• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 1
  • Tagged with
  • 26
  • 26
  • 19
  • 16
  • 13
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Théorie des ensembles pour le contrôle robuste des systèmes non linéaires : Application à la chimiothérapie et les thérapies anti-angiogéniques / Set-theoretic methods for robust control of nonlinear systems : Application to chemotherapy and anti-angiogenic therapies

Riah, Rachid 25 November 2016 (has links)
Cette thèse vise à utiliser la modélisation mathématique avec les outils du contrôle avancé, afin de guider les thérapies pour assurer la contraction de la tumeur. Les buts de cette thèse sont la contribution au développement des méthodes de la théorie des ensembles pour le contrôle robuste des systèmes non linéaires et le développement d’outils numériques pour l’analyse et le contrôle de la croissance tumorale en présence de chimiothérapie et=ou de traitement anti-angiogénique. Génériquement, dans le contexte de la théorie du contrôle, les techniques qui sont théoriquement basées sur certaines propriétés des sous-ensembles de l’espace d’état du système pourraient être désignées comme des méthodes de la théorie des ensembles. Dans la première partie, nous passons en revue les définitions, concepts et outils de la théorie des ensembles existants dans la littérature pour réponde efficacement à des problématiques de contrôle des systèmes linéaires et non linéaires avec contraintes dures et incertitudes. Dans ce cadre, nous nous intéressons à deux propriétés des ensembles qui sont l’invariance et la contraction. Les problèmes liés à la stabilité des systèmes peuvent être formulés en termes de calcul de leurs domaines d’attraction. Pour des fins de développement, nous rappelons les méthodes de la littérature pour la caractérisation de ces domaines d’attraction pour les systèmes linéaires et non linéaires. Une application importante de ces méthodes est le contrôle de la croissance tumorale en présence de différents traitements. Car dans cette application, plusieurs contraintes peuvent être posées pour éviter l’intoxication des patients pendant les traitements et les méthodes de la théorie des ensembles peuvent les prendre en compte facilement. Pour cette application, nous proposons une méthodologie pour déterminer les domaines d’attraction pour les modèles mathématiques choisis pour simuler la croissance tumorale. Dans la deuxième partie, nous proposons des méthodes de la théorie des ensemble pour la caractérisation des domaines d’attraction pour les systèmes non linéaires incertains. Au début, nous développons des conditions suffisantes pour l’invariance et la contraction d’un ellipsoïde pour des systèmes saturés. Ces conditions permettent de déterminer implicitement une fonction de Lyapunov quadratique locale. Nous montrerons que l’approche proposée est moins conservatrice que celles de la littérature, et donnerons un algorithme pour la caractérisation de l’ellipsoïde invariant et contractif. Pour les systèmes non linéaires incertains, nous développons une condition suffisante pour l’invariance contrôlable robuste pour le cas des incertitudes paramétriques. Une méthode basée sur cette condition est développée pour la caractérisation des domaines d’attraction des systèmes avec ces incertitudes. Ensuite, nous nous concentrons sur l’étude des systèmes non linéaires avec incertitudes additives, et nous donnons également une autre méthode pour la caractérisation de leurs domaines d’attraction. Ces méthodes sont des méthodes facilement traitables en utilisant les outils de l’optimisation convexe. Dans la troisième partie, nous développons des outils numériques pour la caractérisation des domaines d’attraction pour les modèles de la croissance tumorale en présence de traitements, en particulier la chimiothérapie et le traitement anti-angiogénique. Ces domaines contiennent tous les états des patients pour lesquels ils existent des protocoles de traitement efficaces. Dans ce cadre, nous considérons que les modèles sont incertains car les paramètres exactes qui les définissent sont en pratique inconnus. Ces outils sont basés sur les méthodes rappelées et développées dans cette thèse. Plusieurs informations utiles pour une thérapie tumorale efficace peuvent être extraites de ces domaines. / This thesis aims at using the mathematical modeling with advanced control tools to guide therapies for the contraction of the tumor. The aims of this thesis are the contribution to the development of the set-theoretic methods for robust control of nonlinear systems and the development of analytical tools for the analysis and control of tumor growth in presence of chemotherapy and/oranti-angiogenic therapy. Generically, in the context of control theory, techniques that are theoretically based on some properties of subsets of the system state space could be referred as set-theoretic methods.In the first part, we review the definitions, concepts and tools of the existing set-theoretic methods in the literature to respond effectively to the control issues of linear and nonlinear systems with hard constraints and uncertainties. In this context, we are interested in two properties of sets that are invariance and contractiveness. The problems associated with the stability of the systems may be formulated in terms of calculation of their domain of attraction. For development purposes, we recall methods from the literature for characterizing these domains of attraction for linear and nonlinear systems. An important application of these methods is the control of tumor growth in the presence of different treatments. For this application, several constraints can be imposed in order to avoid the patient intoxications during the treatments and the set-theoretic methods can consider easily these constraints. For this latter application, we propose a methodology to estimate the domains of attraction for the mathematical models chosen to simulate the tumor growth.In the second part, we propose set-theoretic methods for the characterization of the domains ofattraction for linear and nonlinear uncertain systems. At the beginning, we develop sufficient conditions for the invariance and contractiveness of an ellipsoid for saturated systems. These conditions allow implicitly determining a local Lyapunov function. We will show that the proposed approach is less conservative than those in the literature, and we give an algorithm for characterizing the invariant ellipsoids. For uncertain nonlinear systems, we develop a sufficient condition for the robust controlled invariance in the case of parametric uncertainties. A method based on this condition is developed for characterizing the domains of attraction for nonlinear systems with these uncertainties. Then we focus on the study of nonlinear systems with additive uncertainties, and we also give a method for the characterization of their domains of attraction. These methods are easily treatable using convex optimization tools.In the third part, we develop numerical tools for characterizing the domains of attraction for themodels of tumor growth in the presence of treatments, particularly chemotherapy and anti-angiogenictreatment. These domains contain all the states of the patients for whom effective treatment protocols exist. In this context, we consider that the models are uncertain and in particular the parameters that are unknown in practice. These tools are based on the methods developed in this thesis. Several useful informations for effective tumor therapy can be extracted from these domains.
12

Modélisation théorique du développement tumoral sous fenêtre dorsale : Vers un outil clinique d'individualisation et d'optimisation de la thérapie / Theoretical modelisation of tumour development on dorsal skinfold chamber : towards a clinical tool to individualize and optimize therapies.

Lesart, Anne-Cécile 13 November 2013 (has links)
Le travail réalisé durant cette thèse a eu pour objectif de développer un modèle théorique spécifiquement dédié au contexte du développement tumoral tel qu'il peut être observé sous une fenêtre dorsale implantée sur une souris. Le modèle développé est un modèle hybride multi-physique et multi-échelle qui couple deux modules principaux. Le premier module modélise la croissance tumorale par un automate cellulaire qui permet de différencier l'état de chaque cellule en fonction de son histoire (cycle cellulaire), et de son environnement (espace disponible pour proliférer, présence d'oxygène). Le second module modélise le réseau vasculaire et le flux sanguin et rend compte de l'angiogenèse (apparition de nouveaux vaisseaux) et de l'adaptation du diamètre des vaisseaux, en fonction de l'évolution des contraintes hémodynamiques, nettement visible sous la fenêtre dorsale. L'ensemble des processus diffusifs (diffusion de l'oxygène et des facteurs de croissance vasculaire) sont décrits par des équations aux dérivées partielles, couplées à des automates cellulaires qui permettent de localiser à chaque instant pour chaque équation les termes sources (production) et les termes puits (consommation) pour chaque entité diffusive. Les simulations numériques réalisées montrent dans quelle mesure il est possible de rendre compte des observations expérimentales sur le plan qualitatif, qui nécessite la neutralisation des biais numériques ; et sur le plan quantitatif, pour reproduire la cinétique de croissance tumorale et l'évolution de la densité vasculaire. Le modèle numérique de l'évolution tumorale sous fenêtre dorsale est ensuite utilisé pour tester les effets de deux types de molécules : cytotoxiques et anti-vasculaires. Les simulations numériques de ces deux types de traitement explorent différents protocoles, définis par le mode d'action de la molécule, la dose administrée et la fréquence d'administration. Les résultats montrent comment il est alors possible de définir un protocole optimum pour une tumeur donnée en direction d'une individualisation de la thérapie. Ce modèle intégré a permis de poser de façon satisfaisante les bases d'un clone numérique du modèle expérimental d'évolution tumorale sous fenêtre dorsale même si certains aspects nécessitent encore quelques améliorations. La validation des aspects thérapeutiques restera encore à accomplir avant de pouvoir envisager à terme le remplacement (au moins partiel) de l'animal par l'ordinateur. / The work realised during this thesis had for objective to develop a theoretical model dedicated to the context of tumour development as observed on a dorsal skinfold chamber on a mouse. The model developed is hybrid, multi-physic and multi-scale, and associate two main modules. The first module model tumour growth with a cellular automaton which permit to differentiate the state of each cell regarding its history (cell cycle), its environment (available space to proliferate, oxygen availability). The second module model vascular network and blood flow, and accounts for angiogenesis (apparition of new vessels) and diameter adaptation of vessels, regarding hemodynamical constraints evolution which is distinctly visible on dorsal chamber. The diffusive processes (oxygen diffusion and vascular growth factors) are described by partiel differential equations, coupled with cellular automata which permit to localize at each time for each equation the source terms (production) and the well terms (consumption) for each diffusive entity. The numerical simulations realised show in which regard it is possible to accounts for the experimental observations on the qualitative basis, which require numerical bias neutralisation; and on the quantitative basis, to reproduce tumour growth kinetic and evolution of vascular density. The numerical model of tumour evolution on dorsal chamber is then used to test the effects of two types of molecules: cytotoxic and anti-vascular. Numerical simulation of these two types of treatment explore different protocols, defined by the action mode of the molecule, the dose administrated, and the administration frequency. Results show how it is possible to define an optimum protocol for a given tumour in direction of therapy individualisation. This integrated model has permitted to put in place in a satisfactory way the bases of a numerical clone of the experimental model of tumour growth on dorsal chamber, even if several aspects still necessitate some improvements. The validation of these theoretical aspects has yet to be accomplished before considering in term the replacement (at least partiallly) of animals by computers.
13

Modélisation et simulation de la croissance de métastases pulmonaires / Lung metastases growth modeling and simulation

Jouganous, Julien 23 September 2015 (has links)
Cette thèse présente des travaux de modélisation mathématique de la croissance tumorale appliqués aux cas de métastases pulmonaires.La première partie de cette thèse décrit un premier modèle d’équations aux dérivées partielles permettant de simuler la croissance métastatique mais aussi la réponse de la tumeur à certains types de traitements. Une méthode de calibration du modèle à partir de données cliniques issues de l’imagerie médicale est développée et testée sur plusieurs cas cliniques.La deuxième partie de ces travaux introduit une simplification du modèle et de l’algorithme de calibration. Cette méthode, plus robuste, est testée sur un panel de 36 cas test et les résultats sont présentés dans le troisième chapitre. La quatrième et dernière partie développe un algorithme d’apprentissage automatisé permettant de tenir compte de données supplémentaires à celles utilisées par le modèle afin d’affiner l’étape de calibration. / This thesis deals with mathematical modeling and simulation of lung metastases growth.We first present a partial differential equations model to simulate the growth and possibly the response to some types of treatments of metastases to the lung. This model must be personalized to be used individually on clinical cases. Consequently, we developed a calibration technic based on medical images of the tumor. Several applications on clinical cases are presented.Then we introduce a simplification of the first model and the calibration algorithm. This new method, more robust, is tested on 36 clinical cases. The results are presented in the third chapter. To finish, a machine learning algorithm
14

Modélisation et analyse de l'hétérogénéité tumorale lors de résistance aux traitements : cas des métastases hépatiques de GIST / Modeling and analysis of tumor heterogeneity during treatments resistance : case of GIST liver metastases

Lefebvre, Guillaume 03 December 2015 (has links)
Cette thèse présente les travaux menés sur l’analyse et la modélisation de l’hétérogénéité tumorale lors de résistance aux traitements. Nous présentons ici un modèle EDP, dépendant de chaque patient, et prenant en compte deux types de traitements différents. Il reproduit qualitativement et quantitativement les différentes étapes de la croissance d’une tumeur soumise à ces traitements. Afin de pallier une instabilité numérique liée à ce type de modélisation, un nouveau schéma numérique est construit : le twin-WENO5.Nous développons ensuite une méthode de synthèse d’images scanners de sorte à rendre meilleure la comparaison entre les résultats numériques et les données cliniques. Enfin un critère robuste permettant de quantifier l’hétérogénéité à la fois des images cliniques et des images de synthèse, est construit. / This thesis deals with tumor heterogeneity analysis and modeling during treatments resistances. A patient-dependent PDEs model, that takes into account two kinds of treatments, is presented. It qualitatively and quantitatively reproduces the different stage during the tumor growth undergoing treatments. In order to overcome a numerical instability linked to the type of modeling, a new numerical scheme is built : the twin-WENO5. Then,an image synthesis method is developed to enable a better comparison between the numerical results and the clinical data. Finally, a robust criteria that quantifies the tumor heterogeneity from the clinical data and from the synthesis images, is built.
15

Modélisation mathématique multi-échelle de l'angiogenèse tumorale : analyse de la réponse tumorale aux traitements anti-angiogéniques / Multiscale mathematical modeling of tumor-induced angiogenesis : investigation of the tumoral response to anti-angiogenic therapies

Billy, Frédérique 09 December 2009 (has links)
Le cancer est l'une des principales causes de décès dans le monde. L'angiogenèse tumorale est le processus de formation de nouveaux vaisseaux sanguins à partir de vaisseaux préexistants. Une tumeur cancéreuse peut induire l'angiogenèse afin de disposer d'apports supplémentaires en oxygène et nutriments, indispensables à la poursuite de son développement. Cette thèse consiste en l'élaboration d'un modèle mathématique multi-échelle de l'angiogenèse tumorale. Ce modèle intègre les principaux mécanismes intervenant aux échelles tissulaire et moléculaire. Couplé à un modèle de croissance tumorale, notre modèle permet d'étudier les effets de l'apport en oxygène sur la croissance tumorale. D'un point de vue mathématique, ces modèles d'angiogenèse et de croissance tumorale reposent sur des équations aux dérivées partielles de réaction-diffusion et d'advection régissant l'évolution spatio-temporelle des densités de cellules endothéliales, cellules constituant la paroi des vaisseaux sanguins, et tumorales, ainsi que celle des concentrations tissulaires en substances pro- et antiangiogéniques et en oxygène. A l'échelle moléculaire, la liaison des substances angiogéniques aux récepteurs membranaires des cellules endothéliales, mécanisme clé de la communication intercellulaire, est modélisée à l'aide de lois pharmacologiques. Ce modèle permet ainsi de reproduire in silico les principaux mécanismes de l'angiogenèse et d'analyser leur rôle dans la croissance tumorale. Il permet également de simuler l'action de différentes thérapies anti-angiogéniques, et d'étudier leur efficacité sur le développement tumoral afin d'aider à l'innovation thérapeutique / Cancer is one of the main causes of death worldwide. Angiogenesis is the formation of new blood vessels from preexisting vessels. A cancerous tumor can induce angiogenesis in order to get essential additional oxygen and nutrients supply to grow. This thesis is about the development of a multiscale mathematical model of tumor-induced angiogenesis. This model takes into account the main mechanisms that occur at the tissue level and at the molecular level during angiogenesis. Coupled with a model of tumor growth, our model enables to simulate the e_ect of oxygen supply on tumor growth. On a mathematical point of view, these models of tumor-induced angiogenesis and tumor growth are based on reaction-di_usion and advection partial di_erential equations that govern the evolution of the densities of endothelial cells, that compose blood vessel wall, and tumor cells, and that of the tissue concentrations of pro- and anti-angiogenic substances and oxygen. At the molecular level, the binding of angiogenic substances to receptors located on the membrane of endothelial cells is modeled by use of pharmacological laws. Such bindings are key mechanisms of intercellular communication. This model makes it possible to reproduce in silico the main mechanisms of angiogenesis and to analyze their action on tumor growth. It also enables to simulate the action of several antiangiogenic therapies and to study their e_cacy on tumor growth in order to help therapeutic
16

Modélisation de l’hétérogénéité tumorale par processus de branchement : cas du glioblastome / Modeling of tumor heterogeneity by branching process : case of glioblastoma

Obara, Tiphaine 07 October 2016 (has links)
Grâce aux progrès de la recherche, on sait aujourd’hui guérir près d’un cancer sur deux. Cependant, certaines tumeurs, telles que les glioblastomes restent parmi les plus agressives et les plus difficiles à traiter. La cause de cette résistance aux traitements pourrait provenir d’une sous-population de cellules ayant des caractéristiques communes aux cellules souches que l’on appelle cellules souches cancéreuses. De nombreux modèles mathématiques et numériques de croissance tumorale existent déjà mais peu tiennent compte de l’hétérogénéité intra-tumorale, qui est aujourd’hui un véritable challenge. Cette thèse s’intéresse à la dynamique des différentes sous-populations cellulaires d’un glioblastome. Elle consiste en l’élaboration d’un modèle mathématique de croissance tumorale reposant sur un processus de branchement de Bellman-Harris, à la fois multi-type et dépendant de l’âge. Ce modèle permet d’intégrer l’hétérogénéité cellulaire. Des simulations numériques reproduisent l’évolution des différents types de cellules et permettent de tester l’action de différents schémas thérapeutiques sur le développement tumoral. Une méthode d’estimation des paramètres du modèle numérique fondée sur le pseudo-maximum de vraisemblance a été adaptée. Cette approche est une alternative au maximum de vraisemblance dans le cas où la distribution de l’échantillon est inconnue. Enfin, nous présentons les expérimentations biologiques qui ont été mises en place dans le but de valider le modèle numérique / The latest advances in cancer research are paving the way to better treatments. However, some tumors such as glioblastomas remain among the most aggressive and difficult to treat. The cause of this resistance could be due to a sub-population of cells with characteristics common to stem cells. Many mathematical and numerical models on tumor growth already exist but few take into account the tumor heterogeneity. It is now a real challenge. This thesis focuses on the dynamics of different cell subpopulations in glioblastoma. It involves the development of a mathematical model of tumor growth based on a multitype, age-dependent branching process. This model allows to integrate cellular heterogeneity. Numerical simulations reproduce the evolution of different types of cells and simulate the action of several therapeutic strategies. A method of parameters estimation based on the pseudo-maximum likelihood has been developed. This approach is an alternative to the maximum likelihood in the case where the sample distribution is unknown. Finally, we present the biological experiments that have been implemented in order to validate the numerical model
17

Parameterization des modeles tumoral bases sur des maillages des donnees experimentaux.

Jagiella, Nick 21 September 2012 (has links) (PDF)
Dans le but d'établir un modèle prédictif pour la croissance tumorale in-vivo et la thérapie, le modèle multi-échelle doit être élaboré et calibré par étape et de façon individuelle pour chaque type de cellule ciblé et pour di érents environnements (in-vitro et in-vivo). Nous présenterons, en tant que preuve de concept et à partir de di érentes sources de données, les étapes de la construction et de la paramétrisation du modèle de la croissance avasculaire des lignées de cellules EMT6/Ro et SK-MES-1. Dans une première étape, un modèle multi-échelle à base d'agents a été construit et validé avec des données provenant de la littérature sur les sphéroïdes multicellulaires de carcinomes mammaires de souris EMT6/Ro. Pour cette lignée de cellules, il a pu prédire que la cinétique de croissance est contrôlée par une combinaison de contraintes spatiales et de limitation des nutriments. Il a été trouvé que l'ATP est la ressource critique que les cellules essayent de garder constante en permutant d'un métabolisme aérobique à anaérobique et ce pour de larges plages de concentrations d'oxygène et de glucose. La saturation de la croissance a été observé uniquement dans le cas de faibles concentrations d'oxygène et de glucose ce que le modèle a pu expliqué par une migration guidée par l'adhésion de cellule à cellule. Dans une seconde étape, le modèle a été adapté à la lignée cellulaire SK-MES-1. Nous avons calibré la cinétique de croissance qualitativement en analysant des images de cryosections de sphéroïdes marquées pour l'apoptose et la prolifération et quantitativement en la comparant des courbes de croissance. Au delà de l'ATP, le lactate a été identi é comme contrôlant la taille du noyau nécrotique. Pour rendre compte de la situation in-vivo, nous proposons une extension du modèle qui prend en compte un réseau de vaisseaux sanguins et le phénomène de l'angiogenèse associé. A n de paramétrer les propriétés des vaisseaux fonctionnels et dans le but de valider les lois de l'angiogenèse, nous menons à partir d'images de perfusion d'agents de contraste une étude de sensibilité aux paramètres. Dans un premier temps, nous résolvons le problème direct de la perfusion des agents de contraste dans un réseau de vaisseaux perméables ou non. Ensuite, nous résolvons le problème inverse rigoureusement et, grâce à des comparaisons directes entre les paramètres originaux et ceux récupérés, nous étudions la capacité de prédiction du modèle dans di érents cas.
18

Approches mathématiques multi-niveaux pour l'étude de la croissance des tumeurs : Application à la morphogenèse du cancer du sein et ciblage thérapeutique de l'angiogenèse du cancer du côlon / Multi-scale mathematical approaches for the study of tumour growth : Application to breast cancer morphogenesis and the therapeutic targeting of colon cancer angiogenesis

Lignet, Floriane 30 November 2012 (has links)
Les cancers sont l’une des causes majeures de mortalité dans le monde. Les mécanismes en jeu dans la croissance tumorale sont qualitativement connus, mais on se sait pas à l’heure actuelle prédire précisément quel sera le développement d’une tumeur donnée, ni estimer de façon certaine le protocole thérapeutique optimal pour chaque patient. Il est entendu que la modélisation mathématique pourrait apporter des éléments de réponse à ces questions. Durant cette thèse on s'est alors intéressé à la construction de formalismes mathématiques pour décrire la croissance tumorale et l’action de traitement anti-cancéreux. En particulier, on s'est intéressé à la prise en compte des mécanismes aussi bien moléculaires que cellulaires et tissulaires, par la construction d’un modèle continu, multi-échelles, de croissance de tumeur solide et d’angiogenèse. A partir de ce modèle, nous a pu envisager de façon qualitative un protocole optimal de combinaison entre un anti-angiogénique et une chimiothérapie.Le modèle multi-échelles inclut une représentation mathématique des voies de signalisation du VEGF dont on détaille la construction.Dans une autre approche, on a considéré un modèle discret, cellule-centré, reproduisant le développement de sphéroïdes de cellules épithéliales mammaires telles qu’observées lorsque ces cellules sont cultivées in vitro. On a pu mettre en évidence les différents mécanismes cellulaires impliqués dans la morphogenèse de structures composées de cellules saines, et celles composées de cellules mutées.Ces contributions montrent l’intérêt du formalisme multi-échelles adopté pour intégrer les connaissances et données sous-jacentes à l’étude du traitement des tumeurs. / Cancer is one of the leading causes of death in Europe. The mechanisms involved in tumour growth are qualitatively known, but we are still unable to precisely predict how a given tumour will evolve, nor estimate with certainty the optimal therapeutic protocol for each patient.It is well understood that mathematical modelling could give part of the answer to these questions. That is why during this thesis we considered the building of mathematical formalisms to describe tumour growth and the action of anti-cancer treatments. In particular, we investigated the molecular to tissular mechanisms of cancer development and angiogenesis through the building of a continuous multi-scale model. We were able to reproduce the effect of anti- angiogenesis treatments on tumour growth, and qualitatively study an optimal therapeutic protocol of anti-angiogenic combined with cytotoxic drugs. This multi-scale model integrates a mathematical representation of the signalling pathways of VEGF (Vascular Endothelial Growth Factor). We detail the development of this model which is based solely on information available in the literature and dedicated databases. In another approach, we considered a discrete, cell-based model to reproduce the development of spheroid structures of mammary epithelial cells. This model considers the behaviour of these cells when observed while grown in vitro in an appropriate medium. We were able to highlight the different mechanisms involved in the morphogenesis of wild and mutated cells structures.This work shows the importance of the multi-scale formalism we used to integrate the knowledge and data related to the study of cancer treatment.
19

Problèmes inverses pour les modèles de croissance tumorale / Inverse problems for tumor growth modeling

Lombardi, Damiano 09 September 2011 (has links)
L'objective de la thèse est de comprendre s'il est envisageable d'utiliser les modèles qui décrivent la croissance tumorale (systèmes d'EDP) pour des applications médicales. En particulier, les modèles paramétriques sont calibrés en utilisant les données d'imagerie médicale d'un patient. Une fois calibré, le modèle donne une représentation de la croissance tumorale. Des techniques différentes sont proposées. Un approche classique basé sur la sensibilité est comparé à un approche réduit basé sur la Proper Orthogonal Decomposition. Des cas réalistes concernants l'étude des métastases dans les poumons ont été mis à point en collaboration avec l'Institut Bergonié. Des exigence pratique de traitement de l'image ont motivé l'étude des méthodes de recalage non-rigide des images et parmi ceux là, le transport optimale. Un étude de la numérique du problème de Monge-Kantorovich est décrit, avec des cas test numérique. Des applications concernants l'application de la distance de Wasserstein à la réduction de modèle sont envisagées. / The main purpose of this work was to understand if and wether PDE based modeling of tumor growth may be used in realistic applications. Models proposed in the literature are parametric. The goal is to identify parameters in such a way that the pathology evolution of a given patient is recovered. The identification is performed by means of inverse problems, taking medical images as data.Different techniques were tested: a classical Sensitivity approach is compared to a reduced one, based on Proper Orthogonal Decomposition. Realistic cases were set up in collaboration with Institut Bergonié, concerning lung metastasis evolution.Practical needs when dealing with medical images pushed us to interest to Optimal transport theory and Monge-Kantorovich problem. A numerical study was carried out and a family of lagrangian methods proposed. A perspective on the using of Wasserstein distance in model reduction concludes this work.
20

Modélisation de la croissance tumorale : estimation de paramètres d’un modèle de croissance et introduction d’un modèle spécifique aux gliomes de tout grade / Tumor growth model : parameter estimation and model dedicated to gliomas

Lagaert, Jean-Baptiste 28 September 2011 (has links)
Les travaux présentés dans le cadre de cette thèse traitent de la modélisation mathématique de la croissance tumorale. La première partie de cette thèse traite de l’estimation des paramètres. Plus précisément, il s’agit de déterminer la vascularisation d’une tumeur à partir de sa dynamique. Pour cela, nous générons à partir d’un modèle d’équations aux dérivées partielles l’évolution en temps de la densité de cellules tumorales. Ensuite, nous résolvons des problèmes inverses afin de retrouver la densité de vascularisation correspondante. Nous montrons que la vascularisation estimée permet de prédire efficacement la croissance future de la tumeur. Dans un second temps, nous introduisons une classe de modèles pour la croissance de gliomes qui sont adaptés à la fois aux gliomes de bas grades et aux glioblastomes multiformes. Afin de tenir compte des spécificités des gliomes, le modèle prend en considération le caractère infiltrant de ce type de tumeur ainsi que l’hétérogénéité, l’anisotropie et la géométrie du cerveau. Nos modèles permettent d’étudier l’efficacité des traitements anti-angiogéniques et de la comparer à celle d’un traitement qui inhiberait la capacité d’invasion de gliomes. Les modèles ont été implémentés en 2D et en 3D dans des géométries réalistes obtenues grâce à un atlas. / This thesis deals with mathematical modeling of tumor growth. Firstly, we present a parameter estimation method. More precisely, it consists in recovering the position of the tumor blood vessel, starting from imaging. The first step is to design a particular vascularization, then we compute the tumor growth with this blood-vessel network by using a model based on partial differential equations and hence we try to recover the initial vascularization solving the inverse problem. We show that the estimated vasculature could be used to efficiently predict the future tumor growth. In the second part of this thesis, we introduce a class of models dedicated to glioma, adapted both to low grade and multiform glioblastoma. In order to take into account their specificities, we include mainly two effects in the model : on the one hand, the infiltrate behaviors of gliomas, and on the other hand, the impact of brain heterogeneity, of brain anisotropy and of brain geometry on the tumor growth. Our models allow us to evaluate the efficiency of anti-angiogenic drugs and to compare it with the effect of drugs inhibiting the invasion ability of glioma. The models have been implemented in 2D and 3D in actual geometry provided by an atlas.

Page generated in 0.0735 seconds