Steps of ASA Sizing 46
2.3.2 Physico-Chemical Aspects during ASA Sizing 48
2.3.2.1 Reaction Plausibility 48
2.3.2.1.1 Educt-Product Balance / Kinetics 48
2.3.2.1.2 Energetics 51
2.3.2.1.3 Sterics 52
2.3.2.2 Phenomena based on Sizing Agent Mobility 53
2.3.2.2.1 Sizing Agent Orientation 54
2.3.2.2.2 Intra-Molecular Orientation 55
2.3.2.2.3 Sizing Agent Agglomeration 55
2.3.2.2.4 Fugitive Sizing / Sizing Loss / Size Reversion 56
2.3.2.2.5 Sizing Agent Migration 58
2.3.2.2.6 Sizing Reactivation / Sizing Agent Reorientation 59
2.3.3 Causes for Interactions during ASA Sizing 60
2.3.3.1 Process Parameters 61
2.3.3.1.1 Temperature 61
2.3.3.1.2 pH-Value 62
2.3.3.1.3 Water Hardness 63
2.3.3.2 Fiber Types 64
2.3.3.3 Filler Types 65
2.3.3.4 Cationic Additives 66
2.3.3.5 Anionic Additives 67
2.3.3.6 Surface-Active Additives 68
2.4 Limitations of State-of-the-Art ASA-Sizing Analysis 69
2.5 Optical ASA Localization 71
2.5.1 General Background 71
2.5.2 Confocal Microscopy 72
2.5.2.1 Principle 72
2.5.2.2 Features, Advantage and Applicability for Paper-Component Analysis 74
2.5.3 Dying / Staining 75
3 Discussion of Results 77
3.1 Localization of ASA within the Sheet Structure 77
3.1.1 Choice of Dyes 77
3.1.1.1 Dye Type 78
3.1.1.2 Evaluation of Dye/ASA Mixtures 80
3.1.1.2.1 Maximum Soluble Dye Concentration 80
3.1.1.2.2 Thin Layer Chromatography 81
3.1.1.2.3 FTIR-Spectroscopy 82
3.1.1.3 Evaluation of the D-ASA Emulsion 84
3.1.1.4 Paper Chromatography with D-ASA & F-ASA Emulsions 85
3.1.1.5 Evaluation of the D-ASA Emulsion’s Sizing Efficiency 86
3.1.2 The Localization Method 87
3.1.2.1 The Correlation between ASA Distribution and Agglomeration 88
3.1.2.2 Measurement Settings 89
3.1.2.3 Manual Analysis 90
3.1.2.4 Automated Analysis 92
3.1.2.4.1 Automated Localization / Microscopy Measurement 92
3.1.2.4.2 Automated Analysis / Image-Processing 93
3.1.2.5 Result Interpretation and Example Results 96
3.1.2.6 Reproducibility 97
3.1.2.7 Sample Mapping 98
3.1.3 Approaches to Localization-Method Validation 102
3.1.3.1 Raman Spectroscopy 102
3.1.3.2 Confocal Laser Scanning Fluorescent Microscopy 102
3.1.3.3 Decolorization 103
3.2 Factors Impacting the Sizing Behavior of ASA 104
3.2.1 ASA Type 105
3.2.2 Emulsion Parameters 107
3.2.2.1 Hydrolyzed ASA Content 107
3.2.2.2 ASA/Starch Ratio 109
3.2.2.3 Emulsion Age 110
3.2.3 Stock Parameters 111
3.2.3.1 Long Fiber/Short Fiber Ratio 111
3.2.3.2 Furnish Type 112
3.2.3.3 Degree of Refining 114
3.2.3.4 Filler Type/Content 116
3.2.4 Process Parameters 119
3.2.4.1 Temperature 119
3.2.4.2 pH-Value 120
3.2.4.3 Conductivity 122
3.2.4.4 Water Hardness 123
3.2.4.5 Shear Rate 125
3.2.4.6 Dwell Time 127
3.2.4.7 Dosing Position & Dosing Order 128
3.2.4.8 Drying 130
3.2.4.9 Aging 131
3.3 Factors Impacting the Localization Behavior of ASA 132
3.3.1 Degree of Refining 132
3.3.2 Sheet Forming Conductivity 135
3.3.3 Water Hardness 136
3.3.4 Retention Aid (PAM) 137
3.3.5 Contact Curing 138
3.3.6 Accelerated Aging 139
3.4 Main Optimization Approach 141
3.4.1 Optimization of ASA Sizing Performance Characteristics 142
3.4.2 Emulsion Modification 144
3.4.2.1 Lab Trials / RDA Sheet Forming 146
3.4.2.2 TPM Trials 147
3.4.2.3 Industrial-Scale Trials 149
3.4.2.4 Correlation between Sizing Performance Optimization and Agglomeration Behavior on the Example of PAAE 152
3.5 Holistic Approach to Sizing Performance Explanation 154
4 Experimental Approach 157
4.1 Characterization of Methods, Measurements and Chemicals used for the Optical Localization-Analysis of ASA 157
4.1.1 Characterization of used Chemicals 157
4.1.1.1 Preparation of Dyed-ASA Solutions 157
4.1.1.2 Thin Layer Chromatography 157
4.1.1.3 Fourier Transformed Infrared Spectroscopy 157
4.1.1.4 Emulsification of ASA 158
4.1.1.5 Paper Chromatography 159
4.1.1.6 Particle Size Measurement 159
4.1.2 Optical Analysis of ASA Agglomerates 160
4.1.2.1 Microscopy 160
4.1.2.2 Automated Analysis 163
4.1.2.2.1 Adobe Photoshop 163
4.1.2.2.2 Adobe Illustrator 164
4.1.2.3 Confocal Laser Scanning Fluorescent Microscopy 166
4.2 Characterization of Used Standard Methods and Measurements 166
4.2.1 Stock and Paper Properties 166
4.2.1.1 Stock pH, Conductivity and Temperature Measurement 166
4.2.1.2 Dry Content / Consistency Measurement 167
4.2.1.3 Drainability (Schopper-Riegler) Measurement 167
4.2.1.4 Base Weight Measurement 168
4.2.1.5 Ultrasonic Penetration Measurement 168
4.2.1.6 Contact Angle Measurement 169
4.2.1.1 Cobb Measurement 169
4.2.1.2 Air Permeability Measurements 170
4.2.1.3 Tensile Strength Measurements 170
4.2.2 Preparation of Sample Sheets 171
4.2.2.1 Stock Preparation 171
4.2.2.2 Laboratory Refining (Valley Beater) 171
4.2.2.3 RDA Sheet Forming 171
4.2.2.4 Additive Dosing 173
4.2.2.5 Contact Curing 174
4.2.2.6 Hot Air Curing 174
4.2.2.7 Sample Aging 174
4.2.2.8 Preparation of Hydrolyzed ASA 175
4.2.2.9 Trial Paper Machine 175
4.2.2.10 Industrial-Scale Board Machine 177
4.3 Characterization of used Materials 178
4.3.1 Fibers 178
4.3.1.1 Reference Stock System 178
4.3.1.2 OCC Fibers 179
4.3.1.3 DIP Fibers 179
4.3.2 Fillers 180
4.3.3 Chemical Additives 180
4.3.3.1 ASA 180
4.3.3.2 Starches 181
4.3.3.3 Retention Aids 181
4.3.3.4 Poly Aluminum Compounds 181
4.3.3.5 Wet Strength Resin 181
4.3.4 Characterization of used Additives 182
4.3.4.1 Solids Content 182
4.4 Description of Implemented Advanced Data Analysis- and Visualization Methods 183
4.4.1 Design of Experiments (DOE183
4.4.2 Contour Plots 184
4.4.3 Box-Whisker Graphs 185
5 Conclusion 186
6 Outlook for Further Work 191
7 Bibliography 192
Appendix 207
7.1 Localization Method Reproducibility 207
7.2 DOE - Coefficient Lists 208
7.2.1 Trial 3.3.4 – Impact of Retention Aid (PAM) on Agglomeration Behavior and Sizing Performance 208
7.2.2 Trial 3.3.5 – Impact of Contact Curing on Agglomeration Behavior and Sizing Performance 208
7.2.3 Trial 3.3.6 – Impact of Accelerated Aging on Agglomeration Behavior and Sizing Performance 209
|
Page generated in 0.0516 seconds