Spelling suggestions: "subject:"data association"" "subject:"mata association""
31 |
Choix d'un associateur 2-D pour le balayage multiple et optimisation de l'estimation des pistesMoreau, Francis January 2009 (has links)
No description available.
|
32 |
Tracker-aware Detection: A Theoretical And An Experimental StudyAslan, Murat Samil 01 February 2009 (has links) (PDF)
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so
that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance prediction (NSPP) methodologies for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE) and the hybrid conditional averaging (HYCA) algorithm.
The possible improvements are presented in two domains: Non-maneuvering and maneuvering target tracking. In the first domain, a number of algorithmic and experimental evaluation gaps are identified and newly proposed methods are compared with the existing ones in a unified theoretical and experimental
framework. Furthermore, for the MRE based dynamic threshold optimization problem, a closed-form solution is proposed. This solution brings a theoretical lower bound on the operating signal-to-noise ratio (SNR) concerning when the tracking system should be switched to the track before detect (TBD) mode.
As the improvements of the second domain, some of the ideas used in the first domain are extended to the maneuvering target tracking case. The primary contribution is made by extending the dynamic optimization schemes applicable to the PDAF to the interacting multiple model probabilistic data association filter (IMM-PDAF). Resulting in an online feedback from the filter
to the detector, this extension makes the tracking system robust against track losses under low SNR values.
|
33 |
Choix d'un associateur 2-D pour le balayage multiple et optimisation de l'estimation des pistesMoreau, Francis January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
34 |
Bayesian 3D multiple people tracking using multiple indoor cameras and microphonesLee, Yeongseon 13 May 2009 (has links)
This thesis represents Bayesian joint audio-visual tracking for the 3D locations of multiple people and a current speaker in a real conference environment. To achieve this objective, it focuses on several different research interests, such as acoustic-feature detection, visual-feature detection, a non-linear Bayesian framework, data association, and sensor fusion. As acoustic-feature detection, time-delay-of-arrival~(TDOA) estimation is used for multiple source detection. Localization performance using TDOAs is also analyzed according to different configurations of microphones. As a visual-feature detection, Viola-Jones face detection is used to initialize the locations of unknown multiple objects. Then, a corner feature, based on the results from the Viola-Jones face detection, is used for motion detection for robust objects. Simple point-to-line correspondences between multiple cameras using fundamental matrices are used to determine which features are more robust. As a method for data association and sensor fusion, Monte-Carlo JPDAF and a data association with IPPF~(DA-IPPF) are implemented in the framework of particle filtering. Three different tracking scenarios of acoustic source tracking, visual source tracking, and joint acoustic-visual source tracking are represented using the proposed algorithms. Finally the real-time implementation of this joint acoustic-visual tracking system using a PC, four cameras, and six microphones is addressed with two parts of system implementation and real-time processing.
|
35 |
Bearing-only SLAM : a vision-based navigation system for autonomous robotsHuang, Henry January 2008 (has links)
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
|
36 |
Iterative Local Model Selection for tracking and mappingSegal, Aleksandr V. January 2014 (has links)
The past decade has seen great progress in research on large scale mapping and perception in static environments. Real world perception requires handling uncertain situations with multiple possible interpretations: e.g. changing appearances, dynamic objects, and varying motion models. These aspects of perception have been largely avoided through the use of heuristics and preprocessing. This thesis is motivated by the challenge of including discrete reasoning directly into the estimation process. We approach the problem by using Conditional Linear Gaussian Networks (CLGNs) as a generalization of least-squares estimation which allows the inclusion of discrete model selection variables. CLGNs are a powerful framework for modeling sparse multi-modal inference problems, but are difficult to solve efficiently. We propose the Iterative Local Model Selection (ILMS) algorithm as a general approximation strategy specifically geared towards the large scale problems encountered in tracking and mapping. Chapter 4 introduces the ILMS algorithm and compares its performance to traditional approximate inference techniques for Switching Linear Dynamical Systems (SLDSs). These evaluations validate the characteristics of the algorithm which make it particularly attractive for applications in robot perception. Chief among these is reliability of convergence, consistent performance, and a reasonable trade off between accuracy and efficiency. In Chapter 5, we show how the data association problem in multi-target tracking can be formulated as an SLDS and effectively solved using ILMS. The SLDS formulation allows the addition of additional discrete variables which model outliers and clutter in the scene. Evaluations on standard pedestrian tracking sequences demonstrates performance competitive with the state of the art. Chapter 6 applies the ILMS algorithm to robust pose graph estimation. A non-linear CLGN is constructed by introducing outlier indicator variables for all loop closures. The standard Gauss-Newton optimization algorithm is modified to use ILMS as an inference algorithm in between linearizations. Experiments demonstrate a large improvement over state-of-the-art robust techniques. The ILMS strategy presented in this thesis is simple and general, but still works surprisingly well. We argue that these properties are encouraging for wider applicability to problems in robot perception.
|
37 |
Cartographie dense basée sur une représentation compacte RGB-D dédiée à la navigation autonome / A compact RGB-D map representation dedicated to autonomous navigationGokhool, Tawsif Ahmad Hussein 05 June 2015 (has links)
Dans ce travail, nous proposons une représentation efficace de l’environnement adaptée à la problématique de la navigation autonome. Cette représentation topométrique est constituée d’un graphe de sphères de vision augmentées d’informations de profondeur. Localement la sphère de vision augmentée constitue une représentation égocentrée complète de l’environnement proche. Le graphe de sphères permet de couvrir un environnement de grande taille et d’en assurer la représentation. Les "poses" à 6 degrés de liberté calculées entre sphères sont facilement exploitables par des tâches de navigation en temps réel. Dans cette thèse, les problématiques suivantes ont été considérées : Comment intégrer des informations géométriques et photométriques dans une approche d’odométrie visuelle robuste ; comment déterminer le nombre et le placement des sphères augmentées pour représenter un environnement de façon complète ; comment modéliser les incertitudes pour fusionner les observations dans le but d’augmenter la précision de la représentation ; comment utiliser des cartes de saillances pour augmenter la précision et la stabilité du processus d’odométrie visuelle. / Our aim is concentrated around building ego-centric topometric maps represented as a graph of keyframe nodes which can be efficiently used by autonomous agents. The keyframe nodes which combines a spherical image and a depth map (augmented visual sphere) synthesises information collected in a local area of space by an embedded acquisition system. The representation of the global environment consists of a collection of augmented visual spheres that provide the necessary coverage of an operational area. A "pose" graph that links these spheres together in six degrees of freedom, also defines the domain potentially exploitable for navigation tasks in real time. As part of this research, an approach to map-based representation has been proposed by considering the following issues : how to robustly apply visual odometry by making the most of both photometric and ; geometric information available from our augmented spherical database ; how to determine the quantity and optimal placement of these augmented spheres to cover an environment completely ; how tomodel sensor uncertainties and update the dense infomation of the augmented spheres ; how to compactly represent the information contained in the augmented sphere to ensure robustness, accuracy and stability along an explored trajectory by making use of saliency maps.
|
38 |
MULTI-TARGET TRACKING ALGORITHMS FOR CLUTTERED ENVIRONMENTSDo hyeung Kim (8052491) 03 December 2019 (has links)
<div>Multi-target tracking (MTT) is the problem to simultaneously estimate the number of targets and their states or trajectories. Numerous techniques have been developed for over 50 years, with a multitude of applications in many fields of study; however, there are two most widely used approaches to MTT: i) data association-based traditional algorithms; and ii) finite set statistics (FISST)-based data association free Bayesian multi-target filtering algorithms. Most data association-based traditional filters mainly use a statistical or simple model of the feature without explicitly considering the correlation between the target behavior</div><div>and feature characteristics. The inaccurate model of the feature can lead to divergence of the estimation error or the loss of a target in heavily cluttered and/or low signal-to-noise ratio environments. Furthermore, the FISST-based data association free Bayesian multi-target filters can lose estimates of targets frequently in harsh environments mainly</div><div>attributed to insufficient consideration of uncertainties not only measurement origin but also target's maneuvers.</div><div>To address these problems, three main approaches are proposed in this research work: i) new feature models (e.g., target dimensions) dependent on the target behavior</div><div>(i.e., distance between the sensor and the target, and aspect-angle between the longitudinal axis of the target and the axis of sensor line of sight); ii) new Gaussian mixture probability hypothesis density (GM-PHD) filter which explicitly considers the uncertainty in the measurement origin; and iii) new GM-PHD filter and tracker with jump Markov system models. The effectiveness of the analytical findings is demonstrated and validated with illustrative target tracking examples and real data collected from the surveillance radar.</div>
|
39 |
Multitarget Tracking Using Multistatic SensorsSUBRAMANIAM, MAHESWARAN 10 1900 (has links)
<p>In this thesis the problem of multitarget tracking in multistatic sensor networks is studied. This thesis focuses on tracking airborne targets by utilizing transmitters of opportunity in the surveillance region. Passive Coherent Location (PCL) system, which uses existing commercial signals (e.g., FM broadcast, digital TV) as the illuminators of opportunity for target tracking, is an emerging technology in air defence systems. PCL systems have many advantages over conventional radar systems such as low cost, covert operation and low vulnerability to electronic counter measures.</p> <p>One of another opportunistic signals available in the surveillance region is multipath signal. In this thesis, the multipath target return signals from distinct propagation modes that are resolvable by the receiver are exploited. When resolved multipath returns are not utilized within the tracker, i.e., discarded as clutter, potential information conveyed by the multipath detections of the same target is wasted. In this case, spurious tracks are formed using target-originated multipath measurements, but with an incorrect propagation mode assumption. Integrating multipath information into the tracker (and not discarding it) can help improve the accuracy of tracking and reduce the number of false tracks.</p> <p>In this thesis, these opportunistic measurements, i.e., commercial broadcast signals measurements in PCL tracking and resolvable multipath target return measurements in multipath assisted tracking are exploited. We give the optimal formulations for all of the above problems as well as the performance evaluations using PCRLB. Simulation results illustrate the performance of the algorithms.</p> / Doctor of Philosophy (PhD)
|
40 |
Evaluation of Target Tracking Using Multiple Sensors and Non-Causal AlgorithmsVestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.
|
Page generated in 0.0901 seconds