• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 77
  • 77
  • 30
  • 23
  • 22
  • 18
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Block copolymer micellization, and DNA polymerase-assisted structural transformation of DNA origami nanostructures

Agarwal, Nayan Pawan 14 August 2019 (has links)
DNA Nanotechnology allows the synthesis of nanometer sized objects that can be site specifically functionalized with a large variety of materials. However, many DNA structures need a higher ionic strength than that in common cell culture buffers or in bodily fluids to maintain their integrity and can be degraded quickly by nucleases. The aim of this dissertation was to overcome this deficiency with the help of cationic PEG-poly-lysine block copolymers that can electrostatically cover the DNA nanostructures to form “DNA origami polyplex micelles” (DOPMs). This straightforward, cost-effective and robust route to protect DNA-based structures could therefore enable applications in biology and nanomedicine, where un-protected DNA origami would be degraded. Moreover, owing to high polarity, the DNA-based structures are restricted to the aque-ous solution based buffers only. Any attempt to change the favorable conditions, leads to the distortion of the structures. In this work it was demonstrated that, by using the polyplex micellization strategy, the organic solubility of DNA origami structures can be improved. The strategy was also extended to functional ligands that are otherwise not soluble in organic solvents. With this strategy, it is now also possible to perform organic solution reactions on the DNA-based structures, opening up the possibility to use hydro-phobic organic reagents to synthesize novel materials. The polyplex micellization strategy therefore presents a cheap, robust, modular, reversible and versatile method to not only solubilize DNA structures in organic solvents but also improve their stability in biological environments. A third project was based on the possibility to synthesize complementary sequences to single-stranded gap regions in the DNA origami scaffold cost-effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. The introduction of flexible gap regions resulted in fully collapsed or partially bent structures due to entropic spring effects. These structures were also used to demonstrate structural transformations with the help of DNA polymerases, expanding the collapsed bent structures to straightened tubes. This approach presents a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified or mechanically switched.:Abstract v Publications vii Acknowledgements ix Contents xiii Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.1.1 History of nanotechnology 1 1.1.2 Phenomena that occur at nanoscale 4 1.1.3 Nature’s perspective of nanotechnology 4 1.1.4 Manufacturing nanomaterials 6 1.2 Deoxyribonucleic acid (DNA) 8 1.2.1 DNA, the genetic material, “The secret of life” 8 1.2.2 Structure of DNA 9 1.2.3 DNA synthesis 15 1.2.4 Stability of DNA 18 1.3 DNA nanotechnology 20 1.3.1 Historical development 20 1.3.2 DNA tile motifs 21 1.3.3 Directed nucleation assembly and algorithmic assembly 23 1.3.4 Scaffolded DNA origami and single-stranded DNA tiles 25 1.3.5 Expanding the design space offered by DNA 27 1.3.6 Assembling heterogeneous materials with DNA 30 1.3.7 Functional devices built using DNA nanostructures 35 Chapter 2 Motivation and objectives 40 Chapter 3 Block copolymer micellization as a protection strategy for DNA origami 42 3.1 Introduction 42 3.1.1 Cellular delivery of DNA nanostructures 42 3.1.2 The need for stability of DNA nanostructures 43 3.1.3 Non-viral gene therapy 44 3.2 Results and discussions 46 3.2.1 Strategy to form DNA origami polyplex micelles (DOPMs) 46 3.2.2 Optimizations 46 3.2.3 Decomplexation 53 3.2.4 Stability tests 55 3.2.5 Short PEG-PLys block copolymer 58 3.2.6 Compatibility with bulky ligands 59 3.2.7 Accessibility of handles on DOPMs 63 3.3 Conclusion 64 3.4 Outlook and state of the art 65 3.5 Methods 67 3.5.1 DNA origami folding 67 3.5.2 Preparation of ssDNA functionalized AuNPs 68 3.5.3 Agarose gel electrophoresis 69 3.5.4 Block copolymer preparation 70 3.5.5 DNA origami polyplex micelle preparation 70 3.5.6 Decomplexation of DOPM using dextran sulfate 73 3.5.7 Stability tests 74 3.5.8 tSEM characterization 75 3.5.9 AFM imaging 76 Chapter 4 Improving organic solubility and stability of DNA origami using polyplex micellization 77 4.1 Introduction 77 4.2 Results and discussions 79 4.2.1 Strategy for organic solubility of DNA origami 79 4.2.2 Proof of concept using AuNPs functionalized with ssDNA 80 4.2.3 Extending the strategy to DNA origami 82 4.2.4 Optimizations 86 4.2.5 Compatibility with functional ligands 88 4.2.6 Functionalization of DNA origami in organic solvent 94 4.3 Conclusion and outlook 95 4.4 Methods 97 4.4.1 Conjugation of functional ligands to DNA origami 97 4.4.2 Organic solubility 98 4.4.3 Reactions in organic solution on DOPMs 99 4.4.4 Fluorescence imaging using gel scanner 100 Chapter 5 Structural transformation of wireframe DNA origami via DNA polymerase assisted gap-filling 101 5.1 Introduction 101 5.2 Results and discussion 102 5.2.1 Design of the structures 102 5.2.2 Folding of gap-structures 105 5.2.3 Single-stranded DNA binding proteins 107 5.2.4 Gap filling with different polymerases 109 5.2.5 Gap filling with Phusion high-fidelity DNA polymerase 111 5.2.6 Optimization of the extension reaction using T4 DNA polymerase 115 5.2.7 Secondary structures 121 5.2.8 Folding kinetics of gap origami 124 5.2.9 Bending of tubes 125 5.3 Conclusion 126 5.4 Outlook 127 5.5 Methods 128 5.5.1 DNA origami folding 128 5.5.2 Gap filling of the wireframe DNA origami structures 128 5.5.3 Agarose gel electrophoresis 130 5.5.4 PAGE gel analysis 130 5.5.5 tSEM characterization 131 5.5.6 AFM imaging 131 5.5.7 AGE based folding-yield estimation 132 5.5.8 Gibbs free energy simulation using mfold 132 5.5.9 Staple list for folding the DNA origami triangulated structures 132 Appendix 134 A.1 Additional figures from chapter 3 134 A.2 Additional figures from chapter 4 137 A.3 Additional figures from chapter 5 149 Bibliography 155 Erklärung 171
62

Using aptamers to regulate rolling circle amplification

Bialy, Roger January 2021 (has links)
The work described in this dissertation focuses on developing simple yet effective assays integrating nucleic acid (NA) aptamers with rolling circle amplification (RCA) for the detection of non-NA biomarkers. The first project, a comprehensive literature review, highlights the current state of the art in functional NA-based RCA applications, and identifies shortcomings in the detection of non-NA targets with RCA. Biosensor design is critically evaluated from four key perspectives: regulation, efficiency, and detection of RCA, and the integration of all three components for point of care (POC) applications. The second project investigates how target-binding to a linear aptamer can be utilized to regulate RCA in a simple and inexpensive format. Phi29 DNA polymerase (DP) exhibits difficulty processing DNA strands that are bound to non-NA materials such as proteins. The work uses this restriction of phi29 DP as a feature by utilizing protein-binding aptamers as primer strands (aptaprimers) for RCA. The simplicity is showcased by adapting the method to a cellulose paper-based device for the real-time detection and quantification of PDGF or thrombin within minutes. As the second project is a turn-off sensor, the third project exploits the inherent 3’-exonuclease activity of phi29 DP to generate a simple turn-on assay instead. As target-bound aptamers were shown to be resistant to exonuclease activity, the phi29 DP preferentially digests target-free aptaprimers instead of target-bound aptaprimers. The target-bound aptaprimer could be liberated by a circular template (CT) by incorporating toehold-mediated strand displacement (TMSD), and used for RCA. Sensitivity was improved relative to project two, though the dynamic range was narrow owing to difficulty liberating target-bound aptaprimer at high target concentrations. Project four instead used RecJ, which has 5’-exonuclease activity, to modulate aptaprimer availability. Similarly to project three, target-binding conferred protection on the aptaprimer from 5’-exonuclease digestion by RecJ. By including a free 3’ terminus on the aptaprimer, inhibition of RCA due to target binding was avoided and CT-mediated TMSD was not needed, simplifying the assay. As well, this approach was generalizable as it was demonstrated using both a protein (thrombin) and a small molecule (ochratoxin A) target. This turn-on method further improved the assay compared to project three with a 100-fold enhancement in sensitivity and a restoration of the dynamic range. In sum, this work contributed multiple simple and sensitive approaches for the real-time fluorescent detection of proteins and small molecules with the RCA of linear aptamers. / Thesis / Doctor of Science (PhD)
63

DNA Origami Mechanisms and Machines

Marras, Alexander Edison 25 July 2013 (has links)
No description available.
64

Quantitative Modeling of DNA Systems

Crocker, Kyle A. January 2021 (has links)
No description available.
65

The Art of Designing DNA Nanostructures with CAD Software

Glaser, Martin, Deb, Sourav, Seier, Florian, Agrawal, Amay, Liedl, Tim, Douglas, Shawn, Gupta, Manish K., Smith, David M. 05 May 2023 (has links)
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.
66

Hybridization Kinetics of Four-Way Junctions Localized on a DNA Scaffold

Taylor, Katherine N 01 January 2024 (has links) (PDF)
DNA computing is an ever-growing field with scientists trying to design structures that optimize logic gate communication to develop fast, biologically compatible, computational structures. We hypothesize that by using the principles of DNA computing, it is possible to design a DNA tile capable of studying localized DNA hybridization that can differentiate between oligonucleotides of different structural conformations. This includes synthetically manipulating DNA into a nanostructure that can perform Boolean logic functions to calculate the different rates of hybridization. To test our hypothesis, we designed a DNA Tile that incorporated a 4WJ using YES logic. Linear and hairpin single-stranded (ss) DNA varieties complimentary to the DNA Tile were added in solution and monitored on their hybridization with the structure, using a fluorophore/quencher reporter system. These kinetic studies showed that the linear strand hybridized faster to the DNA Tile than the hairpin structures, demonstrating that faster association was accomplished with uninhibited strands instead of self-inhibited strands. In addition, the DNA tile was able to differentiate the different hybridization rates of self-inhibited strands in relation to their stem length.
67

Investigation of Cooperativity between Statistical Rebinding and the Chelate Effect on DNA Scaffolded Multivalent Binders as a Method for Developing High Avidity Ligands to target the C-type Lectin Langerin

Bachem, Gunnar 29 April 2021 (has links)
Aufgrund der Fähigkeit von Langerhans Zellen, welche den C-Typ Lektin (CTL) Rezeptor Langerin exprimieren, Antigene zu internalisieren und T-Zellen zu präsentieren, wurde Langerin als attraktives Ziel für neue Immunotherapien erkannt. Langerin kann Pathogene wie z.B. Viren erkennen, die zur Erhöhung der Avidität Kohlenhydratliganden multivalent präsentieren, da die monovalenten Kohlenhydratliganden nur niedrige Affinitäten für Langerin aufweisen. Die natürlichen monovalenten Kohlenhydratliganden besitzen nur niedrige Affinitäten für Langerin. Inspiriert durch die Natur stellt Multivalenz eine Strategie zur Überwindung der schwachen CTL-Kohlenhydrat-Wechselwirkung dar. Im Gegensatz zur hochmultivalenten Präsentation von Liganden mit undefinierter Anordnung hat sich diese Arbeit zum Ziel gesetzt auch die Ökonomie der Liganden zu optimieren, indem Liganden auf einer DNA Gerüststruktur so präsentiert wurden, dass sie die Distanz zwischen den Bindungstaschen des Homotrimers Langerin wiederspiegeln. Eine Untersuchung der relevanten multivalenten Bindungsmechanismen führte zu einer Anordnung der Liganden, die sowohl statistisches Rebinding als auch den Chelate Effekt einbezog. Der Rebinding Effekt wurde als Mittel erkannt, dass nicht nur die Avidität des Liganden an einer Bindungstasche erhöht, sondern auch ausgenutzt werden kann, um den Chelate Effekt zu amplifizieren. Diese Methode stellt eine Möglichkeit dar niedrige oder nicht vorhandene Multivalenzeffekte bei der bivalenten Präsentation von Liganden zu überwinden, wenn hochaffine Liganden nicht zur Verfügung stehen. Eine Kombination dieser Strategie mit der Entwicklung eines neuen selektiven Liganden für Langerin führte zu dem stärksten bekannten Langerinbinder (IC50 = 300 nM). Die Ligand-PNA-DNA Konstrukte wurden selektiv von Langerin exprimierenden Zellen bei nanomolaren Konzentrationen internalisiert und stellen ein System dar, welches in Zukunft für den Transport von Beladungen Anwendung finden könnte. / Targeting the C-type lectin (CTL) langerin has received increasing attention as a novel immunotherapy strategy due to the capacity of Langerhans cells, which express langerin, to endocytose and cross-present antigens to T-cells. Langerin recognizes pathogens such as viruses, which present carbohydrates in a multivalent fashion to increase avidity as the monovalent carbohydrate ligands only display low affinity for langerin. Inspired by nature, multivalency has therefore been a key tool for overcoming the low affinities of CTL-carbohydrate interactions. In contrast to highly multivalent ligand presentation with undefined arrangements this work strove to optimize ligand economy by designing bivalent ligands that take the distance between the binding sites of the homotrimeric langerin into consideration by precise arrangement of ligands on DNA-based scaffolds. Studying the multivalent mechanisms at work led us to the design of ligands that take both statistical rebinding and the chelate effect into account. The rebinding effect was recognized as a tool that not only increases ligand avidity at a single binding site but in addition can be exploited to amplify the chelate effect. This method provides a solution for overcoming the low or non-existing multivalency effects when bivalently presenting low affinity ligands on a rigid scaffold if high affinity ligands are unavailable. A combination of this arrangement strategy with the development of a first langerin selective glycomimetic ligand led to the most potent molecularly defined langerin binder to date (IC50 = 300 nM). The ligand-PNA-DNA constructs were selectively internalized by langerin expressing cells at nanomolar concentrations and constitute a delivery platform for the future transport of cargo to Langerhans cells.
68

Einsatz von einzelsträngigen DNS-Templaten zur Erstellung funktioneller DNS-Nanostrukturen

Henning, Anja 14 May 2013 (has links) (PDF)
Der Grundbaustein des Lebens, die Desoxyribonukleinsäure (DNS), ist aufgrund ihrer spezifischen Basenpaarung ein geeignetes Molekül, um stabile und vielfältige nano- beziehungsweise mikrometergroße Strukturen herzustellen. Diese selbstorganisierten DNS-Strukturen eignen sich als Grundeinheiten für die Ausrichtung anorganischer und organischer Materialien. Für die Synthese solcher DNS-Strukturen werden insbesondere die Kachel-basierte Assemblierung (engl. tile-based assembly, im Folgenden als Tile-basierte Assemblierung bezeichnet) oder die DNS-Origami-Methode verwendet. Die Tile-basierte Assemblierung beinhaltet die Verbindung einzelner DNS-Bausteine, den sogenannten Kacheln (engl. tiles), zu komplexeren DNS-Strukturen. Hingegen entspricht die DNS-Origami-Methode der Faltung eines langen einzelsträngigen DNS-Moleküls, dem sogenannten scaffold, anhand von hunderten kurzen Oligonukleotiden (Heftklammer-Oligomeren, engl. staple strands) hin zu einer entsprechenden Form. Hinsichtlich einer zukünftigen Erstellung von DNS-basierten, nanoelektronischen Systemen war das Ziel dieser Arbeit einheitliche zwei- (2D) und dreidimensionale (3D) DNS-Nanostrukturen herzustellen, Methoden für deren kontrollierte Vernetzung zu entwickeln sowie deren chemische Funktionalisierung mit Nanomaterialien und einer beispielhaften Integration in lithographisch gefertigten Mikrokontaktstrukturen durchzuführen. Hierfür war es notwendig, einen weiten Bogen zu spannen, welcher einerseits verschiedene Konstruktionsprinzipien der DNS-Nanotechnologie vorteilhaft miteinander vereint und der andererseits die weitreichenden Möglichkeiten der chemischen Funktionalisierung der sogenannten DNS-Templatstrukturen auslotet. Konkret wurden zur Erstellung von einheitlichen DNS-Strukturen Assemblierungskonzepte verwendet bzw. entwickelt, welche auf die Ausrichtung einzelner kurzer Oligonukleotide anhand eines langen einzelsträngigen DNS-Templates beruhen. Im ersten Teil der Arbeit ist anhand eines selbstkomplementären Einzelstranges aufgezeigt, wie sich prinzipiell die Wachstumsrichtung einer Tile-basierten Struktur durch die Verwendung eines einzelsträngigen DNS-Templates beeinflussen lässt. Bei diesem Ansatz bildet sich entlang des DNS-Templates eine 2D-Gitterstruktur aus einheitlichen und abschnittsweise selbstkomplementären hexagonalen oder tetragonalen Oligonukleotideinheiten aus. Diese gerichtete Selbstassemblierung führt schließlich zum Aufrollen und Zusammenschluss der 2D-DNS-Struktur zu einer tubulären Struktur. Die Größe und Geometrie der Oligonukleotideinheiten bestimmen dabei maßgeblich den Durchmesser dieser DNS-Nanoröhren. Zur Erklärung von experimentellen Beobachtungen wurde ein Modell entwickelt, welches die Templat-gestützte Assemblierung theoretisch beschreibt. Die erstellten, strukturellen Anforderungen genügenden Nanoröhren eignen sich für eine gleichmäßige Funktionalisierung mit Nanomaterialien, wie anhand der Ausrichtung von Gold-Nanopartikeln gezeigt wurde. In einem weiteren Teil der Arbeit wurde eine ca. 400 nm lange DNS-Nanoröhre anhand der DNS-Origami-Methode erstellt. Diese Nanoröhre diente als Modellsystem zur Untersuchung der Integration von tubulären DNS-Strukturen in Mikrokontaktstrukturen mittels der Dielektrophorese. Eine positive dielektrophoretische Antwort der 3D-DNS-Strukturen konnte im MHz-Bereich festgestellt werden. Des Weiteren wurde für mit Gold-Nanopartikeln funktionalisierte DNS-Nanoröhren eine verstärkte dielektrophoretisch Antwort beobachtet. Neben der Manipulation bzw. Ausrichtung von DNS-Nanostrukturen wurden Konzepte entwickelt, welche zusätzlich zum Aufbau komplexer DNS-Netzwerke innerhalb einer Mikrokontaktstruktur erforderlich sind. Konkret konnte eine Verbindung der 3D-Nanoröhren (i) untereinander über eine 200 nm lange kreuzartige DNS-Zwischenstruktur und (ii) endständig mit einer Goldoberfläche ermöglicht werden. Der dritte Teil dieser Arbeit befasste sich mit der Entwicklung einer modularen 2D-DNS-Struktur, welche unter anderem für eine vergleichbare Untersuchung zur Immobilisierung von Nanomaterialien auf DNS-Strukturen dienen kann. Anhand der DNS-Origami-Methode wurde eine spezifische DNS-Gerüststruktur entworfen, welche die Ausstattung mit einer funktionalisierbaren Tile-basierten Einheit erlaubt. Um die Modularität der DNS-Gerüststruktur zu verdeutlichen, wurden zwei unterschiedliche, drei-beinige Tiles entworfen und anhand eines Ein- oder Zwei-Schritt-Verfahrens in die DNS-Gerüststruktur integriert. Die Anbindung eines Gold-Nanopartikels an jedes Bein des eingebundenen Tiles demonstriert die spezifische Funktionialisierbarkeit dieses Modellsystems. Zudem wurden Methoden, welche zur Aufreinigung der funktionalisierten DNS-Gerüststrukturen dienen, wie auch Effekte der Vernetzung von DNS-Origami-Strukturen anhand unspezifischer Wechselwirkungen untersucht. Die Ermittlung der Struktureigenschaften beziehungsweise der Assemblierungsqualität der in dieser Arbeit gezeigten DNS-Strukturen erfolgte mittels elektrophoretischer und bildgebender Untersuchungsverfahren (Rasterkraftmikroskopie, Transmissionselektronenmikroskopie, Rasterelektronenmikroskopie).
69

Modelling and verification for DNA nanotechnology

Dannenberg, Frits Gerrit Willem January 2016 (has links)
DNA nanotechnology is a rapidly developing field that creates nanoscale devices from DNA, which enables novel interfaces with biological material. Their therapeutic use is envisioned and applications in other areas of basic science have already been found. These devices function at physiological conditions and, owing to their molecular scale, are subject to thermal fluctuations during both preparation and operation of the device. Troubleshooting a failed device is often difficult and we develop models to characterise two separate devices: DNA walkers and DNA origami. Our framework is that of continuous-time Markov chains, abstracting away much of the underlying physics. The resulting models are coarse but enable analysis of system-level performance, such as ‘the molecular computation eventually returns the correct answer with high probability’. We examine the applicability of probabilistic model checking to provide guarantees on the behaviour of nanoscale devices, and to this end we develop novel model checking methodology. We model a DNA walker that autonomously navigates a series of junctions, and we derive design principles that increase the probability of correct computational output. We also develop a novel parameter synthesis method for continuous-time Markov chains, for which the synthesised models guarantee a predetermined level of performance. Finally, we develop a novel discrete stochastic assembly model of DNA origami from first principles. DNA origami is a widespread method for creating nanoscale structures from DNA. Our model qualitatively reproduces experimentally observed behaviour and using the model we are able to rationally steer the folding pathway of a novel polymorphic DNA origami tile, controlling the eventual shape.
70

DNA Oligomers - From Protein Binding to Probabilistic Modelling

Andrade, Helena 26 January 2017 (has links)
This dissertation focuses on rationalised DNA design as a tool for the discovery and development of new therapeutic entities, as well as understanding the biological function of DNA beyond the storage of genetic information. The study is comprised of two main areas of study: (i) the use of DNA as a coding unit to illustrate the relationship between code-diversity and dynamics of self-assembly; and (ii) the use of DNA as an active unit that interacts and regulates a target protein. In the study of DNA as a coding unit in code-diversity and dynamics of self-assembly, we developed the DNA-Based Diversity Modelling and Analysis (DDMA) method. Using Polymerase Chain Reaction (PCR) and Real Time Polymerase Chain Reaction (RT-PCR), we studied the diversity and evolution of synthetic oligonucleotide populations. The manipulation of critical conditions, with monitoring and interpretation of their effects, lead to understanding how PCR amplification unfolding could reshape a population. This new take on an old technology has great value for the study of: (a) code-diversity, convenient in a DNA-based selection method, so semi-quantitation can evaluate a selection development and the population\'s behaviour can indicate the quality; (b) self-assembly dynamics, for the simulation of a real evolution, emulating a society where selective pressures direct the population's adaptation; and (c) development of high-entropy DNA structures, in order to understand how similar unspecific DNA structures are formed in certain pathologies, such as in auto-immune diseases. To explore DNA as an active unit in Tumour Necrosis Factor α (TNF-α) interaction and activity modulation, we investigate DNA's influence on its spatial conformation by physical environment regulation. Active TNF-α is a trimer and the protein-protein interactions between its monomers are a promising target for drug development. It has been hypothesised that TNF-α forms a very intricate network after its activation between its subunits and receptors, but the mechanism is still not completely clear. During our research, we estimate the non-specific DNA binding to TNF-α in the low micro-molar range. Cell toxicity assays confirm this interaction, where DNA consistently enhances TNF-α's cytotoxic effect. Further binding and structural studies lead to the same conclusion that DNA binds and interferes with TNF-α structure. From this protein-DNA interaction study, a new set of tools to regulate TNF-α's biological activity can be developed and its own biology can be unveiled.

Page generated in 0.0885 seconds