Spelling suggestions: "subject:"curvatura média"" "subject:"curvatura nédia""
41 |
Caracterizações da esfera em formas espaciais / Characterizations of the sphere in space forms.Pinto, Victor Gomes 06 July 2017 (has links)
PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-20T20:40:07Z
No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1180135 bytes, checksum: f3aa196ed8b0d38c5a2a33642fdb7d0b (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia Andrea,
Favor informar ao aluno os motivos da rejeição.
Faltou a conclusão (item obrigatório) E as referências não estão normalizadas.
Seguem os modelos
ARTIGOS DE PERIÓDICOS: ALENCAR, H. ; COLARES, A. G. - Integral formulas for the r-mean curvature linearized operator of a hypersurface. Annals of Global Analysis and Geometry, v. 16, p. 203-220, 1998.
OBS: o TÍTULO DO PERIÓDICO DEVE FICAR EM NEGRITO OU ITÁLICO.
LIVROS: CARMO, M. P. do. Geometria riemanniana. Rio de Janeiro : IMPA, 2008.( Projeto Euclides)
OBS: O TÍTULO DO LIVRO DEVE FICAR EM NEGRITO OU ITÁLICO
DISSERTAÇÕES: PINHEIRO, N. R. Hipersuperfíıcies com curvatura média constante e hiperplanos. Ano. Nº de folhas. Dissertação ( Mestrado) em nome do curso, local, ano.
OBS: o TÍTULO DA DISSERTAÇÃO DEVE FICAR EM NEGRITO OU ITÁLICO
Rocilda on 2017-07-21T11:38:59Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-21T18:48:58Z
No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-24T15:34:13Z (GMT) No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) / Made available in DSpace on 2017-07-24T15:34:13Z (GMT). No. of bitstreams: 1
2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5)
Previous issue date: 2017-07-06 / In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mn e x: M → Q^(n+1)_c a isometric immersion, x(M) is a geodesic sphere in Q^n+1_c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qn+1 c by the totally geodesic hypersurfaces (Q^n_c)p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation = if, and only if, M is isometric to the n-sphere Sn(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M ! Qn+1, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr 6= 0 and there are nonnegative constants C1;C2; :::;Cr1 such that Hr = Pr1 i=1 CiHi; then x(M) is a geodesic sphere, where Qn+1 is Rn+1, Hn+1 or Sn+1 + . / Neste trabalho serão apresentadas três caracterizações da esfera. Primeiramente, será mostrado que dada uma hipersuperfície compacta e orientada Mn e x: M → Q^(n+1)_c uma imersão isométrica, onde Q^n+1_c é uma forma espacial simplesmente conexa, isto é, uma variedade Riemanniana de curvatura seccional constante c, x(M) é uma esfera geodésica em Q^n+1_c se, e somente se, a (r + 1)-ésima curvatura média Hr+1 é uma constante não nula e o conjunto dos pontos que são omitidos em Q^n+1_c pelas hipersuperfícies totalmente geodésicas (Q^n_c)p tangentes a x(M) é não vazio. Como segundo resultado, seja uma hipersuperfície compacta, conexa e orientável M do espaço euclidiano R^(n+1), com função suporte não negativa e integrando de Minkowski σ. Será provado que a função curvatura média α da hipersuperfície é solução da equação de Poisson Δϕ = σ se, e somente se, M é isométrica à n-esfera S^n(c) de curvatura média c. Uma caracterização similar é provada para uma hipersuperfície com a curvatura escalar satisfazendo a mesma equação. Para o terceiro resultado é considerado uma imersão isométrica x: M → Q^(n+1), onde M é uma hipersuperfície compacta tal que x(M) é convexa, e será provado que, se alguma curvatura r-média é tal que Hr ≠ 0 e existem constantes não negativas C1, C2, ..., Cr-1 tais que Hr =∑_(i=1)^(r-1)▒〖C_i H_i 〗 ; então x(M) é uma esfera geodésica, onde Q^(n+1) é R^(n+1), H^(n+1) ou S^(n+1)_+ .
|
42 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
43 |
Teoremas de semiespaço para superfícies mínimasSilva, Sylvia Ferreira da 20 March 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-01T13:15:28Z
No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:55:26Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5) / Made available in DSpace on 2017-09-01T15:55:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5)
Previous issue date: 2017-03-20 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we detail the results submitted by Ho man and Meeks in \The strong
half-space theorem for minimal surfaces". The rst results are half-space theorems for
minimal surfaces in R3 which have been generalized for other ambients, as have been
done by Daniel, B./ Hauswirth, L., e Daniel, B./ Meeks, W. H. III. The third and last
one result, caracterize convex hull in n- dimensional Euclidean spaces. / Neste trabalho detalhamos os resultados apresentados por William H. Meeks e
David A. Ho man em \The strong half-space theorem for minimal surfaces", . Os
primeiros resultados s~ao teoremas de semiespa co para superf cies m nimas no R3, os
quais tem sido generalizados para outros ambientes como foi feito por Daniel, B./
Hauswirth, L., e Daniel, B./ Meeks, W. H. III. O terceiro e ultimo resultado, caracteriza
fechos convexos no espa co euclidiano n-dimensional.
|
44 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
45 |
Estabilidade de hipersuperfícies com curvatura média constantePaim, Tatiana Sousa January 2018 (has links)
Orientador: Prof. Dr. Márcio Fabiano da Silva / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , Santo André, 2018. / Seja x : M = Rn+1 uma imersão de uma variedaden-dimensional orientável M no espaço
euclidiano Rn+1. A condição que x tem curvatura média constante não-nula H =H0 é conhecida ser equivalente ao fato que x é um ponto crítico de um problema variacional. Um procedimento padrão de encontrar pontos críticos de tais problemas é, análogo ao método dos multiplicadores de Lagrange, olhar para os pontos críticos de um certo operador definido em termos dos funcionais variacionais. Resulta dessas considerações que a definição de estabilidade para imersões com curvatura média constante não-nula deve exigir que a segunda variação para tal operador seja não-negativa, para variações com suporte compacto que satisfaçam a condição de média nula. Assim, o objetivo desse trabalho é estudar as imersões estáveis compactas com curvatura média constante não-nula ¿ resultado apresentado como o Teorema de Barbosa¿Carmo. / Let x : M = Rn+1 be an immersion of an orientablen-dimensional manifoldM into the euclidian space Rn+1. The condition thatx has nonzero constant mean curvature H =H0 is known to be equivalent to the fact thatx is a critical point of a variational problem. A standard proceduce of ?nding the critical points of such a problem is, in analogy to the Lagrange multipliers method, to look for the critical of points of an operator defined in terms of variational functionals. It follows from the above considerations that the definition of stability for immersions with nonzero constant mean curvature should require that such operator be nonnegative, for compactly supported variations that satisfy the zero mean condition. Thus, the objective of this work is to study the compact stable immersions with nonzero constant mean curvature ¿ result presented as the Barbosa and Carmo¿s theorem.
|
46 |
Problema exterior de Dirichlet para a equação das superfícies de curvatura média constante no espaço hiperbólicoNunes, Adilson da Silva January 2017 (has links)
Neste trabalho mostramos que dado um domínio exterior de classe C0 contido em uma superfície umb lica de H3; com curvatura média constante H 2 [0; 1); existe uma família de gracos de Killing com curvatura média constante H: O bordo de cada um destes gracos está contido nesta superfície umbílica e a norma do gradiente da função no bordo pode ser prescrita por um certo valor s 0. / In this paper we show that given an exterior domain of class C0 contained in an umbilical surface of H3; with constant mean curvature H 2 [0; 1); there exists a family of Killing graphs with constant mean curvature H: The boundary of each of these graphs is contained in this umbilical surface and the norm of the gradient of the function in the boundary can be prescribed by a certain value s 0:
|
47 |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces / Genericidade das métricas bumpy, bifurcação e estabilidade em hipersuperfícies de CMC e fronteira livreCarlos Wilson Rodríguez Cárdenas 03 December 2018 (has links)
In this thesis we prove the genericity of the set of metrics on a manifold with boundary M^{n+1}, such that all free boundary constant mean curvature (CMC) embeddings \\varphi: \\Sigma^n \\to M^{n+1}, being \\Sigma a manifold with boundary, are non-degenerate (Bumpy Metrics), (Theorem 2.4.1). We also give sufficient conditions to obtain a free boundary CMC deformation of a CMC inmersion (Theorems 3.2.1 and 3.2.2), and a stability criterion for this type of immersions (Theorem 3.3.3 and Corollary 3.3.5). In addition, given a one-parametric family, {\\varphi _t : \\Sigma \\to M} , of free boundary CMC immersions, we give criteria for the existence of smooth bifurcated branches of free boundary CMC immersions for the family {\\varphi_t}, via the implicit function theorem when the kernel of the Jacobi operator J is non-trivial, (Theorems 4.2.3 and 4.3.2), and we study stability and instability problems for hypersurfaces in this bifurcated branches (Theorems 5.3.1 and 5.3.3). / Nesta tese, provamos a genericidade do conjunto de métricas em uma variedade com fronteira M^{n+1}, de modo que todos os mergulhos de curvatura média constante (CMC) e fronteira livre \\varphi : \\Sigma^n \\to M^{n+1}, sendo \\Sigma uma variedade com fronteira, sejam não-degenerados (Métricas Bumpy), (Teorema 2.4.1). Nós também fornecemos condições suficientes para obter uma deformação CMC e fronteira livre de uma imersão CMC (Teoremas 3.2.1 and 3.2.2), e um critério de estabilidade para este tipo de imersões (Teorema 3.3.3 and Corolario 3.3.5). Além disso, dada uma família 1-paramétrica, {\\varphi _t : \\Sigma \\to M} , de imersões de CMC e fronteira livre, damos os critérios para a existência de ramos de bifurcação suaves de imersões CMC e fronteira livre para a familia {\\varphi_t}, por meio de o teorema da função implícita quando o kernel do operador Jacobi J é não-trivial, (Teoremas 4.2.3 and 4.3.2), e estudamos o problema da estabilidade e instabilidade para hipersuperfícies em naqueles ramos de bifurcação (Teoremas 5.3.1 and 5.3.3).
|
48 |
Superfícies CMC em variedades tridimensionais : diferencial de HopfNicoli , Adriana Vietmeier January 2014 (has links)
Orientador: Prof. Dr. Sinuê Dayan Barbero Lodovici / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática, 2014. / O objetivo principal deste texto é apresentar o teorema de Hopf 3.16 nos espaços R3, H3
e S3, resultado clássico sobre superfícies com curvatura média constante (CMC). Antes
disto, apresentamos alguns conceitos importantes de Geometria Diferencial, entre eles
o Teorema de Gauss-Bonnet 2.13 e o Teorema de Hadamard 2.36. Por fim, de maneira
breve, enunciamos o teorema de Hopf em espaços produto (H2XR e S2XR). / The main objective of this paper is to present the Hopf's theorem (3.16) in spaces R3,
H3 and S3, a classical result on surfaces with constant mean curvature (CMC). Before
this, we present some important concepts of Differential Geometry, including the Gauss-
Bonnet Theorem (2.13) and Hadamard's Theorem (2.36). Finally, and briefly, we state
the Hopf's theorem in product spaces (H2XR and S2XR).
|
49 |
Volumes e curvaturas médias na geometria de Finsler:superfícies mínimas / Volumes and means curvatures in Finsler geometry: minimal surfacesChavéz, Newton Mayer Solorzano 16 April 2012 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-08-06T11:17:00Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Volumes_e_curvaturas_medias_na_geometria_de_finsler.pdf: 818570 bytes, checksum: fce77ff7f92ae9cc2bf9af2aa0318c4c (MD5) / Made available in DSpace on 2014-08-06T11:17:00Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Volumes_e_curvaturas_medias_na_geometria_de_finsler.pdf: 818570 bytes, checksum: fce77ff7f92ae9cc2bf9af2aa0318c4c (MD5)
Previous issue date: 2012-04-16 / In Finsler geometry, we have several volume forms, hence various of mean curvature
forms. The two best known volumes forms are the Busemann-Hausdorff and Holmes-
Thompson volume form. The minimal surface with respect to these volume forms are
called BH-minimal and HT-minimal surface, respectively. Let (R3; eFb) be a Minkowski
space of Randers type with eFb = ea+eb; where ea is the Euclidean metric and eb = bdx3;
0 < b < 1: If a connected surface M in (R3; eFb) is minimal with respect to both volume
forms Busemann-Hausdorff and Holmes-Thompson, then up to a parallel translation of
R3; M is either a piece of plane or a piece of helicoid which is generated by lines screwing
along the x3-axis. Furthermore it gives an explicit rotation hypersurfaces BH-minimal
and HT-minimal generated by a plane curve around the axis in the direction of eb] in
Minkowski (a;b)-space (Vn+1; eFb); where Vn+1 is an (n+1)-dimensional real vector
space, eFb = eaf eb
ea ; ea is the Euclidean metric, eb is a one form of constant length
b = kebkea; eb] is the dual vector of eb with respect to ea: As an application, it give us an
explicit expression of surface of rotation “ forward” BH-minimal generated by the rotation
around the axis in the direction of eb] in Minkowski space of Randers type (V3; ea+eb): / Na Geometria de Finsler, temos várias formas volume, consequentemente várias formas
curvaturas médias. As duas mais conhecidas são as formas de volumes Busemann-
Hausdorff e Holmes-Thompson. As superfícies mínimas com respeito a estes são chamados
superfícies BH-mínimas e HT-mínimas, respectivamente. Seja (R3; eFb) um espaço
de Minkowski do tipo Randers com eFb = ea+eb; onde ea é a métrica Euclidiana e
eb = bdx3;0 < b < 1: Uma superfície em (R3; eFb) conexa M é mínima com respeito a ambas
formas volumes Busemann-Hausdorff e Holmes-Thompson, então a menos de uma
translação paralela de R3; M é parte de um plano ou parte de um helicóide, a qual é gerada
pela rotação de uma reta (perpendicular ao eixo x3) ao longo do eixo x3: Ademais podemos
obter explicitamente hipersuperfícies de rotação BH-mínima e HT-mínima geradas
por uma curva plana em torno do eixo na direção de eb] num espaço (a; b) de Minkowski
(Vn+1; eFb); onde Vn+1 é um espaço vetorial de dimensão (n+1); eFb = eaf eb
ea ; ea é a
métrica Euclidiana, eb é uma 1-forma constante com norma b := kebkea; eb] é o vetor dual
de eb com respeito a a: Como aplicação, se dá uma expressão explícita de superfície de
rotação completa “forward” BH-mínima gerada pela rotação em torno do eixo na direção
de eb] num espaço de Minkowski do tipo Randers (V3; ea+eb):
|
50 |
Um caso particular da desigualdade de Heintze e KarcherMota, Andrea Martins da 15 September 2014 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-17T20:37:08Z
No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-19T14:12:03Z (GMT) No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-19T14:14:29Z (GMT) No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5) / Made available in DSpace on 2015-06-19T14:14:29Z (GMT). No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5)
Previous issue date: 2014-09-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of this notes is to prove in detail a theorem, due to Ernst
Heintze and Hermann Karcher, establishing an upper bound for the volume of
compact domains in a connected closed hypersurface immersed in Euclidean
space E. As application we will give an alternative proof of the Alexandrov’s
theorem, which states that the Euclidean spheres are the only embedded
closed hypersurfaces of constant mean curvature in E. / O objetivo deste trabalho é demonstrar em detalhes um teorema devido
a Ernst Heintze e Hermann Karcher que estabelece uma cota superior para
o volume de domínios compactos em uma hipersuperfície conexa, fechada e
mergulhada no espaço euclidiano E. Como aplicação será dada uma prova
alternativa do Teorema de Alexandrov, que caracteriza as esferas euclidianas
como as únicas hipersuperfícies conexas, fechadas e mergulhadas de curvatura
média constante em E.
|
Page generated in 0.0591 seconds