• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 132
  • 63
  • 1
  • Tagged with
  • 422
  • 356
  • 354
  • 247
  • 199
  • 190
  • 138
  • 124
  • 123
  • 123
  • 99
  • 98
  • 93
  • 75
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Existence de solutions faibles et faible-renormalisées pour des systèmes non linéaires de Boussinesq.

Attaoui, Abdelatif 06 April 2007 (has links) (PDF)
La thèse est consacrée essentiellement à l'étude de systèmes non linéaires d'évolution issus d'un modèle de Boussinesq : couplage entre les équations de Navier-stokes avec un second membre F(µ), où F est une force de gravité proportionnelle à des variations de densité qui dépendent de la température et l'équation de l'énergie.<br />Le premier chapitre nous donne un résultat d'existence d'une solution faible-renormalisée du système de Boussinesq en dimension 2, dans le cas où F est bornée.<br />Dans le chapitre 2, on aborde le cas de fonctions F plus générales : F vérifie une hypothèse de croissance. On démontre l'existence de solutions pour toutes données initiales ou pour des données initiales petites selon la croissance de F.<br />Dans le chapitre 3, nous faisons une généralisation des résultats du chapitre 2 mais sans le terme de convection.<br />Dans le chapitre 4, le manque de stabilité de l'énergie de dissipation dans L1(Q) en dimension 3, nous contraint à transformer de façon formelle le système de Boussinesq. On démontre l'existence d'une solution faible de ce nouveau système en dimension 3.
72

Schéma implicite pour la résolution d'un système hyperbolique d'équations aux dérivées partielles

Michaud, Matthieu January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
73

Global existence and fast-reaction limit in reaction-diffusion systems with cross effects / Existence globale et limite de réaction rapide dans des systèmes de réaction-diffusion avec effets croisés

Rolland, Guillaume 07 December 2012 (has links)
Cette thèse est consacrée à l'étude de systèmes d'équations aux dérivées partielles paraboliques issus de modèles de cinétique chimique, de dynamique des populations et de la théorie de l'électromigration. On s'intéresse à des questions d'existence de solutions globales en temps, à l'unicité de solutions faibles, ainsi qu'à la limite de réaction rapide dans un système de réaction-diffusion. Dans un premier chapitre, on étudie deux systèmes aux diffusions croisées. On commence par s'intéresser à un modèle de dynamique des populations, où les effets croisés dans les interactions entre les différentes espèces sont modélisés par des opérateurs non locaux. Pour toute dimension d'espace, on prouve l'existence et l'unicité de solutions globales régulières. On s'intéresse ensuite à un système aux diffusions croisées qui apparait comme la limite de réaction rapide d'un système classique associé à la réaction chimique C1+C2=C3. On prouve alors la convergence lorsque k tend vers l'infini de la solution du système avec une vitesse de réaction finie k vers une solution globale du système limite. Le second chapitre contient de nouveaux résultats d'existence globale pour des systèmes de réaction-diffusion. Pour des réseaux de réactions chimiques élémentaires du type Ci+Cj=Ck qui suivent la loi d'Action de Masse, on montre l'existence et l'unicité de solutions globales fortes, pour des dimensions en espace N<6 dans le cas semi-linéaire et N<4 dans le cas quasi-linéaire. On montre aussi l'existence de solutions globales faibles pour une classe de systèmes paraboliques quasi-linéaires dont les non-linéarités sont au plus quadratiques et dont les données initiales sont seulement supposées positives et intégrables. Dans le dernier chapitre, on généralise un résultat d'existence globale de solutions fortes pour des systèmes de réaction-diffusion dont les non-linéarités ont une structure "triangulaire", pour lesquels on prend désormais en compte des termes d'advection et des coefficients de diffusion dépendant du temps et de la variable d'espace. Ce résultat est ensuite utilisé dans un argument de point fixe de Leray-Schauder pour prouver l'existence en toute dimension de solutions globales à un problème d'électromigration-diffusion. / This thesis is devoted to the study of parabolic systems of partial differential equations arising in mass action kinetics chemistry, population dynamics and electromigration theory. We are interested in the existence of global solutions, uniqueness of weak solutions, and in the fast-reaction limit in a reaction-diffusion system. In the first chapter, we study two cross-diffusion systems. We are first interested in a population dynamics model, where cross effects in the interactions between the different species are modeled by non-local operators. We prove the well-posedness of the corresponding system for any space dimension. We are then interested in a cross-diffusion system which arises as the fast-reaction limit system in a classical system for the chemical reaction C1+C2=C3. We prove the convergence when k goes to infinity of the solution of the system with finite reaction speed k to a global solution of the limit system. The second chapter contains new global existence results for some reaction-diffusion systems. For networks of elementary chemical reactions of the type Ci+Cj=Ck and under Mass Action Kinetics assumption, we prove the existence and uniqueness of global strong solutions, for space dimensions N<6 in the semi-linear case, and N<4 in the quasi-linear case. We also prove the existence of global weak solutions for a class of parabolic quasi-linear systems with at most quadratic non-linearities and with initial data that are only assumed to be nonnegative and integrable. In the last chapter, we generalize a global well-posedness result for reaction-diffusion systems whose nonlinearities have a "triangular" structure, for which we now take into account advection terms and time and space dependent diffusion coefficients. The latter result is then used in a Leray-Schauder fixed point argument to prove the existence of global solutions in a diffusion-electromigration system.
74

Degenerate parabolic stochastic partial differential equations / Équations aux dérivées partielles stochastiques paraboliques dégénérées

Hofmanová, Martina 05 July 2013 (has links)
Dans cette thèse, on considère des problèmes issus de l'analyse d'EDP stochastiques paraboliques non-dégénérées et dégénérées, de lois de conservation hyperboliques stochastiques, et d'EDS avec coefficients continus. Dans une première partie, on s'intéresse à des EDPS paraboliques dégénérées- on adapte les notions de formulation et de solutions cinétiques, puis on établit l'existence, l'unicité ainsi que la dépendance continu en la condition initiale. Comme résultat préliminaire, on obtient la régularité des solutions dans le cas non-dégénéré, sous l'hypothèse que les coefficients sont suffisamment réguliers et ont des dérivées bornées. Dans une deuxième partie, on considère des lois de conservation hyperboliques avec un forçage stochastique, et on étudie leur approximation au sens de Bhatnagar-Gross-Krook. En particulier, on décrit les lois de conservation comme limites hydrodynamiques du modèle BGK stochastique lorsque le paramètre d'échelle microscopique tend vers 0. Dans une troisième partie, on donne une preuve nouvelle et élémentaire du théorème classique de Skorokhod, concernant l'existence de solutions faibles d'EDS à coefficients continus, sous une condition de type Lyapunov appropriée. / In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyperbolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochastic forcing and study their approximations in the sense of Bhatnagar-Gross-Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkhod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition.
75

Sur les dérivées généralisées, les conditions d'optimalité et l'unicité des solutions en optimisation non lisse / On generalized derivatives, optimality conditions and uniqueness of solutions in nonsmooth optimization

Le Thanh, Tung 13 August 2011 (has links)
En optimisation les conditions d’optimalité jouent un rôle primordial pour détecter les solutions optimales et leur étude occupe une place significative dans la recherche actuelle. Afin d’exprimer adéquatement des conditions d’optimalité les chercheurs ont introduit diverses notions de dérivées généralisées non seulement pour des fonctions non lisses, mais aussi pour des fonctions à valeurs ensemblistes, dites applications multivoques ou multifonctions. Cette thèse porte sur l’application des deux nouveaux concepts de dérivées généralisées: les ensembles variationnels de Khanh-Tuan et les approximations de Jourani-Thibault, aux problèmes d’optimisation multiobjectif et aux problèmes d’équilibre vectoriel. L’enjeu principal est d’obtenir des conditions d’optimalité du premier et du second ordre pour les problèmes ayant des données multivoques ou univoques non lisses et pas forcément continues, et des conditions assurant l’unicité des solutions dans les problèmes d’équilibre vectoriel. / Optimality conditions for nonsmooth optimization have become one of the most important topics in the study of optimization-related problems. Various notions of generalized derivatives have been introduced to establish optimality conditions. Besides establishing optimality conditions, generalized derivatives also is an important tool for studying the local uniqueness of solutions. During the last three decades, these topics have been being developed, generalized and applied to many elds of mathematics by many authors all over the world. The purpose of this thesis is to investigate the above topics. It consists of ve chapters. In Chapter 1, we develop elements of calculus of variational sets for set-valued mappings, which were recently introduced in Khanh and Tuan (2008). Most of the usual calculus rules, from chain and sum rules to rules for unions, intersections, products and other operations on mappings, are established. As applications we provide a direct employment of sum rules to establishing an explicit formula for a variational set of the solution map to a parametrized variational inequality in terms of variational sets of the data. Furthermore, chain rules and sum or product rules are also used to prove optimality conditions for weak solutions of some vector optimization problems. In Chapter 2, we propose notions of higher-order outer and inner radial derivatives of set-valued maps and obtain main calculus rules. Some direct applications of these rules in proving optimality conditions for particular optimization problems are provided. Then, we establish higher-order optimality necessary conditions and sufficient ones for a general set-valued vector optimization problem with inequality constraints. Chapter 3 is devoted to using first and second-order approximations, which were introduced by Jourani and Thibault (1993) and Allali and Amaroq (1997), as generalized derivatives, to establish both necessary and sufficient optimality conditions for various kinds of solutions to nonsmooth vector equilibrium problems with functional constraints. Our rst-order conditions are shown to be applicable in many cases, where existing ones cannot be applied. The second-order conditions are new. In Chapter 4, we consider nonsmooth multi-objective fractional programming on normed spaces. Using rst and second-order approximations as generalized derivatives, rst and second-order optimality conditions are established. For sufficient conditions no convexity is needed. Our results can be applied even in innite dimensional cases involving innitely discontinuousmaps. In Chapter 5, we establish sufficient conditions for the local uniqueness of solutions to nonsmooth strong and weak vector equilibrium problems. Also by using approximations, our results are valid even in cases where the maps involved in the problems suffer innite discontinuity at the considered point.
76

An active-set trust-region method for bound-constrained nonlinear optimization without derivatives applied to noisy aerodynamic design problems / Une méthode de région de confiance avec ensemble actif pour l'optimisation non linéaire sans dérivées avec contraintes de bornes appliquée à des problèmes aérodynamiques bruités

Tröltzsch, Anke 07 June 2011 (has links)
L’optimisation sans dérivées (OSD) a connu un regain d’intérêt ces dernières années, principalement motivée par le besoin croissant de résoudre les problèmes d’optimisation définis par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception technique, la restauration d’images médicales ou de nappes phréatiques).Ces dernières années, un certain nombre de méthodes d’optimisation sans dérivée ont été développées et en particulier des méthodes fondées sur un modèle de région de confiance se sont avérées obtenir de bons résultats.Dans cette thèse, nous présentons un nouvel algorithme de région de confiance, basé sur l’interpolation, qui se montre efficace et globalement convergent (en ce sens que sa convergence vers un point stationnaire est garantie depuis tout point de départ arbitraire). Le nouvel algorithme repose sur la technique d’auto-correction de la géométrie proposé par Scheinberg and Toint (2010). Dans leur théorie, ils ont fait avancer la compréhension du rôle de la géométrie dans les méthodes d’OSD à base de modèles. Dans notre travail, nous avons pu améliorer considérablement l’efficacité de leur méthode, tout en maintenant ses bonnes propriétés de convergence. De plus, nous examinons l’influence de différents types de modèles d’interpolation sur les performances du nouvel algorithme.Nous avons en outre étendu cette méthode pour prendre en compte les contraintes de borne par l’application d’une stratégie d’activation. Considérer une méthode avec ensemble actif pour l’optimisation basée sur des modèles d’interpolation donne la possibilité d’économiser une quantité importante d’évaluations de fonctions. Il permet de maintenir les ensembles d’interpolation plus petits tout en poursuivant l’optimisation dans des sous-espaces de dimension inférieure. L’algorithme résultant montre un comportement numérique très compétitif. Nous présentons des résultats sur un ensemble de problèmes-tests issu de la collection CUTEr et comparons notre méthode à des algorithmes de référence appartenant à différentes classes de méthodes d’OSD.Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en ajoutant des perturbations à l’ensemble des problèmes sans bruit. Le choix des problèmes bruités a été guidé par le désir d’imiter les problèmes d’optimisation basés sur la simulation. Enfin, nous présentons des résultats sur une application réelle d’un problème de conception de forme d’une aile fourni par Airbus. / Derivative-free optimization (DFO) has enjoyed renewed interest over the past years, mostly motivated by the ever growing need to solve optimization problems defined by functions whose values are computed by simulation (e.g. engineering design, medical image restoration or groundwater supply).In the last few years, a number of derivative-free optimization methods have been developed and especially model-based trust-region methods have been shown to perform well.In this thesis, we present a new interpolation-based trust-region algorithm which shows to be efficient and globally convergent (in the sense that its convergence is guaranteed to a stationary point from arbitrary starting points). The new algorithm relies on the technique of self-correcting geometry proposed by Scheinberg and Toint [128] in 2009. In their theory, they advanced the understanding of the role of geometry in model-based DFO methods, in our work, we improve the efficiency of their method while maintaining its good theoretical convergence properties. We further examine the influence of different types of interpolation models on the performance of the new algorithm.Furthermore, we extended this method to handle bound constraints by applying an active-set strategy. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows to maintain smaller interpolation sets while proceeding optimization in lower dimensional subspaces. The resulting algorithm is shown to be numerically highly competitive. We present results on a test set of smooth problems from the CUTEr collection and compare to well-known state-of-the-art packages from different classes of DFO methods.To report numerical experiments incorporating noise, we create a test set of noisy problems by adding perturbations to the set of smooth problems. The choice of noisy problems was guided by a desire to mimic simulation-based optimization problems. Finally, we will present results on a real-life application of a wing-shape design problem provided by Airbus.
77

Etude asymptotique d'équations aux dérivées partielles de type diffusion non linéaire et inégalités fonctionnelles associées / Asymptotic analysis of non linear diffusion partial differential equations and associated functional inequalities

Jankowiak, Gaspard 23 June 2014 (has links)
Ce travail est consacré à l'étude du comportement en temps grand d'équations aux dérivées partielles de type parabolique. Plus particulièrement, on s'intéresse à des équations non linéaires de type diffusion, qui interviennent dans de nombreux modèles issus de la physique (par exemple l'équation des milieux poreux) ou de la biologie (par exemple le modèle de Patlak-Keller-Segel pour la chimiotaxie). Dans les chapitres I et II on s'intéresse à une amélioration de l'inégalité de Sobolev à travers son inégalité duale, l'inégalité de Hardy-Littlewood-Sobolev, dans le cadre du laplacien ordinaire et du laplacien fractionnaire, respectivement. Le chapitre III est un passage en revue de l'inégalité d'Onofri, qui joue le rôle de l'inégalité de Sobolev pour la dimension deux. De nouveaux résultats sont apportés, dont certains sont étendus aux variétés riemanniennes au chapitre IV. Enfin, le chapitre V traite des états stationnaires de deux modèles paraboliques, utilisés pour l'étude du déplacement de foules et la modélisation en biologie (chimiotaxie). / This work is dedicated to the study of the large time behaviour of some parabolic type partial differential equations. More specifically, we look into non linear diffusion equations that appear in a number of models arising in physics (e.g. the porous medium equation) or biology (e.g. the Patlak-Keller-Segel model for chemotaxis)Chapters I and II deal with an improved Sobolev inequality by means of its dual, the Hardy-Littlewood-Sobolev inequality, in the framework of the standard and fractional Laplacian, respectively. Chapter III is a review of the Onofri inequality,which acts as the Sobolev inequality for dimension two. New results are provided, and some of them are extended to Riemannian manifolds in Chapter IV. Finally, Chapter V deals with the stationary states of two parabolic models, used for thestudy of crowd motion and modeling in biologie (chemotaxis).
78

Contrôlabilité de systèmes de réaction-diffusion non linéaires / Controllability of nonlinear reaction-diffusion sytems

Le Balc'h, Kévin 26 June 2019 (has links)
Cette thèse est consacrée au contrôle de quelques équations aux dérivées partielles non linéaires. On s’intéresse notamment à des systèmes paraboliques de réaction-diffusion non linéaires issus de la cinétique chimique. L’objectif principal est de démontrer des résultats de contrôlabilité locale ou globale, en temps petit, ou en temps grand.Dans une première partie, on démontre un résultat de contrôlabilité locale à des états stationnaires positifs en temps petit, pour un système de réaction-diffusion non linéaire.Dans une deuxième partie, on résout une question de contrôlabilité globale à zéro en temps petit pour un système 2 × 2 de réaction-diffusion non linéaire avec un couplage impair.La troisième partie est consacrée au célèbre problème ouvert d’Enrique Fernández-Cara et d’Enrique Zuazua des années 2000 concernant la contrôlabilité globale à zéro de l’équation de la chaleur faiblement non linéaire. On démontre un résultat de contrôlabilité globale à états positifs en temps petit et un résultat de contrôlabilité globale à zéro en temps long.La dernière partie, rédigée en collaboration avec Karine Beauchard et Armand Koenig, est une incursion vers l’hyperbolique. On étudie des systèmes linéaires à coefficients constants, couplant une dynamique transport avec une dynamique parabolique. On identifie leur temps minimal de contrôle et l’influence de leur structure algébrique sur leurs propriétés de contrôle. / This thesis is devoted to the control of nonlinear partial differential equations. We are mostly interested in nonlinear parabolic reaction-diffusion systems in reaction kinetics. Our main goal is to prove local or global controllability results in small time or in large time.In a first part, we prove a local controllability result to nonnegative stationary states in small time, for a nonlinear reaction-diffusion system.In a second part, we solve a question concerning the global null-controllability in small time for a 2 × 2 nonlinear reaction-diffusion system with an odd coupling term.The third part focuses on the famous open problem due to Enrique Fernndez-Cara and Enrique Zuazua in 2000, concerning the global null-controllability of the weak semi-linear heat equation. We show that the equation is globally nonnegative controllable in small time and globally null-controllable in large time.The last part, which is a joint work with Karine Beauchard and Armand Koenig, enters the hyperbolic world. We study linear parabolic-transport systems with constant coeffcients. We identify their minimal time of control and the influence of their algebraic structure on the controllability properties.
79

Méthode d’inversion d’un Modèle de diffusion Mobile Immobile fractionnaire / Inverse method for fractional Mobile-Immobile Model

Ouloin, Martyrs 17 July 2012 (has links)
L’étude expérimentale du transport de soluté dans les milieux poreux montre des écarts à la loi de Fick. D’autre part, des progrès importants ont été accomplis sur le transport en milieu poreux, en supposant que les fluides (et les traceurs) en mouvement dans ces milieux sont arrêtés pendant des durées aléatoires. La matrice solide rend cette idée plausible. Nous étudions un modèle utilisant cette idée en l’associant à des durées d’immobilisation sans moyenne finie, en fait distribuées par des lois de Lévy. On arrive ainsi au modèle MIM fractionnaire, ou fractal.Ce modèle est une équation aux dérivées partielles pour la densité de traceur. Il équivaut à supposer que les particules de fluide et de traceur font des déplacements régis par un processus stochastique. Ce dernier est la limite hydrodynamique de marches au hasard fondées sur des déplacements convectifs, des sauts gaussiens, et des arrêts distribués suivant une loi de Lévy. Ces deux versions du même modèle donnent deux méthodes de simulation numérique.Nous montrons comment mettre en œuvre ces méthodes. Ceci a pour but la maîtrise d’outils de simulation, afin de comparer avec des données expérimentales pour savoir si ce modèle convient pour décrire le transport dans un milieu donné. Cette simulation, pour être efficace, nécessite la connaissance des paramètres du transport de soluté au sein du milieu donné. Ils sont difficilement mesurables et/ou identifiables en pratique. Donc, il faut pouvoir les estimer à partir de grandeurs qu’on sait mesurer directement, comme la densité d’un traceur. Pour cela, nous avons mis en place une méthode d’inversion qui permet d’extraire les paramètres du modèle MIM fractionnaire, à partir de données expérimentales. Cette méthode d’inversion est basée sur la transformation de Laplace. Elle utilise le lien entre les paramètres de transport du modèle MIM fractionnaire, et les dérivées de la transformée de Laplace des solutions de ce modèle. Ce lien est exact dans un milieu semi-infini, et seulement approché dans un milieu fini.Après avoir testé cette méthode en l’appliquant à des données numériques en essayant de retrouver leurs paramètres à "l’aveugle", nous l’appliquons à des données issues d’une expérience de traçage en milieu poreux insaturé / Appealing models for mass transport in porous media assume that fluid and tracer particles can be trapped during random periods. Among them, the fractional version of the Mobile Immobile Model (f-MIM) was found to agree with several tracer test data recorded in environmental media.This model is equivalent to a stochastic process whose density probability function satisfies an advection-diffusion equation equipped with a supplementary time derivative, of non-integer order. The stochastic process is the hydrodynamic limit of random walks accumulating convective displacements, diffusive displacements, and stagnation steps of random duration distributed by a stable Lévy law having no finite average. Random walk and fractional differential equation provide complementary simulation methods.We describe that methods, in view of having tools for comparing the model with tracer test data consisting of time concentration curves. An other essential step in this direction is finding the four parameters of the fractional equation which make its solutions fit at best given sets of such data. Hence, we also present an inversion method adapted to the f-MIM. This method is based on Laplace transform. It exploits the link between model's parameters and Laplace transformed solutions to f-MIM equation. The link is exact in semi-infinite domains. After having checked inverse method's efficiency for numerical artificial data, we apply it to real tracer test data recorded in non-saturated porous sand
80

Propagation d'informations le long d'une ligne de transmission non linéaire structurée en super réseau et simulant un neurone myélinisé / Spread information in a nonlinear transmission line simulating myelinated neuron and struture in superlattice

Nkeumaleu, Guy-Merlin 17 January 2019 (has links)
Les systèmes non linéaires sont décrits pour la plupart avec des équations aux dérivées partiellesqui les caractérisent, comme la chaine de pendules couplés, la chaine de protéines comportant des molécules avec liaisons hydrogène, les réseaux atomiques ...etc. Ces modèles comportent le plus souvent des interactions inter particulaires anharmoniques et des potentiels de substrat déformables. En effet, aux conséquences importantes dues à la non linéarité et à la dispersion, ces autres phénomènes comme l’anharmonicité et la déformabilité conduisent à d’autres propriétés de propagation des ondes solitaires telles que les compactons, les kinks et les antikinks , les peakons , … ainsi qu’à la capacité du système à transmettre un signal. Nous utilisons ici la méthode de bifurcation pour tracer les différents portraits de phases obtenus par variation des paramètres du système. Nous mettons en évidence l’influence du facteur d’anharmonicité sur la transmissivité et la bistabilité du système: Il en ressort que l’amplitude du signal d’entrée qui produit la bistabilité augmente avec la valeur absolue du coefficient d’anharmonicité et la bistabilité est retardée. En tenant compte des propriétés importantes générées par de tels systèmes, il nous a paru intéressant de construire une ligne électrique caractérisée par les mêmes équations, mais en doublant sur un tronçon de 10 cellules la valeur de la capacité par rapport à celles des 10 condensateurs suivants, et en reproduisant ce motif avec une périodicité de 20 cellules. Nous réalisons ainsi un super réseau qui simule un neurone myélinisé. Les types de solitons obtenus semblent mieux adaptés pour décrire le signal électrique qui caractérise l’influx neuronal localisé dans l’espace avec un support compact. / Non-linear systems are almostly described by partial differential equations that characterize them. We have some systems such as the chain of coupled pebdelums, the protein chain comprising molecules with hydrogen bonds, atomic lattice, and so on .These systems are most often characterized by anharmonic inter particulate interactions and and then immersed in deformable potential substrates. In addition to nonlinearity and dispersion, these other phenomena namely anharmonicity and deformability are responsible for certain properties of propagation of solitary waves such as (compactons, kinks and anti-kinks, peackons, ...etc) and also the ability of the systems to transmit a signal . We used the bifurcation method to plot the different phase portraits obtained . For various parameters of such systems , we have highlighted the influence of anharmonicity on transmissivity and bistability of the system: It appears that the amplitude of the input signal which produces bistability increases with anharmonicity and the bistability is delayed.To considering these important properties generated by such systems, it seemed interesting to buildin an electrical line characterized by the same equations of the system. By alternately doubling the capacitance of the capacitors of a section of this line, we have realised a super-lattice that simulates a myelinised neuron. The types of solitons we get from this line are better adapted to describe the electrical signal which characterizes the neuron impulse located in space with a compact support.

Page generated in 0.043 seconds