• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 21
  • 13
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analyses structure fonction du module de déubiquitination du complexe SAGA / Structural and functional analyses of the SAGA deubiquitination module

Bonnet, Jacques 19 March 2012 (has links)
Pour faciliter l’initiation de la transcription par l’ARN Polymérase II, le complexe co-activateur de la transcription SAGA possède une activité d’acétylation des histones H3 et une activité de déubiquitination des histones H2B, catalysée chez l’homme par l’enzyme USP22. Mon travail de thèse a porté sur l’étude de la régulation de cette activité de déubiquitination.Au sein de SAGA, USP22 interagit fortement avec trois protéines pour former un module structural appelé module de déubiquitination (DUBm). Nous avons montré que la formation d’un tel module était requise pour activer USP22. D’autre part, deux sous-unités du DUBm humain, ATXN7 et ATXN7L3, contiennent un domaine SCA7. Nos résultats montrent que le repliement structural adopté par ces deux doigts de zinc n’avait pas encore été décrit. Nous avons démontré que le domaine SCA7 de ATXN7 peut interagir avec un nucléosome in vitro et que cette interaction participe à la régulation fine de l’activité de déubiquitination de SAGA. Nous proposons qu’en interagissant avec le nucléosome, le domaine SCA7 de Sgf73 ou de ATXN7 pourrait positionner le DUBm de façon optimale par rapport à son substrat. / The SAGA complex is one of the most studied transcriptional co-activator complexes. To facilitate transcription by RNA Polymerase II, SAGA presents a modular organization and harbours two enzymatic activities. In human cells, these two enzymes are called GCN5 and USP22 and they can respectivelly acetylate histones H3 and deubiquitinate histones H2B. During my PhD thesis, I have worked on the regulation of SAGA deubiquitination activity. In the SAGA complex, USP22 interacts strongly with three other subunits to form a structural and functionnal module, named deubiquitination module (DUBm). We have shown that the free recombinant USP22 enzyme is not active, but that the formation of a stable DUBm triggers a strong stimulation of USP22 catalytic activity. Secondly, in human cells, two subunits of the DUBm, ATXN7 and ATXN7L3, contain a domain, called SCA7, that is not found in any other protein. Our results show that the new structural fold adopted by these two domains is specific to these zinc-fingers. These two SCA7 domains share a common structural heart, but their atomic structures reveal also differences, especially in the spatial organization of secondary structure elements. Indeed, we have shown that ATXN7 SCA7 domain can interact in vitro with a nucleosome which is not the case of ATXN7L3 SCA7 domain. Finally, I could show that in vivo the SCA7 domain of Sgf73, the ortholog of ATXN7 has a role in fine tunning SAGA deubiquitination activity. We hypothesize that the interaction between a nucleosome and the SCA7 domain of ATXN7 or Sgf73 would regulate SAGA deubiquitination activity by an optimal positionning of the module to its substrate.
12

Study of the SAGA deubiquitination module: identification of new modulators and its implication on Spinocerebellar Ataxia Type 7

Oliete Calvo, Paula 01 September 2017 (has links)
Regulation of chromatin by epigenetic modifications is a fundamental step during the control of gene expression in eukaryotic cells. The participation of different factors including histone chaperones, chromatin remodeling complexes and histone-modifying complexes regulate chromatin dynamics and ensure the correct metabolism of transcripts that need to be exported to the cytoplasm. In these lines, post-translational modifications including monoubiquitination of histone H2B (H2Bub1) and methylation of histone H3 represent a well-studied histone cross-talk which is required for chromatin integrity and transcription. Additionally, the transition from H2Bub1 to its deubiquitinated form by Ubp8, the DUB enzyme from SAGA (Spt-Ada-Gcn5-acetyltranferase) co-activator complex, is fundamental to obtain a correct gene expression. In this work, we demonstrate that the histone chaperone Asf1 and the Ran-binding protein Mog1, participate in maintaining correct levels of H2Bub1. We show that Mog1 is required for the trimethylation of histone H3 at lysine 4 (H3K4me3), hence, acting as a modulator of histone cross-talk. Mog1 role into gene expression is also demonstrated by its physical and genetically interaction with transcription factors including SAGA and COMPASS complexes. Indeed, we demonstrate that Mog1 interacts genetically with TREX-2 subunits and affects mRNA export. During this work, we have also focused in understanding the molecular mechanisms surrounding Spinocerebellar Ataxia Type 7 (SCA7) which is a rare disease caused by amino acid glutamine (Q) repeats within the DUBm component, ATXN7. Therefore, our interest has been directed towards the study of new mechanisms that trigger SCA7 such as the DUB activity from SAGA complex, protein-protein interaction networks and metabolic profiles. / La regulación de la cromatina a través de modificaciones epigenéticas es un paso fundamental durante el control de la expresión génica en células eucariotas. La participación de diferentes factores tales como chaperonas de histonas, complejos de remodelación de la cromatina y complejos modificadores de histonas, regulan la dinámica de la cromatina y garantizan el correcto metabolismo de los transcritos que necesitan ser exportados al citoplasma. De esta forma, las modificaciones postraduccionales que incluyen la monoubicuitinación de la histona H2B (H2Bub1) y la metilación de la histona H3 representan un "cross-talk" de histonas la cual es requerida para la integridad de la cromatina y la transcripción. Además, la transición de H2Bub1 a su forma desubicuitinada por Ubp8, la enzima DUB del complejo co-activador SAGA (Spt-Ada-Gcn5-acetiltranferasa), es necesaria para obtener una expresión génica correcta. En este trabajo, se demuestra que la chaperona de histona Asf1 y la proteína de unión a Ran, Mog1, participan en el mantenimiento de los niveles de H2Bub1. Se demuestra que Mog1 es necesaria para la trimetilación de la histona H3 en la lisina 4 (H3K4me3), actuando como un modulador del "cross-talk" de histonas. El papel de Mog1 en la expresión génica también se demuestra por sus interacciones físicas y genéticas con factores de transcripción, incluyendo los complejos SAGA y COMPASS. Además, demostramos que Mog1 interactúa genéticamente con subunidades de TREX-2 y afecta a la exportación de mRNAs. Durante este trabajo, también nos hemos centrado en la comprensión de los mecanismos moleculares que envuelven a la Ataxia Espinocerebelosa Tipo 7 (SCA7), que es una enfermedad rara causada por una repetición de aminoácidos glutamina (Q) dentro del componente del DUBm, ATXN7. Por lo tanto, nuestro interés se ha dirigido hacia el estudio de nuevos mecanismos que desencadenan SCA7, como la actividad DUB del complejo SAGA, las interacciones proteína-proteína y los perfiles metabólicos. / La regulació de la cromatina a través de modificacions epigenètiques és un pas fonamental durant el control de l'expressió gènica en cèl·lules eucariotes. La participació de diferents factors tals com chaperones d'histones, complexos de remodelació de la cromatina i complexos modificadors d'histones, regulen la dinàmica de la cromatina i garanteixen el correcte metabolisme dels transcrits que necessiten ser exportats al citoplasma. D'aquesta forma, les modificacions postraduccionals que inclouen la monoubicuitinació de la histona H2B (H2Bub1) i la metilació de la histona H3 representen un "cross-talk" d'histones la qual és requerida per a la integritat de la cromatina i la transcripció. A més, la transició d'H2Bub1 a la seua forma desubicuitinada per Ubp8, l'enzim DUB del complex co-activador SAGA (Spt-Ada-Gcn5-acetiltranferasa), és necessària per a obtenir una expressió gènica correcta. En aquest treball, es demostra que la chaperona de histona Asf1 i la proteïna d'unió a Ran, Mog1, participen en el manteniment dels nivells d'H2Bub1. Es demostra que Mog1 és necessària per a la trimetilació de la histona H3 en la lisina 4 (H3K4me3), actuant com un modulador del "cross-talk" d'histones. El paper de Mog1 en l'expressió gènica també es demostra per les seues interaccions físiques i genètiques amb factors de transcripció, incloent els complexos SAGA i COMPASS. A més, vam demostrar que Mog1 interactua genèticament amb subunitats de TREX-2 i afecta a l'exportació de mRNA. Durant aquest treball, també ens hem centrat en la comprensió dels mecanismes moleculars que envolten a l'Atàxia Espinocerebelosa Tipus 7 (SCA7), que és una malaltia rara causada per una repetició d'aminoàcids glutamina (Q) dins del component del DUBm, ATXN7. Per tant, el nostre interès s'ha dirigit cap a l'estudi de nous mecanismes que desencadenen SCA7, com l'activitat DUB del complex SAGA, les interacciones proteïna-proteïna i els perfils metabòlics. / Oliete Calvo, P. (2017). Study of the SAGA deubiquitination module: identification of new modulators and its implication on Spinocerebellar Ataxia Type 7 [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86155
13

Biochemical and functional characterization of the tumor suppressors BRCA1 and BAP1

Hammond-Martel, Ian 04 1900 (has links)
L’ubiquitination est une modification post-traductionnelle qui joue un rôle majeur dans la régulation d’une multitude de processus cellulaires. Dans cette thèse, je discuterai de la caractérisation de deux protéines, BRCA1 et BAP1, soit deux suppresseurs de tumeurs fonctionnellement reliés. BRCA1, une ubiquitine ligase qui catalyse la liaison de l’ubiquitine à une protéine cible, est mutée dans les cancers du sein et de l'ovaire. Il est bien établi que cette protéine aide à maintenir la stabilité génomique suite à un bris double brin de l’ADN (BDB), et ce, à l’aide d’un mécanisme de réparation bien caractérisé appelé recombinaison homologue. Cependant, les mécanismes de régulation de BRCA1 suite à des stresses génotoxiques n’impliquant pas directement un BDB ne sont pas pleinement élucidés. Nous avons démontré que BRCA1 est régulée par dégradation protéasomale suite à une exposition des cellules à deux agents génotoxiques reconnus pour ne pas directement générer des BDBs, soit les rayons UV, qui provoquent la distorsion de l’hélice d’ADN, et le méthyle méthanesulfonate (MMS), qui entraîne l’alkylation de l’ADN. La dégradation de BRCA1 est réversible et indépendante des kinases associées à la voie des PI3 kinase, soit ATM, ATR et DNA-PK, protéines qui sont rapidement activées par les dommages à l’ADN. Nous proposons que la dégradation de BRCA1 prévienne son recrutement intempestif, ainsi que celui des facteurs qui lui sont associés, à des sites de dommages d’ADN qui ne sont pas des BDBs, et que cette régulation coordonne la réparation de l’ADN. L’enzyme de déubiquitination BAP1 a initialement été identifiée comme une protéine capable d’interagir avec BRCA1 et de réguler sa fonction. Elle est également connue pour sa capacité à se lier avec les protéines du groupe Polycomb, ASXL1 et ASXL2. Cependant, l’importance de ces interactions n’a toujours pas été établie. Nous avons démontré que BAP1 forme deux complexes protéiques mutuellement exclusifs avec ASXL1 et ASXL2. Ces interactions sont critiques pour la liaison de BAP1 à l’ubiquitine ainsi que pour la stimulation de son activité enzymatique envers l’histone H2A. Nous avons également identifié des mutations de BAP1 dérivées de cancers qui empêchent à la fois son interaction avec ASXL1 et AXSL2, et son activité de déubiquitinase, ce qui fournit un lien mécanistique direct entre la déubiquitination de H2A et la tumorigenèse. Élucider les mécanismes de régulation de BRCA1 et BAP1 menera à une meilleure compréhension de leurs rôles de suppresseurs de tumeurs, permettant ainsi d’établir de nouvelles stratégies de diagnostic et traitement du cancer. / Ubiquitination is a post-translational modification that plays major roles in regulating a plethora of cellular processes. In this thesis, I will discuss the biochemical and functional characterization of two functionally related proteins, BRCA1 and BAP1, both of which are important tumor suppressors. BRCA1, an ubiquitin ligase that catalyzes the attachment of ubiquitin to target proteins, is mutated in breast and ovarian cancers. BRCA1 roles in maintaining genomic stability following DNA double strand breaks (DSBs) by promoting the homologous recombination repair pathway is well established. However, how BRCA1 is regulated following genotoxic stress that does not directly involve DSBs is still not fully elucidated. We showed that BRCA1 is downregulated, through proteasomal degradation, following exposure of the cells to the DNA helix distorting agent UV or the DNA alkylating agent Methyl Methanesulfonate (MMS), two DNA damaging agents that do not directly generate DSBs. BRCA1 downregulation is reversible and is independent of the PI3 kinase related kinases, ATM, ATR or DNA-PK which constitute primary responders that are rapidly activated by DNA damage. We proposed that BRCA1 downregulation prevents the untimely recruitment of BRCA1 and associated factors to DNA damage sites that are not DSBs, thus coordinating the DNA damage/repair response. The deubiquitinating enzyme BAP1 was initially identified as an interacting protein that regulates the function of BRCA1. BAP1 is also known to interact with the Polycomb group proteins ASXL1 and ASXL2. However, the importance of this interaction was not fully understood. We showed that BAP1 forms two mutually exclusive complexes with ASXL1 and ASXL2. These interactions are critical for BAP1 binding to ubiquitin and stimulation of its deubiquitinase activity towards histone H2A. We also identified cancer-derived mutations of BAP1 that abrogate its interaction with ASXL1 and ASXL2 and deubiquitinase activity, which provide a direct mechanistic link between H2A deubiquitination and tumorigenesis. Elucidating how BRCA1 and BAP1 are regulated will lead to a better understanding of their roles as tumor suppressors and this will in turn help establishing improved diagnostic and therapeutic strategies to treat cancer.
14

Études structurale et fonctionelle d'AMSH impliquée dans la voie de tri endosomale et le bourgeonnement des virus enveloppés.

Solomons, Julianna 26 November 2009 (has links) (PDF)
Les récepteurs marqués pour la voie de dégradation lysosomale sont retienu à la membrane endosomale par addition d'ubiquitine. L'invagination de la membrane endosomale incorpore ces récepteurs dans les vésicules intralumenal (ILVs) et mène à leur dégradation au lysosome. AMSH (Associated Molecule of the SH3 domain of STAM) contient un domaine métalloprotéase JAMM au niveau de sa partie C-terminale. Celui-ci a montré, in vitro, la capacité d'hydrolyser les chaînes d'ubiquitine de liaison K-63, laissant supposer une fonction d'élimination des ubiquitines par AMSH avant l'incorporation des récepteurs dans les ILVs. AMSH interagit aussi avec les protéines CHMP (Charged Multivesicular body Protein) d'ESCRT-III (Endosomal Sorting Complex Required for Transport-III) via un N-terminal AMSH MIT domaine. De plus, la liaison d'AMSH avec un domaine C-terminal autoinhibitoire des protéines CHMP a impliqué AMSH dans l'activation de la polymérisation des protéines CHMP, occasionnant un remodelage membranaire suivi de la formation des vésicules. Ce travail montre que AMSH se lie à deux formes de CHMP3; la forme ouverte et active, et la forme fermée et autoinhibée. L'interaction du domaine N-terminal d'AMSH avec ces deux formes de CHMP3 fut évaluée à l'échelle nanomolaire par isothermal titration calorimetry. La structure cristallographique du complexe AMSH domaine N-terminal CHMP3 fut résolue à 1.7Å. Celle-ci présente un mode de liaison CHMP différent des structures déjà déterminées et dévie de l'architecture classique du domaine MIT. On montre que les domaines N-terminal et JAMM d'AMSH interagissent entre eux, et que cette interaction stimule l'activité déubiquitinase du domaine JAMM.
15

Régulation du complexe suppresseur de tumeurs BAP1/ASXL2 par ubiquitination

Ahmed, Oumaima 10 1900 (has links)
No description available.
16

Structural study of the transcriptional co-activator SAGA / Etude structurale du coactivateur transcriptionel SAGA chez la levure Saccharomyces cerevisiae

Durand, Alexandre 29 April 2014 (has links)
Le complexe SAGA (Spt-Ada-Gcn5 acetyl transferase) est un co-activateur transcriptionel, conservé chez les eucaryotes, qui participent à la transcription d’environ 10% des gènes chez la levure, où il fait le lien entre les composants du complexe de pré-initiation, tel que la TATA-box Binding Protein (TBP) et des activateurs, et modifie les histones dans le contexte de la chromatine (acétylation et déubiquitination). Ces travaux de thèse ont permis de décrire l’architecture moléculaire du complexe observée par microscopie électronique. Nous avons pu (i) localiser le module de déubiquitination au sein du complexe entier et ainsi (ii) définir une zone d’interaction avec le nucléosome ; (iii) montrer la présence de deux sites d’interaction avec la protéine TBP situé au niveau d’une « pince »moléculaire ; (iv) observer un lien fonctionnel entre le module de déubiquitination, en particulier de la protéine Sgf73, et les conformations adoptées par cette pince. / The SAGA complex (Spt-Ada-Gcn5 acetyl transferase) is a transcriptional coactivator, highly conserved in eukaryotes, involved in the transcription of 10% of the genes in yeast, where it bridges the components of the pre-initiation complex such as the TATA-box Binding Protein (TBP) and activators, as well as modifies histones in the chromatin template (acetylation and deubiquitination). This work has revealed the molecular architecture of the complex observed by electron microscopy. We could (i) localize the deubiquitination module within the whole complex and thus (ii) define the interaction surface with the nucleosome; (iii) reveal the presence of two TBP-interacting surfaces localized at the tips of a molecular clamp; (iv) observe a functional link between the deubiquitination module, in particular the Sgf73 protein, and the conformation adopted by this clamp.
17

Mécanismes de régulation du trafic et de l’activité du récepteur GABAB

Lahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination. In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization. We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation. In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability. In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.
18

Étude fonctionnelle d’un nouveau complexe multi-enzymatique régulant l’épigénome

Daou, Salima 09 1900 (has links)
L’ubiquitination, une modification post-traductionnelle importante pour le contrôle de nombreux processus cellulaires, est une réaction réversible. La réaction inverse, nommée déubiquitination est catalysée par les déubiquitinases (DUB). Nous nous sommes intéressés dans nos travaux à étudier l’ubiquitination de l’histone H2A (H2Aub), au niveau des résidus lysines 118 et 119 (K118/K119), une marque épigénétique impliquée dans la régulation de la prolifération cellulaire et la réparation de l’ADN. Le régulateur transcriptionnel BAP1, une déubiquitinase nucléaire, a été initialement identifié pour sa capacité à promouvoir la fonction suppressive de tumeurs de BRCA1. BAP1 forme un complexe multi-protéique avec plusieurs facteurs transcriptionnels et sa fonction principale est la déubiquitination de H2Aub. Plusieurs études ont démontré que BAP1 est un gène suppresseur de tumeurs majeur et qu’il est largement muté et inactivé dans une multitude de cancers. En effet, BAP1 émerge comme étant la DUB la plus mutée au niveau des cancers. Cependant, le ou les mécanismes d’action et de régulation du complexe BAP1 restent très peu connus. Dans cette étude nous nous sommes intéressés à la caractérisation moléculaire et fonctionnelle des partenaires protéiques de BAP1. De manière significative nous avons caractérisé un mécanisme unique de régulation entre deux composants majeurs du complexe BAP1 à savoir, HCF-1 et OGT. En effet, nous avons démontré que HCF-1 est requis pour maintenir le niveau protéique de OGT et que cette dernière est indispensable pour la maturation protéolytique de HCF-1 en promouvant son clivage par O-GlcNAcylation, une signalisation cellulaire nécessaire au bon fonctionnement de HCF-1. Également, nous avons découvert un nouveau mécanisme de régulation de BAP1 par l’ubiquitine ligase atypique UBE2O. En effet, UBE2O agit comme un régulateur négatif de BAP1 puisque l’ubiquitination de ce dernier induit sa séquestration dans le cytoplasme et l’inhibition de sa fonction suppressive de tumeurs. D’autre part nous nous sommes penchés sur la caractérisation de l’association de BAP1 avec deux facteurs de la famille des protéines Polycombes nommés ASXL1 et ASXL2 (ASXL1/2). Nous avons investigué le rôle de BAP1/ASXL1/2, particulièrement dans les mécanismes de déubiquitination et suppression de tumeurs. Nous avons démontré que BAP1 interagit directement iii via son domaine C-terminale avec le même domaine ASXM de ASXL1/2 formant ainsi deux complexes mutuellement exclusifs indispensables pour induire l’activité déubiquitinase de BAP1. De manière significative, ASXM s’associe avec BAP1 pour créer un nouveau domaine composite de liaison à l’ubiquitine. Ces interactions BAP1/ASXL1/2 régulent la progression harmonieuse du cycle cellulaire. De plus, la surexpression de BAP1 et de ASXL2 au niveau des fibroblastes induit la sénescence de manière dépendante de leurs interactions. D’autre part, nous avons identifié des mutations de cancers au niveau de BAP1 le rendant incapable de lier ASXL1/2, d’exercer sa fonction d’autodéubiquitination et de ce fait d’agir comme suppresseur de tumeurs. Ainsi nous avons révélé un lien étroit entre le gène suppresseur de tumeurs BAP1, son activité déubiquitinase et le contrôle de la prolifération cellulaire. / The reverse reaction of ubiquitination, a crucial post-translational modification, is catalyzed by deubiquitinases (DUBs). BAP1 is an ubiquitously expressed nuclear DUB that recently emerged as an important tumor suppressor highly mutated and inactivated in an increasing number of cancers of diverse origins. Both somatic and germline mutations with loss of heterozygosity were observed in tumors, making BAP1 the most mutated DUB in human malignancies. We previously reported that BAP1 is a component of a large multi-protein complex that includes several transcription regulators. The Drosophila homologue of BAP1, Calypso, forms the Polycomb-repressive DUB (PR-DUB) complex with Additional Sex Comb, ASX. This complex catalyzes the deubiquitination of histone H2A, an essential chromatin modification that regulates gene expression. Despite the ever increasing number of findings describing the occurrence of BAP1 mutations in cancers, few studies investigated the mechanisms of action of this DUB as a tumor suppressor. Therefore, the biological function and the mechanism of action and regulation of BAP1 remains largely uncharacterized. In the work described in this thesis, we investigated the roles of BAP1 partners in modulating its catalytic activity and tumor suppressor function. More specifically we discovered a unique mechanism of regulation between two major components of BAP1 complexes, namely HCF-1 and OGT. Indeed, HCF-1 is important for the maintenance of the cellular levels of OGT. OGT, in turn, is required for the proper proteolytic maturation of HCF-1 by promoting its O-GlcNAcylation. This signaling event is required for HCF-1 function as a cell cycle regulator. On the other hand, we deciphered an intricate mechanism of regulation of BAP1 by the atypical E2/E3 ligase, UBE2O. UBE2O, promote the multi-monoubiquitination of BAP1 on its NLS mediating its cytoplasmic sequestration and thus inhibition of its tumor suppressor function. Another aspect of modulation of BAP1 H2Aub catalysis is provided by the association of BAP1 with ASXL1 and ASXL2 (ASXL1/ASXL2), two orthologs of ASX. We investigated the role of BAP1/ASXL1/2, particularly in the mechanisms of deubiquitination and tumor suppression. We have demonstrated that BAP1 interacts directly via its C-terminal domain with the ASXM domain of ASXL1/2, thus forming two mutually exclusive complexes. Significantly, ASXM promote, through assembly with BAP1, the generation of a composite ubiquitin binding domain (CUBI), indispensable for inducing the deubiquitinase activity of BAP1 towards H2Aub. The interactions between BAP1 and ASXL1/2 regulate cell cycle progression. In addition, overexpression of BAP1 or ASXL2 in fibroblasts induces senescence in CTD- and ASXM-dependent manner. We also identified cancer-derived mutation of BAP1 that selectively abolish its interaction with ASXL1 and ASXL2 as well as its H2A deubiquitinase activity. Significantly, this mutant suppressed senescence induced by BAP1 overexpression. Thus we provided a link between the tumor suppressor BAP1, its deubiquitinase activity and the control of cell proliferation.
19

Mécanismes de régulation du trafic et de l’activité du récepteur GABAB

Lahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination. In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization. We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation. In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability. In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.
20

Un nouveau mécanisme de régulation des complexes épigénétiques BAP1/ASXLs par ubiquitination

Barbour, Haithem 05 1900 (has links)
L’ubiquitination est une modification post-traductionnelle des protéines qui consiste à attacher, d’une manière covalente, le groupement ubiquitine sur un résidu lysine de la protéine cible. Cette modification peut avoir un impact considérable sur la fonction, la localisation et la stabilité de ces cibles. Une fois établie par des enzymes appelées E3 ligases, l’ubiquitination peut être enlevée par des enzymes spécifiques appelées déubiquitinases, modulant ainsi les effets causés par cette modification. BAP1 (BRCA1-Associated Protein 1) est une déubiquitinase de la famille des UCH (Ubiquitin C-terminal Hydrolases) qui a été initialement identifiée comme partenaire du suppresseur de tumeurs BRCA1 (BReast Cancer Associated gene 1). De nombreux groupes de recherche, incluant le nôtre, ont montré que BAP1 est associée avec d’autres cofacteurs formant un large complexe multiprotéique. Ce dernier est impliqué dans plusieurs processus cellulaires comme la transcription des gènes, la régulation de la chromatine, la coordination du cycle cellulaire et la réponse aux dommages à l’ADN. La cible majeure de BAP1 est l’histone H2A ubiquitinée sur la lysine 119, une marque d’histone qui a été souvent associée avec une conformation répressive de la chromatine. Quels sont les mécanismes régulant le complexe BAP1 lui permettant d’exécuter ces fonctions biologiques? Cela implique-t-il des modifications post-traductionnelles touchant les partenaires de BAP1 ? Ces questions restent encore sans réponse définitive. Ainsi, les objectifs de cette thèse sont de caractériser le mécanisme et la fonction du complexe BAP1 en étudiant les modifications post-traductionnelles de ses partenaires. Pour répondre à ces questions nous avons étudié les modifications post-traductionnelles touchant BAP1 et ses cofacteurs mutuellement exclusifs ASXL1 et ASXL2 (Additional Sex Comb-like 1,2). Nous avons démontré qu’ASXL1 et ASXL2 sont monoubiquitinés uniquement lorsqu’ils sont associés à BAP1. Sachant que les complexes BAP1/ASXLs sont conservés au cours de l’évolution, nous avons aussi démontré que la monoubiquitination des ASXLs est conservée chez la Drosophile. En utilisant des méthodes de déplétion de protéines par siARN et CRISPR/Cas9 ainsi que des mutants de perte de fonction de BAP1 et ASXL2, nous avons identifié les enzymes responsables de la monoubiquitination des ASXLs ainsi que leur effet sur l’activité catalytique de BAP1. D’autre part, nous avons étudié le développement chez la Drosophile ainsi que le cycle cellulaire des cellules humaines pour identifier la fonction biologique de la monoubiquitination de ASXL2. Nos résultats démontrent que la monoubiquitination d’ASXL2 sur la lysine 370 en présence de BAP1 est une modification post-traductionnelle conservée et catalysée directement par la famille UBE2Es des enzymes de conjugaison de l’ubiquitine (UBE2E1,2,3 chez les mammifères et UbcD2 chez la Drosophile). Cette monoubiquitination stimule l’activité catalytique de BAP1 chez les mammifères et de son orthologue Calypso chez la Drosophile envers H2Aub. Le blocage de la monoubiquitination des ASXLs par des mutations ciblant la lysine K370 induit une inhibition de l’activité de BAP1, ce qui cause une dérégulation du cycle cellulaire chez les cellules mammifères et une transformation homéotique haltère-aile chez la Drosophile. De plus, il nous a été possible de constater l’importance de cette monoubiquitination dans le cancer en démontrant la forte corrélation d’expression de BAP1/ASXL2 et les UBE2Es au niveau du mésotheliome, un cancer connu pour la dérégulation de BAP1. Nos résultats indiquent l’importance des modifications post-traductionnelles, dont la monoubiquitination, dans la régulation de la fonction et la stabilité du complexe BAP1. De plus, nous décrivons un nouveau mécanisme d’activation d’une deubiquitinase par la monoubiquitination de son cofacteur. D’autres études seront nécessaires afin de comprendre le lien entre l’activation de BAP1/ASXL2 par monoubiquitination et la fonction suppresseur de tumeurs de BAP1 via la deubiquitination d’H2Aub. D’autre part, nous avons fait l’observation que la déplétion de la deubiquitinase associée à la particule régulatrice du protéasome, PSMD14, induit non seulement une réduction drastique d’H2Aub dans la cellule, mais aussi une mort cellulaire rapide. Ceci nous a poussé initialement à investiguer l’implication de l’activité catalytique du protéasome dans la régulation d’H2Aub en lien avec la mort cellulaire. Malgré le fait que nous n’ayons pas trouvé un lien direct entre PSMD14 et la deubiquitination d’H2Aub, nous avons identifié plusieurs candidats (DUBs et E2s) impliqués dans l’induction de la mort cellulaire tout en surmontant une résistance acquise contre des inhibiteurs ciblant l’activité catalytique du protéasome. Ces candidats pourraient représenter des cibles intéressantes pour développer des inhibiteurs spécifiques afin de contrecarrer la résistance aux inhibiteurs du protéasome. / Ubiquitination is a post-translational modification of proteins that involves covalently attaching the ubiquitin moiety to the lysine residues of the target protein. This modification has been reported to have a significant impact on the function, localization and stability of these targets. Once established by enzymes called E3 ligases, ubiquitination can be removed by specific enzymes called deubiquitinases, thus modulating the effects caused by this modification. BAP1 (or BRCA1-Associated Protein1) is a deubiquitinase, from the UCH (Ubiquitin C-terminal Hydrolases) family, that was originally identified as a partner of the BRCA1 (BReast Cancer Associated gene 1) tumor suppressor. We and other research groups have shown that BAP1 is associated with other co-factors forming a multi-protein complex involved in several cellular processes such as gene transcription, chromatin regulation, cell cycle regulation and DNA damage response. The major target of BAP1 is ubiquitinated histone H2A, a histone mark that has been frequently associated with a repressive chromatin conformation. What are the mechanisms regulating the BAP1 complex allowing it to perform its biological functions? Does this involve post-translational modifications affecting BAP1 partners? These questions are still incompletely answered. Thus, the objectives of our studies are to characterize the mechanism and the function of the BAP1 complex by studying the post-translational modifications that could affect its obligate partners including ASXLs. To address these questions, we studied the post-translational modifications affecting BAP1 and its two mutually exclusive co-factors ASXL1 and ASXL2 (Additional Sex Comb-like 1,2). We demonstrated that ASXL1 and ASXL2 are mono-ubiquitinated only when associated with BAP1. Taking into account that the BAP1/ASXLs complexes are highly conserved during evolution, we also demonstrated that the mono-ubiquitination of ASXLs is important for Drosophila development. Using RNAi and CRISPR/Cas9 gene depletion methods and loss-of-function mutants of BAP1 and ASXL2, we identified the precise site of ASXLs ubiquitination, the enzymes responsible for establishing this mono-ubiquitination as well as its effect on catalytic activity of BAP1. On the other hand, we investigated Drosophila development as well as human cell cycle progression to identify the biological function of ASXLs mono-ubiquitination. Our results indicate that the mono-ubiquitination of ASXL2 on lysine 370 in the presence of BAP1 is a conserved post-translational modification catalyzed directly by the UBE2E family of ubiquitin-conjugating enzymes (UBE2E1, 2, 3 in mammals and UbcD2 in Drosophila). This mono-ubiquitination event stimulates the catalytic activity of BAP1 in mammals and its Drosophila ortholog Calypso towards H2Aub in vivo and in vitro. Blocking the mono-ubiquitination of ASXLs, by mutations targeting lysine K370, induces an inhibition of BAP1 catalytic activity causing a deregulation of human cell cycle progression and a haltere-to-wing homeotic transformation in Drosophila. In addition, we were able to assess the importance of ASXLs mono-ubiquitination in cancer using the mesothelioma tumor model, demonstrating a strong correlation between the expression of BAP1/ASXL2 and UBE2Es. Our results indicate the importance of post-translational modifications, including mono-ubiquitination, in the regulation of the function and stability of the BAP1 complex. Moreover, we describe a novel mechanism of activation of a deubiquitinase by the mono-ubiquitination of its co-factor. Further studies will be needed to shed more light on the link between BAP1/ASXLs activation by mono-ubiquitination and the tumor suppressor function of BAP1 via H2Aub deubiquitination. On the other hand, we have noticed that the depletion of PSMD14, a deubiquitinase associated with the proteasome regulatory particle, induces not only a drastic reduction of H2Aub in the cell, but also rapid cell death. This prompted us initially to investigate the involvement of the catalytic activity of the proteasome in the regulation of H2Aub in connection with cell death. Although we did not find a direct link between PSMD14 and H2Aub deubiquitination, we identified several candidates (DUBs and E2s) involved in the induction of cell death while overcoming acquired resistance against proteasome catalytic inhibitors. These candidates may represent attractive targets for developing specific inhibitors to counteract resistance to proteasome inhibitors.

Page generated in 0.2078 seconds