• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 12
  • 10
  • 7
  • 5
  • 4
  • 1
  • Tagged with
  • 94
  • 94
  • 36
  • 32
  • 31
  • 23
  • 22
  • 22
  • 21
  • 20
  • 18
  • 18
  • 16
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Dynamic Element Matching Techniques For Delta-Sigma ADCs With Large Internal Quantizers

Nordick, Brent C. 01 July 2004 (has links) (PDF)
This thesis presents two methods that enable high internal quantizer resolution in delta-sigma analog-to-digital converters. Increasing the quantizer resolution in a delta-sigma modulator can increase SNR, improve stability and reduce integrator power consumption. However, each added bit of quantizer resolution also causes an exponential increase in the power dissipation, required area and complexity of the dynamic element matching (DEM) circuit required to attenuate digital-to-analog converter (DAC) mismatch errors. One way to overcome these drawbacks is to segment the feedback signal, creating a "coarse" signal and a "fine" signal. This reduces the DEM circuit complexity, power dissipation, and size. However, it also creates additional problems. The negative consequences of segmentation are presented, along with two potential solutions: one that uses calibration to cancel mismatch between the "coarse" DAC and the "fine" DAC, and another that frequency-shapes this mismatch error. Mathematical analysis and behavioral simulation results are presented. A potential circuit design for the frequency-shaping method is presented in detail. Circuit simulations for one of the proposed implementations show that the delay through the digital path is under 7 ns, thus permitting a 50 MHz clock frequency for the overall ADC.
82

Wireless Multichannel Microsystems for Time-Share Chemical and Electrical Neural Recording

Roham, Masoud January 2010 (has links)
No description available.
83

BEHAVIORAL SIMULATION AND SYNTHESIS ENVIRONMENT FOR CONTINUOUS-TIME SINGLE-LOOP SINGLE-BIT BASEBAND DELTA-SIGMA ANALOG-TO-DIGITAL MODULATORS

PATEL, VIPUL J. 02 October 2006 (has links)
No description available.
84

Design techniques for wideband low-power Delta-Sigma analog-to-digital converters

Wang, Yan 08 December 2009 (has links)
Delta-Sigma (ΔΣ) analog-to-digital converters (ADCs) are traditionally used in high quality audio systems, instrumentation and measurement (I&M) and biomedical devices. With the continued downscaling of CMOS technology, they are becoming popular in wideband applications such as wireless and wired communication systems,high-definition television and radar systems. There are two general realizations of a ΔΣ modulator. One is based on the discrete-time (DT) switched-capacitor (SC) circuitry and the other employs continuous-time (CT) circuitry. Compared to a CT structure, the DT ΔΣ ADC is easier to analyze and design, is more robust to process variations and jitter noise, and is more flexible in the multi-mode applications. On the other hand, the CT ΔΣ ADC does not suffer from the strict settling accuracy requirement for the loop filter and thus can achieve lower power dissipation and higher sampling frequency than its DT counterpart. In this thesis, both DT and CT ΔΣ ADCs are investigated. Several design innovations, in both system-level and circuit-level, are proposed to achieve lower power consumption and wider signal bandwidth. For DT ΔΣ ADCs, a new dynamic-biasing scheme is proposed to reduce opamp bias current and the associated signal-dependent harmonic distortion is minimized by using the low-distortion architecture. The technique was verified in a 2.5MHz BW and 13bit dynamic range DT ΔΣ ADC. In addition, a second-order noise coupling technique is presented to save two integrators for the loop filter, and to achieve low power dissipation. Also, a direct-charge-transfer (DCT) technique is suggested to reduce the speed requirements of the adder, which is also preferable in wideband low-power applications. For CT ΔΣ ADCs, a wideband low power CT 2-2 MASH has been designed. High linearity performance was achieved by using a modified low-distortion technique, and the modulator achieves higher noise-shaping ability than the single stage structure due to the inter-stage gain. Also, the quantization noise leakage due to analog circuit non-idealities can be adaptively compensated by a designed digital calibration filter. Using a 90nm process, simulation of the modulator predicts a 12bit resolution within 20MHz BW and consumes only 25mW for analog circuitry. In addition, the noise-coupling technique is investigated and proposed for the design of CT ΔΣ ADCs and it is promising to achieve low power dissipation for wideband applications. Finally, the application of noise-coupling technique is extended and introduced to high-accuracy incremental data converters. Low power dissipation can be expected. / Graduation date: 2010
85

Bicí automat pro hudebníky / Drum Machine for Musicians

Spáčil, Tomáš January 2014 (has links)
The aim of this work is to create a functional prototype of a drum machine with sound generating using a microcontroller. Introduction is devoted to general drum machine and an analysis of its parts, principle and basic modes of operation. The following chapter deals with the principle of digital signal processing and sound generation using a microcontroller. Part of this chapter is focused on mixing using compression methods. The core of this work is to design my own block structure and overall scheme of the drum machine with a description of the parts. Followed by analysis and implementation with theoretical and practical point of view. It is mainly about presentation and description of important parts of firmware codes, DPS design and another technical documentation useful for final prototype production. The conclusion contains a summary of the results with prezentation and discussion.
86

Low-power high-resolution delta-sigma ADC design techniques

Wang, Tao 09 June 2014 (has links)
This dissertation presents a low-power high-resolution delta-sigma ADC. Two new architectural design techniques are proposed to reduce the power dissipation of the ADC. Compared to the conventional active adder, the direct charge transfer (DCT) adder greatly saves power by keeping the feedback factor of the active adder unity. However, the inherent delay originated from the DCT adder will cause instability to the modulator and complex additional branches are usually needed to stabilize the loop. A simple and power-efficient technique is proposed to absorb the delay from the DCT adder and the instability issue is therefore solved. Another proposed low-power design technique is to feed differentiated inverted quantization noise to the input of the last integrator. The modulator noise-shaping order with this proposed technique is effectively increased from two to three without adding additional active elements. The delta-sigma ADC with the proposed architectural design techniques has been implemented in transistor-level and fabricated in 0.18 µm CMOS technology. Measurement results showed a SNDR of 99.3 dB, a DR of 101.3 dB and a SFDR of 112 dB over 20 kHz signal bandwidth, resulting in a very low figure-of-merit (FoM) in its application category. Finally, two new circuit ideas, low-power parasitic-insensitive switched-capacitor integrator for delta-sigma ADCs and switched-resistor tuning technique for highly linear Gm-C filter design are presented. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from June 9, 2012 - June 9, 2014
87

Investigation of Time Domain Modulation and Switching-Mode Power Amplifiers Suitable for Digitally-Assisted Transmitters

Frebrowski, Daniel Jordan January 2010 (has links)
Innovation in wireless communication has resulted in accelerating demand for smartphones using multiple communications protocols such as WiFi, Bluetooth and the many cellular standards deployed around the world. The variety of frequency, bandwidth and power requirements associated with each standard typically calls for the implementation of separate radio frequency (RF) front end hardware for each standard. This is a less-than-ideal solution in terms of cost and device area. Software-defined radio (SDR) promises to solve this problem by allowing the RF hardware to be digitally reconfigurable to adapt to any wireless standard. The application of machine learning and cognition algorithms to SDR will enable cognitive radios and cognitive wireless networks, which will be able to intelligently adapt to user needs and surrounding radio spectrum conditions. The challenge of fully reconfigurable transceivers is in implementing digitally-controlled RF circuits which have comparable performance to their fixed-frequency counterparts. Switching-mode power amplifiers (SMPA) are likely to be an important part of fully reconfigurable transmitters since their switching operation provides inherent compatibility with digital circuits, with the added benefit of very high efficiency. As a step to understanding the RF requirements of high efficiency and switching PAs, an inverse class F PA in push-pull configuration is implemented. This configuration is chosen for its similarity to the current mode class D (CMCD) topology. The fabricated PA achieves a peak drain efficiency of over 75% with 42.7 dBm (18.6 W) output power at 2.46 GHz. Since SMPAs cannot directly provide the linearity required by current and future wireless communications standards, amplitude information must be encoded into the RF signal in a different way. Given the superior time resolution of digital integrated circuit (IC) technology, a logical solution is to encode this information into the timing of the signal. The two most common techniques for doing so are pulse width modulation and delta-sigma modulation. However, the design of delta-sigma modulators requires simulation as part of the design process due to the lack of closed-form relationships between modulator parameters (such as resolution and oversampling) and performance figures (such as coding efficiency and signal quality). In particular, the coding efficiency is often ignored although it is an important part of ensuring transmitter efficiency with respect to the desired signal. A study of these relationships is carried out to observe the tradeoffs between them. It is found that increasing the speed or complexity of a DS modulated system does not necessarily translate to performance benefits as one might expect. These observations can have a strong impact on design choices at the system level.
88

Baseband analog circuits in deep-submicron cmos technologies targeted for mobile multimedia

Dhanasekaran, Vijayakumar 15 May 2009 (has links)
Three main analog circuit building blocks that are important for a mixed-signal system are investigated in this work. New building blocks with emphasis on power efficiency and compatibility with deep-submicron technology are proposed and experimental results from prototype integrated circuits are presented. Firstly, a 1.1GHz, 5th order, active-LC, Butterworth wideband equalizer that controls inter-symbol interference and provides anti-alias filtering for the subsequent analog to digital converter is presented. The equalizer design is based on a new series LC resonator biquad whose power efficiency is analytically shown to be better than a conventional Gm-C biquad. A prototype equalizer is fabricated in a standard 0.18μm CMOS technology. It is experimentally verified to achieve an equalization gain programmable over a 0-23dB range, 47dB SNR and -48dB IM3 while consuming 72mW of power. This corresponds to more than 7 times improvement in power efficiency over conventional Gm-C equalizers. Secondly, a load capacitance aware compensation for 3-stage amplifiers is presented. A class-AB 16W headphone driver designed using this scheme in 130nm technology is experimentally shown to handle 1pF to 22nF capacitive load while consuming as low as 1.2mW of quiescent power. It can deliver a maximum RMS power of 20mW to the load with -84.8dB THD and 92dB peak SNR, and it occupies a small area of 0.1mm2. The power consumption is reduced by about 10 times compared to drivers that can support such a wide range of capacitive loads. Thirdly, a novel approach to design of ADC in deep-submicron technology is described. The presented technique enables the usage of time-to-digital converter (TDC) in a delta-sigma modulator in a manner that takes advantage of its high timing precision while noise-shaping the error due to its limited time resolution. A prototype ADC designed based on this deep-submicron technology friendly architecture was fabricated in a 65nm digital CMOS technology. The ADC is experimentally shown to achieve 68dB dynamic range in 20MHz signal bandwidth while consuming 10.5mW of power. It is projected to reduce power and improve speed with technology scaling.
89

Investigation of Time Domain Modulation and Switching-Mode Power Amplifiers Suitable for Digitally-Assisted Transmitters

Frebrowski, Daniel Jordan January 2010 (has links)
Innovation in wireless communication has resulted in accelerating demand for smartphones using multiple communications protocols such as WiFi, Bluetooth and the many cellular standards deployed around the world. The variety of frequency, bandwidth and power requirements associated with each standard typically calls for the implementation of separate radio frequency (RF) front end hardware for each standard. This is a less-than-ideal solution in terms of cost and device area. Software-defined radio (SDR) promises to solve this problem by allowing the RF hardware to be digitally reconfigurable to adapt to any wireless standard. The application of machine learning and cognition algorithms to SDR will enable cognitive radios and cognitive wireless networks, which will be able to intelligently adapt to user needs and surrounding radio spectrum conditions. The challenge of fully reconfigurable transceivers is in implementing digitally-controlled RF circuits which have comparable performance to their fixed-frequency counterparts. Switching-mode power amplifiers (SMPA) are likely to be an important part of fully reconfigurable transmitters since their switching operation provides inherent compatibility with digital circuits, with the added benefit of very high efficiency. As a step to understanding the RF requirements of high efficiency and switching PAs, an inverse class F PA in push-pull configuration is implemented. This configuration is chosen for its similarity to the current mode class D (CMCD) topology. The fabricated PA achieves a peak drain efficiency of over 75% with 42.7 dBm (18.6 W) output power at 2.46 GHz. Since SMPAs cannot directly provide the linearity required by current and future wireless communications standards, amplitude information must be encoded into the RF signal in a different way. Given the superior time resolution of digital integrated circuit (IC) technology, a logical solution is to encode this information into the timing of the signal. The two most common techniques for doing so are pulse width modulation and delta-sigma modulation. However, the design of delta-sigma modulators requires simulation as part of the design process due to the lack of closed-form relationships between modulator parameters (such as resolution and oversampling) and performance figures (such as coding efficiency and signal quality). In particular, the coding efficiency is often ignored although it is an important part of ensuring transmitter efficiency with respect to the desired signal. A study of these relationships is carried out to observe the tradeoffs between them. It is found that increasing the speed or complexity of a DS modulated system does not necessarily translate to performance benefits as one might expect. These observations can have a strong impact on design choices at the system level.
90

Intégration 3D : vers des capteurs d'image innovants à haute performance / 3D Integration : towards high-performance innovative imaging sensors

Brochard, Nicolas 11 December 2017 (has links)
Aujourd’hui, les capteurs d’image CMOS sont quasi exclusivement architecturés autour de pixels analogiques. Une transition vers des pixels purement numériques permettrait d’améliorer significativement les performances des imageurs. Malheureusement, une telle approche est difficilement envisageable car elle entraine un pixel surdimensionné et inutilisable pour le marché grand public. Une des voies prometteuses pour résoudre ce problème d’intégration des pixels est de réfléchir non plus en deux dimensions (2D), mais en trois dimensions (3D), en répartissant les différentes fonctionnalités sur plusieurs wafers interconnectés.Ainsi, les travaux présentés dans ce manuscrit décrivent la conception d’un capteur d’image purement numérique en technologie CMOS 3D-IC 130 nm Tezzaron. Ce capteur est architecturé autour d’un pixel numérique intégrant une modulation sigma delta du premier ordre sur 10 bits de résolution maximale. L’étude exhaustive des différents blocs constituant le pixel nous a permis de proposer au final une solution garantissant une surface maitrisée de silicium : taille finale de pixel de 32,5 μm × 32,5 μm pour un facteur de remplissage de plus de 80 %. Au niveau des performances brutes, la simulation du pixel a révélé de bons résultats : consommation de 11 μA/pixel, rapport signal sur bruit de 60 dB, nombre effectif de bits d'environ 7,2 bits, non linéarité différentielle maximale et minimale de +1,37 /-0,73 (pour 10 bits) et une non linéarité intégrale maximale et minimale de +2,447/-3,5 (pour 10 bits). / Nowadays, CMOS image sensors are almost exclusively architectured around analog pixels. A transition to purely digital pixels would significantly improve the performances of imagers. Unfortunately, such an approach is difficult to consider because it causes an oversized and unusable pixel for the consumer market. One of the promising ways to solve this problem of pixel integration is to think not only in 2D dimensions, but in 3D dimensions by distributing the different functionalities on several interconnected wafers.Thus, the work presented in this manuscript describes the design of a purely digital image sensor in CMOS 3D-IC 130 nm Tezzaron technology. This sensor is architectured around a digital pixel integrating a first order sigma delta modulation on 10 bits of maximum resolution. The exhaustive study of the different blocks constituting the pixel allowed us to finally propose a solution guaranteeing a contained surface of silicon: final pixel size of 32.5 μm × 32.5 μm with a fill factor of at least 80 %. Regarding performances, the pixel simulations showed good results: 11 μA/pixel consumption, 60 dB signal-to-noise ratio, 7.2 effective number of bits, maximum and minimum differential nonlinearity of +1,37/-0,73 (for 10 bits) and a maximum and minimum integral nonlinearity of + 2,447/-3,5 (for 10 bits).

Page generated in 0.0422 seconds