Spelling suggestions: "subject:"box model"" "subject:"box godel""
41 |
Régression de Cox avec partitions latentes issues du modèle de PottsMartínez Vargas, Danae Mirel 07 1900 (has links)
No description available.
|
42 |
New statistical methods to assess the effect of time-dependent exposures in case-control studiesCao, Zhirong 12 1900 (has links)
Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps.
Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac.
Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations.
Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps.
Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins / Background: Case-control studies are very often used by epidemiologists to assess the impact of specific exposure(s) on a particular disease. These exposures may be represented by several time-dependent covariates and new methods are needed to accurately estimate their effects. Indeed, conventional logistic regression, which is the standard method to analyze case-control data, does not directly account for changes in covariate values over time. By contrast, survival analytic methods such as the Cox proportional hazards model can directly incorporate time-dependent covariates representing the individual entire exposure histories. However, it requires some careful manipulation of risk sets because of the over-sampling of cases, compared to controls, in case-control studies. As shown in a preliminary simulation study, the optimal definition of risk sets for the analysis of case-control data remains unclear and has to be investigated in the case of time-dependent variables.
Objective: The overall objective is to propose and to investigate new versions of the Cox model for assessing the impact of time-dependent exposures in case-control studies, and to apply them to a real case-control dataset on lung cancer and smoking.
Methods: I identified some potential new risk sets definitions (the weighted Cox model and the simple weighted Cox model), in which different weights were given to cases and controls, in order to reflect the proportions of cases and non cases in the source population. The properties of the estimates of the exposure effects that result from these new risk sets definitions were investigated through a simulation study. Various aspects of exposure were generated (intensity, duration, cumulative exposure value). The simulated case-control data were then analysed using different versions of Cox’s models corresponding to existing and new definitions of risk sets, as well as with standard logistic regression, for comparison purpose. The different regression models were then applied to real case-control data on lung cancer. The estimates of the effects of different smoking variables, obtained with the different methods, were compared to each other, as well as to simulation results.
Results: The simulation results show that the estimates from the new proposed weighted Cox models, especially those from the weighted Cox model, are much less biased than the estimates from the existing Cox models that simply include or exclude future cases. In addition, the weighted Cox model was slightly, but systematically, less biased than logistic regression. The real life application shows some greater discrepancies between the estimates of the proposed Cox models and logistic regression, for some smoking time-dependent covariates.
Conclusions: The results suggest that the new proposed weighted Cox models could be an interesting alternative to logistic regression for estimating the effects of time-dependent exposures in case-control studies.
|
43 |
Facteurs de risque de chutes chez les aînés vivant dans la communauté et ayant recours aux services de soutien à domicile : covariables dépendantes du temps et événements récurrentsLeclerc, Bernard-Simon 09 1900 (has links)
Les chutes chez les personnes âgées représentent un problème majeur. Il n’est donc pas étonnant que l’identification des facteurs qui en accroissent le risque ait mobilisé autant d’attention. Les aînés plus fragiles ayant besoin de soutien pour vivre dans la communauté sont néanmoins demeurés le parent pauvre de la recherche, bien que, plus récemment, les autorités québécoises en aient fait une cible d’intervention prioritaire. Les études d’observation prospectives sont particulièrement indiquées pour étudier les facteurs de risque de chutes chez les personnes âgées. Leur identification optimale est cependant compliquée par le fait que l’exposition aux facteurs de risque peut varier au cours du suivi et qu’un même individu peut subir plus d’un événement. Il y a 20 ans, des chercheurs ont tenté de sensibiliser leurs homologues à cet égard, mais leurs efforts sont demeurés vains. On continue aujourd’hui à faire peu de cas de ces considérations, se concentrant sur la proportion des personnes ayant fait une chute ou sur le temps écoulé jusqu’à la première chute. On écarte du coup une quantité importante d’information pertinente. Dans cette thèse, nous examinons les méthodes en usage et nous proposons une extension du modèle de risques de Cox. Nous illustrons cette méthode par une étude des facteurs de risque susceptibles d’être associés à des chutes parmi un groupe de 959 personnes âgées ayant eu recours aux services publics de soutien à domicile. Nous comparons les résultats obtenus avec la méthode de Wei, Lin et Weissfeld à ceux obtenus avec d’autres méthodes, dont la régression logistique conventionnelle, la régression logistique groupée, la régression binomiale négative et la régression d’Andersen et Gill. L’investigation est caractérisée par des prises de mesures répétées des facteurs de risque au domicile des participants et par des relances téléphoniques mensuelles visant à documenter la survenue des chutes. Les facteurs d’exposition étudiés, qu’ils soient fixes ou variables dans le temps, comprennent les caractéristiques sociodémographiques, l’indice de masse corporelle, le risque nutritionnel, la consommation d’alcool, les dangers de l’environnement domiciliaire, la démarche et l’équilibre, et la consommation de médicaments. La quasi-totalité (99,6 %) des usagers présentaient au moins un facteur à haut risque. L’exposition à des risques multiples était répandue, avec une moyenne de 2,7 facteurs à haut risque distincts par participant. Les facteurs statistiquement associés au risque de chutes incluent le sexe masculin, les tranches d’âge inférieures, l’histoire de chutes antérieures, un bas score à l’échelle d’équilibre de Berg, un faible indice de masse corporelle, la consommation de médicaments de type benzodiazépine, le nombre de dangers présents au domicile et le fait de vivre dans une résidence privée pour personnes âgées. Nos résultats révèlent cependant que les méthodes courantes d’analyse des facteurs de risque de chutes – et, dans certains cas, de chutes nécessitant un recours médical – créent des biais appréciables. Les biais pour les mesures d’association considérées proviennent de la manière dont l’exposition et le résultat sont mesurés et définis de même que de la manière dont les méthodes statistiques d’analyse en tiennent compte. Une dernière partie, tout aussi innovante que distincte de par la nature des outils statistiques utilisés, complète l’ouvrage. Nous y identifions des profils d’aînés à risque de devenir des chuteurs récurrents, soit ceux chez qui au moins deux chutes sont survenues dans les six mois suivant leur évaluation initiale. Une analyse par arbre de régression et de classification couplée à une analyse de survie a révélé l’existence de cinq profils distinctifs, dont le risque relatif varie de 0,7 à 5,1. Vivre dans une résidence pour aînés, avoir des antécédents de chutes multiples ou des troubles de l’équilibre et consommer de l’alcool sont les principaux facteurs associés à une probabilité accrue de chuter précocement et de devenir un chuteur récurrent. Qu’il s’agisse d’activité de dépistage des facteurs de risque de chutes ou de la population ciblée, cette thèse s’inscrit dans une perspective de gain de connaissances sur un thème hautement d’actualité en santé publique. Nous encourageons les chercheurs intéressés par l’identification des facteurs de risque de chutes chez les personnes âgées à recourir à la méthode statistique de Wei, Lin et Weissfeld car elle tient compte des expositions variables dans le temps et des événements récurrents. Davantage de recherches seront par ailleurs nécessaires pour déterminer le choix du meilleur test de dépistage pour un facteur de risque donné chez cette clientèle. / Falls in the elderly represent a major problem. It is therefore not surprising that the identification of factors that may increase the risk of falls has received much attention. Frailer seniors who need support to live in the community remained nonetheless poorly documented, although more recently, the Québec authorities have given high priority to interventions that target this population.
Risk factors for falls are usually identified by observational prospective studies. Their optimal identification is however complicated by the fact that exposure may vary during the follow-up, and that an individual may experience more than one event. Twenty years ago, some researchers attempted to sensitize their peers in this respect, but their efforts were vain. Researchers continue today to neglect these considerations and to use improper statistical techniques, focusing on the proportion of fallers or the time to first fall. In doing so, we discard a significant amount of relevant information.
In this thesis, we review the existing methods and propose a Cox hazards extension. We apply it in the study of potential fall-risk factors associated with 959 community-dwelling seniors using home-care services. Finally, we compare the results of the proposed Wei, Lin, & Weissfeld (WLW) method with those of several other techniques, notably the conventional logistic regression, the pooled logistic regression, the negative binomial regression and the Andersen & Gill regression. At baseline and every six months thereafter, participants were visited at home in order to ascertain information about potential risk factors. Falls were monitored by use of a calendar and monthly phone calls. Baseline exposure variables and updated time-varying exposures include socio-demographic characteristics, BMI, nutritional risk, gait and balance, alcohol consumption, home hazards, and medications.
Almost all (99.6%) of participants showed at least one high risk factor. Exposure to multiple risks was frequent, with an average of 2.7 different high-risk factors per participant. The risk factors significantly associated to the risk of falling include male sex, age, history of falling, Berg balance score, BMI, use of benzodiazepines, number of home hazards and residential facility for seniors. Results demonstrate that the usual methods of analyzing risk factors for falling (any sort of fall as well as those leading to medical consultations) are inappropriate, as they produce considerable biases relative to the WLW model using time-dependent covariates. Bias for the considered effect measures comes from the manner in which the observed data (both measured exposures and health outcomes) was measured and defined as well as the way in which the statistical analysis took into account this information.
An additional part of the thesis was undertaken to identify risk profiles of subjects regarding the recurrence of falling, defined as participants who reported at least two falls within six months of initial assessment at entry in the study. A classification and regression tree analysis classified the population into five groups differing in risk of recurrent falling, based on history of falls in the three months prior to the initial interview, Berg balance score, type of housing, and usual alcohol consumption in the six months preceding study entry. The relative risks varied from 0.7 to 5.1. A subsequent survival analysis showed that the length of time before becoming a recurrent faller varies among risk profiles.
This thesis discusses highly topical subjects about a target population and a fall-risk screening activity which are priorities in the public health sector in Québec. We encourage researchers interested in the identification of risk of falls among the elderly to use the statistical method of Wei, Lin and Weissfeld because it takes into account updated time-varying exposures and multiple events. More research will be necessary to determine the best screening test for a given risk-factor in this setting and population.
|
44 |
Méthodes d'analyse statistique pour données répétées dans les essais cliniques : intérêts et applications au paludisme / Statistical method for analysis of recurrent events in clinical trials : interest and applications to malaria dataSagara, Issaka 17 December 2014 (has links)
De nombreuses études cliniques ou interventions de lutte ont été faites ou sont en cours en Afrique pour la lutte contre le fléau du paludisme. En zone d'endémie, le paludisme est une maladie récurrente. La revue de littérature indique une application limitée des outils statistiques appropriés existants pour l'analyse des données récurrentes de paludisme. Nous avons mis en oeuvre des méthodes statistiques appropriées pour l'analyse des données répétées d'essais thérapeutiques de paludisme. Nous avons également étudié les mesures répétées d'hémoglobine lors du suivi de traitements antipaludiques en vue d'évaluer la tolérance ou sécurité des médicaments en regroupant les données de 13 essais cliniques.Pour l'analyse du nombre d'épisodes de paludisme, la régression binomiale négative a été mise en oeuvre. Pour modéliser la récurrence des épisodes de paludisme, quatre modèles ont été utilisés : i) Les équations d'estimation généralisées (GEE) utilisant la distribution de Poisson; et trois modèles qui sont une extension du modèle Cox: ii) le modèle de processus de comptage d'Andersen-Gill (AG-CP), iii) le modèle de processus de comptage de Prentice-Williams-Peterson (PWP-CP); et iv) le modèle de Fragilité partagée de distribution gamma. Pour l'analyse de sécurité, c'est-à-dire l'évaluation de l'impact de traitements antipaludiques sur le taux d'hémoglobine ou la survenue de l'anémie, les modèles linéaires et latents généralisés mixtes (« GLLAMM : generalized linear and latent mixed models ») ont été mis en oeuvre. Les perspectives sont l'élaboration de guides de bonnes pratiques de préparation et d'analyse ainsi que la création d'un entrepôt des données de paludisme. / Numerous clinical studies or control interventions were done or are ongoing in Africa for malaria control. For an efficient control of this disease, the strategies should be closer to the reality of the field and the data should be analyzed appropriately. In endemic areas, malaria is a recurrent disease. Repeated malaria episodes are common in African. However, the literature review indicates a limited application of appropriate statistical tools for the analysis of recurrent malaria data. We implemented appropriate statistical methods for the analysis of these data We have also studied the repeated measurements of hemoglobin during malaria treatments follow-up in order to assess the safety of the study drugs by pooling data from 13 clinical trials.For the analysis of the number of malaria episodes, the negative binomial regression has been implemented. To model the recurrence of malaria episodes, four models were used: i) the generalized estimating equations (GEE) using the Poisson distribution; and three models that are an extension of the Cox model: ii) Andersen-Gill counting process (AG-CP), iii) Prentice-Williams-Peterson counting process (PWP-CP); and (iv) the shared gamma frailty model. For the safety analysis, i.e. the assessment of the impact of malaria treatment on hemoglobin levels or the onset of anemia, the generalized linear and latent mixed models (GLLAMM) has been implemented. We have shown how to properly apply the existing statistical tools in the analysis of these data. The prospects of this work remain in the development of guides on good practices on the methodology of the preparation and analysis and storage network for malaria data.
|
45 |
Modélisation conjointe de trajectoire socioprofessionnelle individuelle et de la survie globale ou spécifique / Joint modeling of individual socio-professional trajectory and overall or cause-specific survivalKarimi, Maryam 06 June 2016 (has links)
Appartenir à une catégorie socio-économique moins élevée est généralement associé à une mortalité plus élevée pour de nombreuses causes de décès. De précédentes études ont déjà montré l’importance de la prise en compte des différentes dimensions des trajectoires socio-économiques au cours de la vie. L’analyse des trajectoires professionnelles constitue une étape importante pour mieux comprendre ces phénomènes. L’enjeu pour mesurer l’association entre les parcours de vie des trajectoires socio-économiques et la mortalité est de décomposer la part respective de ces facteurs dans l’explication du niveau de survie des individus. La complexité de l’interprétation de cette association réside dans la causalité bidirectionnelle qui la sous-tend: Les différentiels de mortalité sont-ils dus à des différentielsd’état de santé initial influençant conjointement la situation professionnelle et la mortalité, ou l’évolution professionnelle influence-t-elle directement l’état de santé puis la mortalité?Les méthodes usuelles ne tiennent pas compte de l’interdépendance des changements de situation professionnelle et de la bidirectionnalité de la causalité qui conduit à un biais important dans l’estimation du lien causale entre situation professionnelle et mortalité. Par conséquent, il est nécessaire de proposer des méthodes statistiques qui prennent en compte des mesures répétées (les professions) simultanément avec les variables de survie. Cette étude est motivée par la base de données Cosmop-DADS qui est un échantillon de la population salariée française.Le premier objectif de cette thèse était d’examiner l’ensemble des trajectoires professionnelles avec une classification professionnelle précise, au lieu d’utiliser un nombre limité d’états dans un parcours professionnel qui a été considéré précédemment. A cet effet, nous avons défini des variables dépendantes du temps afinde prendre en compte différentes dimensions des trajectoires professionnelles, à travers des modèles dits de "life-course", à savoir critical period, accumulation model et social mobility model, et nous avons mis en évidence l’association entre les trajectoires professionnelles et la mortalité par cause en utilisant ces variables dans un modèle de Cox.Le deuxième objectif a consisté à intégrer les épisodes professionnel comme un sous-modèle longitudinal dans le cadre des modèles conjoints pour réduire le biais issude l’inclusion des covariables dépendantes du temps endogènes dans le modèle de Cox. Nous avons proposé un modèle conjoint pour les données longitudinales nominaleset des données de risques concurrents dans une approche basée sur la vraisemblance. En outre, nous avons proposé une approche de type méta-analyse pour résoudre les problèmes liés au temps des calculs dans les modèles conjoints appliqués à l’analyse des grandes bases de données. Cette approche consiste à combiner les résultats issus d’analyses effectuées sur les échantillons stratifiés indépendants. Dans la même perspective de l’utilisation du modèle conjoint sur les grandes bases de données, nous avons proposé une procédure basée sur l’avantage computationnel de la régression de Poisson.Cette approche consiste à trouver les trajectoires typesà travers les méthodes de la classification, et d’appliquerle modèle conjoint sur ces trajectoires types. / Being in low socioeconomic position is associated with increased mortality risk from various causes of death. Previous studies have already shown the importance of considering different dimensions of socioeconomic trajectories across the life-course. Analyses of professional trajectories constitute a crucial step in order to better understand the association between socio-economic position and mortality. The main challenge in measuring this association is then to decompose the respectiveshare of these factors in explaining the survival level of individuals. The complexity lies in the bidirectional causality underlying the observed associations:Are mortality differentials due to differences in the initial health conditions that are jointly influencing employment status and mortality, or the professional trajectory influences directly health conditions and then mortality?Standard methods do not consider the interdependence of changes in occupational status and the bidirectional causal effect underlying the observed association and that leads to substantial bias in estimating the causal link between professional trajectory and mortality. Therefore, it is necessary to propose statistical methods that consider simultaneously repeated measurements (careers) and survivalvariables. This study was motivated by the Cosmop-DADS database, which is a sample of the French salaried population.The first aim of this dissertation was to consider the whole professional trajectories and an accurate occupational classification, instead of using limitednumber of stages during life course and a simple occupational classification that has been considered previously. For this purpose, we defined time-dependent variables to capture different life course dimensions, namely critical period, accumulation model and social mobility model, and we highlighted the association between professional trajectories and cause-specific mortality using the definedvariables in a Cox proportional hazards model.The second aim was to incorporate the employment episodes in a longitudinal sub-model within the joint model framework to reduce the bias resulting from the inclusion of internal time-dependent covariates in the Cox model. We proposed a joint model for longitudinal nominal outcomes and competing risks data in a likelihood-based approach. In addition, we proposed an approach mimicking meta-analysis to address the calculation problems in joint models and large datasets, by extracting independent stratified samples from the large dataset, applying the joint model on each sample and then combining the results. In the same objective, that is fitting joint model on large-scale data, we propose a procedure based on the appeal of the Poisson regression model. This approach consist of finding representativetrajectories by means of clustering methods and then applying the joint model on these representative trajectories.
|
46 |
Estimation du risque attribuable et de la fraction préventive dans les études de cohorte / Estimation of attributable risk and prevented fraction in cohort studiesGassama, Malamine 09 December 2016 (has links)
Le risque attribuable (RA) mesure la proportion de cas de maladie qui peuvent être attribués à une exposition au niveau de la population. Plusieurs définitions et méthodes d'estimation du RA ont été proposées pour des données de survie. En utilisant des simulations, nous comparons quatre méthodes d'estimation du RA dans le contexte de l'analyse de survie : deux méthodes non paramétriques basées sur l'estimateur de Kaplan-Meier, une méthode semi-paramétrique basée sur le modèle de Cox à risques proportionnels et une méthode paramétrique basée sur un modèle à risques proportionnels avec un risque de base constant par morceaux. Nos travaux suggèrent d'utiliser les approches semi-paramétrique et paramétrique pour l'estimation du RA lorsque l'hypothèse des risques proportionnels est vérifiée. Nous appliquons nos méthodes aux données de la cohorte E3N pour estimer la proportion de cas de cancer du sein invasif attribuables à l'utilisation de traitements hormonaux de la ménopause (THM). Nous estimons qu'environ 9 % des cas de cancer du sein sont attribuables à l'utilisation des THM à l'inclusion. Dans le cas d'une exposition protectrice, une alternative au RA est la fraction préventive (FP) qui mesure la proportion de cas de maladie évités. Cette mesure n'a pas été considérée dans le contexte de l'analyse de survie. Nous proposons une définition de la FP dans ce contexte et des méthodes d'estimation en utilisant des approches semi-paramétrique et paramétrique avec une extension permettant de prendre en compte les risques concurrents. L'application aux données de la cohorte des Trois Cités (3C) estime qu'environ 9 % de cas d'accident vasculaire cérébral peuvent être évités chez les personnes âgées par l'utilisation des hypolipémiants. Notre étude montre que la FP peut être utilisée pour évaluer l'impact des médicaments bénéfiques dans les études de cohorte tout en tenant compte des facteurs de confusion potentiels et des risques concurrents. / The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data. Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier's estimator, one semiparametric based on Cox's model, and one parametric based on the piecewise constant hazards model. Our results suggest to use the semiparametric or parametric approaches to estimate AR if the proportional hazards assumption appears appropriate. These methods were applied to the E3N women cohort data to estimate the AR of breast cancer due to menopausal hormone therapy (MHT). We showed that about 9% of cases of breast cancer were attributable to MHT use at baseline. In case of a protective exposure, an alternative to the AR is the prevented fraction (PF) which measures the proportion of disease cases that could be avoided in the presence of a protective exposure in the population. The definition and estimation of PF have never been considered for cohort studies in the survival analysis context. We defined the PF in cohort studies with survival data and proposed two estimation methods: a semiparametric method based on Cox’s proportional hazards model and a parametric method based on a piecewise constant hazards model with an extension to competing risks. Using data of the Three-City (3C) cohort study, we found that approximately 9% of cases of stroke could be avoided using lipid-lowering drugs (statins or fibrates) in the elderly population. Our study shows that the PF can be estimated to evaluate the impact of beneficial drugs in observational cohort studies while taking potential confounding factors and competing risks into account.
|
47 |
Application Of The Empirical Likelihood Method In Proportional Hazards ModelHe, Bin 01 January 2006 (has links)
In survival analysis, proportional hazards model is the most commonly used and the Cox model is the most popular. These models are developed to facilitate statistical analysis frequently encountered in medical research or reliability studies. In analyzing real data sets, checking the validity of the model assumptions is a key component. However, the presence of complicated types of censoring such as double censoring and partly interval-censoring in survival data makes model assessment difficult, and the existing tests for goodness-of-fit do not have direct extension to these complicated types of censored data. In this work, we use empirical likelihood (Owen, 1988) approach to construct goodness-of-fit test and provide estimates for the Cox model with various types of censored data. Specifically, the problems under consideration are the two-sample Cox model and stratified Cox model with right censored data, doubly censored data and partly interval-censored data. Related computational issues are discussed, and some simulation results are presented. The procedures developed in the work are applied to several real data sets with some discussion.
|
48 |
Les modèles de régression dynamique et leurs applications en analyse de survie et fiabilité / Dynamic regression models and their applications in survival and reliability analysisTran, Xuan Quang 26 September 2014 (has links)
Cette thèse a été conçu pour explorer les modèles dynamiques de régression, d’évaluer les inférences statistiques pour l’analyse des données de survie et de fiabilité. Ces modèles de régression dynamiques que nous avons considérés, y compris le modèle des hasards proportionnels paramétriques et celui de la vie accélérée avec les variables qui peut-être dépendent du temps. Nous avons discuté des problèmes suivants dans cette thèse.Nous avons présenté tout d’abord une statistique de test du chi-deux généraliséeY2nquiest adaptative pour les données de survie et fiabilité en présence de trois cas, complètes,censurées à droite et censurées à droite avec les covariables. Nous avons présenté en détailla forme pratique deY2nstatistique en analyse des données de survie. Ensuite, nous avons considéré deux modèles paramétriques très flexibles, d’évaluer les significations statistiques pour ces modèles proposées en utilisantY2nstatistique. Ces modèles incluent du modèle de vie accélérés (AFT) et celui de hasards proportionnels (PH) basés sur la distribution de Hypertabastic. Ces deux modèles sont proposés pour étudier la distribution de l’analyse de la duré de survie en comparaison avec d’autre modèles paramétriques. Nous avons validé ces modèles paramétriques en utilisantY2n. Les études de simulation ont été conçus.Dans le dernier chapitre, nous avons proposé les applications de ces modèles paramétriques à trois données de bio-médicale. Le premier a été fait les données étendues des temps de rémission des patients de leucémie aiguë qui ont été proposées par Freireich et al. sur la comparaison de deux groupes de traitement avec des informations supplémentaires sur les log du blanc du nombre de globules. Elle a montré que le modèle Hypertabastic AFT est un modèle précis pour ces données. Le second a été fait sur l’étude de tumeur cérébrale avec les patients de gliome malin, ont été proposées par Sauerbrei & Schumacher. Elle a montré que le meilleur modèle est Hypertabastic PH à l’ajout de cinq variables de signification. La troisième demande a été faite sur les données de Semenova & Bitukov, à concernant les patients de myélome multiple. Nous n’avons pas proposé un modèle exactement pour ces données. En raison de cela était les intersections de temps de survie.Par conséquent, nous vous conseillons d’utiliser un autre modèle dynamique que le modèle de la Simple Cross-Effect à installer ces données. / This thesis was designed to explore the dynamic regression models, assessing the sta-tistical inference for the survival and reliability data analysis. These dynamic regressionmodels that we have been considered including the parametric proportional hazards andaccelerated failure time models contain the possibly time-dependent covariates. We dis-cussed the following problems in this thesis.At first, we presented a generalized chi-squared test statisticsY2nthat is a convenient tofit the survival and reliability data analysis in presence of three cases: complete, censoredand censored with covariates. We described in detail the theory and the mechanism to usedofY2ntest statistic in the survival and reliability data analysis. Next, we considered theflexible parametric models, evaluating the statistical significance of them by usingY2nandlog-likelihood test statistics. These parametric models include the accelerated failure time(AFT) and a proportional hazards (PH) models based on the Hypertabastic distribution.These two models are proposed to investigate the distribution of the survival and reliabilitydata in comparison with some other parametric models. The simulation studies were de-signed, to demonstrate the asymptotically normally distributed of the maximum likelihood estimators of Hypertabastic’s parameter, to validate of the asymptotically property of Y2n test statistic for Hypertabastic distribution when the right censoring probability equal 0% and 20%.n the last chapter, we applied those two parametric models above to three scenes ofthe real-life data. The first one was done the data set given by Freireich et al. on thecomparison of two treatment groups with additional information about log white blood cellcount, to test the ability of a therapy to prolong the remission times of the acute leukemiapatients. It showed that Hypertabastic AFT model is an accurate model for this dataset.The second one was done on the brain tumour study with malignant glioma patients, givenby Sauerbrei & Schumacher. It showed that the best model is Hypertabastic PH onadding five significance covariates. The third application was done on the data set given by Semenova & Bitukov on the survival times of the multiple myeloma patients. We did not propose an exactly model for this dataset. Because of that was an existing oneintersection of survival times. We, therefore, suggest fitting other dynamic model as SimpleCross-Effect model for this dataset.
|
Page generated in 0.0669 seconds