• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 23
  • 14
  • 13
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 218
  • 90
  • 88
  • 62
  • 48
  • 37
  • 36
  • 35
  • 26
  • 25
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Le Connectome du Langage dans le cerveau humain : étude structurelle et foncionnelle en tractographie par Imagerie tensorielle de diffusion, IRM fonctionnelle et stimulation électrique peropératoire. / The human brain language connectome : Structural and fonctional study using DTI tractography, functional MRI and intraoperative electrical stimulation

Vassal, François 27 June 2016 (has links)
Si les régions cérébrales du langage ont étélargement explorées grâce à l’IRM fonctionnelle (IRMf) et la stimulation électrique directe (SED)peropératoire, leur connectivité reste encore incomplètement documentée. Il n’est pas seulement débattuquels faisceaux de SB contribuent au langage, mais également quelle est leur anatomie précise et leur rôlefonctionnel spécifique. Une meilleure compréhension du connectome du langage est requise pourdiminuer la morbidité postopératoire en neurochirurgie et développer de nouveaux traitements cibléspour la rééducation des aphasies. Notre objectif était de cartographier structurellement etfonctionnellement, in vivo, la connectivité du langage. Dans une première étude préclinique portant sur 2Oadultes sains, nous avons combiné des informations structurelles axonales révélées par la tractographieavec des informations fonctionnelles corticales dérivées de l’IRMf (tâche de lecture compréhensive). Huitfaisceaux de SB ont été explorés —i.e. faisceau arqué, faisceau longitudinal supérieur, faisceau frontooccipitalinférieur, faisceau unciné, faisceau longitudinal inférieur, faisceau longitudinal moyen, faisceauoperculo-prémoteur, faisceau frontal transverse—, dont le rôle fonctionnel a été analysé en recherchantune connexion entre leurs terminaisons corticales et les activations IRMf. Les caractéristiquesanatomiques des faisceaux (i.e. volume, longueur, terminaisons corticales), leurs asymétries interhémisphériqueset leurs variations interindividuelles ont été colligées. Ce protocole a permis deconstruire le connectome du langage et d’étudier en détails son organisation structurelle macroscopique.Dans une seconde partie, ces données ont été transposées à la clinique pour le traitement chirurgical depatients souffrant de tumeurs cérébrales (gliomes) en régions du langage. Pendant la résection tumorale,des images de tractographie intégrées à un système de neuronavigation ont été systématiquementcombinées à la SED au cours d’un test de dénomination orale d’images. Ce protocole opératoire a permisd’optimiser les résultats chirurgicaux en termes de qualité d’exérèse et de préservation du langage, et aconstitué une opportunité unique d’étudier en temps réel les corrélations structure – fonction. Encouplant la localisation anatomique précise où chaque SED a été délivrée —obtenue grâce aux images detractographie naviguées— et la sémiologie des paraphasies induites par la SED —colligée par unorthophoniste présent au bloc opératoire—, nous avons déterminé le rôle spécifique de 5 faisceaux tantcortico-corticaux (faisceau arqué, faisceau fronto-occipital inférieur, faisceau frontal transverse) quecortico-sous-corticaux (fibres prémotrices orofaciales, faisceau fronto-striatal) dans différentes souscomposantesdu langage, i.e. traitement phonologique, traitement sémantique, contrôle moteur,planification articulatoire, contrôle exécutif/cognitif de la réponse verbale. Considérés de façon globale,nos résultats permettent d’envisager une meilleure compréhension de l’organisation anatomofonctionnelledes réseaux cérébraux du langage. Au-delà de l’intérêt scientifique, la possibilité deconstruire le connectome du langage spécifique à chaque individu ouvre la voie vers d’importantesapplications en neurochirurgie, dans une perspective de médecine personnalisée. Aujourd’hui, la chirurgiedes tumeurs cérébrales guidée par l’image. Demain, le développement de nouveaux traitements pour larééducation des aphasies, e.g. la déposition ciblée d’agents pharmacologiques, de cellules souches ou deneuromodulations, interagissant directement avec la connectivité résiduelle épargnée par la lésion. / The langage connectome is defined as the neuronal networks that subserve languagefunctions. Anatomically, it comprises specialized cortical areas and modulatory subcortical areas (i.e. deepgray nuclei and cerebellum), as well as their interconnections trough white matter (WM) fascicles.Although brain regions involved in language have been largely explored thanks to functional MRI (fMRI)and intraoprative electrical stimulation (IES), the underlying WM connectivity is still not mastered. It isnot only unknown which WM fascicles specifically contribute to language, but there is also much debateabout their precise anatomy and the functions they subserve during language processing. Betterunderstanding of the structural and functional organization of the language connectome is requisite toreduce postoperative morbidity in neurosurgery and develop targeted treatments for aphasiarehabilitation. Herein, our objective was to map structurally and functionally, in vivo, the subcorticalconnectivity of language. First, we conducted a preclinical study in 20 healthy subjects, combining DTItractography and fMRI (reading comprehension task) to yield connectivity associated with language. Weexplored 8 WM fascicles that have been proposed as putative candidates for language —i.e. arcuatefascicle, superior longitudinal fascicle, inferior fronto-occipital fascicle, uncinate fascicle, inferiorlongitudinal fascicle, middle longitudinal fascicle, operculopremotor fascicle, frontal aslant tract—, towhich we assigned functionality by tracking their connections to the fMRI-derived clusters. We generateda normative database of anatomical characteristics for each WM fascicle, such as volume, length, corticalterminations and their interhemispheric and interindividual variations. By using this construct, weprovided in explicit details the structural map of the language connectome. Second, this body ofknowledge was transposed to brain tumor surgery. Patients suffering of gliomas located close to languageregions were operated on under local anesthesia (i.e. awake surgery) in order to perform intraoperativelanguage mapping (object naming task). Essential language sites were localized through IES andanatomically characterized thanks to navigated tractography images. This intraoperative protocol allowedmaximum tumor resection while preserving language functions. Furthermore, it gave us a uniqueopportunity to perform reliable, real-time structure – function relationships, determining the role of 5WM fascicles (arcuate fascicle, inferior fronto-occipital fascicle, frontal aslant tract, orofacial premotorfibers, frontostriatal fascicle) in different subcomponents of language, i.e. phonological processing,semantic processing, articulatory planning, motor control and executive/cognitive control of verbalresponse. Globally considered, our results allow a better understanding of the anatomo-functionalorganization of the language network in the human brain. Beyond the scientific interest, the possibility toconstruct the individual (patient-specific) connectome paves the way for major applications inneurosurgery, in the perspective of personalized medicine. Today, the maximum safe resection of braintumors located in eloquent language areas, guided by navigated, multimodal images. Tomorrow, thedevelopment of new treatments for rehabilitation of post-stroke aphasia patients, such as the targeteddelivery of drugs, stem cells, or neuromodulation devices, fitting with the residual functional connectivityspared by the lesion.
182

Visualitzation and processing of diffusion tensor MRI

Prados Carrasco, Ferran 01 March 2012 (has links)
Diffusion Tensor Imaging (DTI) is a new magnetic resonance imaging modality capable of producing quantitative maps of microscopic natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. This technique has become a powerful tool in the investigation of brain structure and function because it allows for in vivo measurements of white matter fiber orientation. The application of DTI in clinical practice requires specialized processing and visualization techniques to extract and represent acquired information in a comprehensible manner. Tracking techniques are used to infer patterns of continuity in the brain by following in a step-wise mode the path of a set of particles dropped into a vector field. In this way, white matter fiber maps can be obtained. / La imatge amb tensor de difusió (DTI) és una nova modalitat de ressonància magnètica capaç de generar mapes del desplaçament a nivell microscòpic de l’aigua a dins del teixits del cervell com a part del procés físic de la difusió. Aquesta tècnica ha esdevingut una important eina en la investigació de les estructures i funcions cerebrals perquè ens permet tenir dades in vivo de l’orientació de les fibres de matèria blanca. Per aplicar el DTI en la pràctica clínica cal extreure i representar la informació de forma entenedora aplicant tècniques i processos de visualització especialitzats. Es poden utilitzar tècniques de tractografia per tal de trobar patrons de continuïtat dins del cervell, a partir de fer el seguiment pas a pas del camí seguit per un conjunt de partícules que es deixen en un camp vectorial. D’aquesta forma és com s’obtenen els mapes de fibres de matèria blanca.
183

Integration of multimodal imaging data for investigation of brain development / Intégration des données d’imagerie multimodale pour l’étude de développement du cerveau

Kulikova, Sofya 06 July 2015 (has links)
L’Imagerie par résonance magnétique (IRM) est un outil fondamental pour l’exploration in vivo du développement du cerveau chez le fœtus, le bébé et l’enfant. Elle fournit plusieurs paramètres quantitatifs qui reflètent les changements des propriétés tissulaires au cours du développement en fonction de différents processus de maturation. Cependant, l’évaluation fiable de la maturation de la substance blanche est encore une question ouverte: d'une part, aucun de ces paramètres ne peut décrire toute la complexité des changements sous-jacents; d'autre part, aucun d'eux n’est spécifique d’un processus de développement ou d’une propriété tissulaire particulière. L’implémentation d’approches multiparamétriques combinant les informations complémentaires issues des différents paramètres IRM devrait permettre d’améliorer notre compréhension du développement du cerveau. Dans ce travail de thèse, je présente deux exemples de telles approches et montre leur pertinence pour l'étude de la maturation des faisceaux de substance blanche. La première approche fournit une mesure globale de la maturation basée sur la distance de Mahalanobis calculée à partir des différents paramètres IRM (temps de relaxation T1 et T2, diffusivités longitudinale et transverse du tenseur de diffusion DTI) chez des nourrissons (âgés de 3 à 21 semaines) et des adultes. Cette approche offre une meilleure description de l’asynchronisme de maturation à travers les différents faisceaux que les approches uniparamétriques. De plus, elle permet d'estimer les délais relatifs de maturation entre faisceaux. La seconde approche vise à quantifier la myélinisation des tissus cérébraux, en calculant la fraction de molécules d’eau liées à la myéline (MWF) en chaque voxel des images. Cette approche est basée sur un modèle tissulaire avec trois composantes ayant des caractéristiques de relaxation spécifiques, lesquelles ont été pré-calibrées sur trois jeunes adultes sains. Elle permet le calcul rapide des cartes MWF chez les nourrissons et semble bien révéler la progression de la myélinisation à l’échelle cérébrale. La robustesse de cette approche a également été étudiée en simulations. Une autre question cruciale pour l'étude du développement de la substance blanche est l'identification des faisceaux dans le cerveau des enfants. Dans ce travail de thèse, je décris également la création d'un atlas préliminaire de connectivité structurelle chez des enfants âgés de 17 à 81 mois, permettant l'extraction automatique des faisceaux à partir des données de tractographie. Cette approche a démontré sa pertinence pour l'évaluation régionale de la maturation de la substance blanche normale chez l’enfant. Pour finir, j’envisage dans la dernière partie du manuscrit les applications potentielles des différentes méthodes précédemment décrites pour l’étude fine des réseaux de substance blanche dans le cadre de deux exemples spécifiques de pathologies : les épilepsies focales et la leucodystrophie métachromatique. / Magnetic Resonance Imaging (MRI) is a fundamental tool for in vivo investigation of brain development in newborns, infants and children. It provides several quantitative parameters that reflect changes in tissue properties during development depending on different undergoing maturational processes. However, reliable evaluation of the white matter maturation is still an open question: on one side, none of these parameters can describe the whole complexity of the undergoing changes; on the other side, neither of them is specific to any particular developmental process or tissue property. Developing multiparametric approaches combining complementary information from different MRI parameters is expected to improve our understanding of brain development. In this PhD work, I present two examples of such approaches and demonstrate their relevancy for investigation of maturation across different white matter bundles. The first approach provides a global measure of maturation based on the Mahalanobis distance calculated from different MRI parameters (relaxation times T1 and T2, longitudinal and transverse diffusivities from Diffusion Tensor Imaging, DTI) in infants (3-21 weeks) and adults. This approach provides a better description of the asynchronous maturation across the bundles than univariate approaches. Furthermore, it allows estimating the relative maturational delays between the bundles. The second approach aims at quantifying myelination of brain tissues by calculating Myelin Water Fraction (MWF) in each image voxel. This approach is based on a 3-component tissue model, with each model component having specific relaxation characteristics that were pre-calibrated in three healthy adult subjects. This approach allows fast computing of the MWF maps from infant data and could reveal progression of the brain myelination. The robustness of this approach was further investigated using computer simulations. Another important issue for studying white matter development in children is bundles identification. In the last part of this work I also describe creation of a preliminary atlas of white matter structural connectivity in children aged 17-81 months. This atlas allows automatic extraction of the bundles from tractography datasets. This approach demonstrated its relevance for evaluation of regional maturation of normal white matter in children. Finally, in the last part of the manuscript I describe potential future applications of the previously developed methods to investigation of the white matter in cases of two specific pathologies: focal epilepsy and metachromatic leukodystrophy.
184

Parallele Datenakquisition zur Beschleunigung Diffusionsgewichteter Kernspintomographie mit Stimulierten Echos / Parallel Data Acquisition for the Acceleration of Diffusion-Weighted Magnetic Resonance Imaging using Stimulated Echoes

Küntzel, Matthias 17 August 2006 (has links)
No description available.
185

Anatomo-functional magnetic resonance imaging of the spinal cord and its application to the characterization of spinal lesions in cats

Cohen-Adad, Julien 11 1900 (has links)
Les lésions de la moelle épinière ont un impact significatif sur la qualité de la vie car elles peuvent induire des déficits moteurs (paralysie) et sensoriels. Ces déficits évoluent dans le temps à mesure que le système nerveux central se réorganise, en impliquant des mécanismes physiologiques et neurochimiques encore mal connus. L'ampleur de ces déficits ainsi que le processus de réhabilitation dépendent fortement des voies anatomiques qui ont été altérées dans la moelle épinière. Il est donc crucial de pouvoir attester l'intégrité de la matière blanche après une lésion spinale et évaluer quantitativement l'état fonctionnel des neurones spinaux. Un grand intérêt de l'imagerie par résonance magnétique (IRM) est qu'elle permet d'imager de façon non invasive les propriétés fonctionnelles et anatomiques du système nerveux central. Le premier objectif de ce projet de thèse a été de développer l'IRM de diffusion afin d'évaluer l'intégrité des axones de la matière blanche après une lésion médullaire. Le deuxième objectif a été d'évaluer dans quelle mesure l'IRM fonctionnelle permet de mesurer l'activité des neurones de la moelle épinière. Bien que largement appliquées au cerveau, l'IRM de diffusion et l'IRM fonctionnelle de la moelle épinière sont plus problématiques. Les difficultés associées à l'IRM de la moelle épinière relèvent de sa fine géométrie (environ 1 cm de diamètre chez l'humain), de la présence de mouvements d'origine physiologique (cardiaques et respiratoires) et de la présence d'artefacts de susceptibilité magnétique induits par les inhomogénéités de champ, notamment au niveau des disques intervertébraux et des poumons. L'objectif principal de cette thèse a donc été de développer des méthodes permettant de contourner ces difficultés. Ce développement a notamment reposé sur l'optimisation des paramètres d'acquisition d'images anatomiques, d'images pondérées en diffusion et de données fonctionnelles chez le chat et chez l'humain sur un IRM à 3 Tesla. En outre, diverses stratégies ont été étudiées afin de corriger les distorsions d'images induites par les artefacts de susceptibilité magnétique, et une étude a été menée sur la sensibilité et la spécificité de l'IRM fonctionnelle de la moelle épinière. Les résultats de ces études démontrent la faisabilité d'acquérir des images pondérées en diffusion de haute qualité, et d'évaluer l'intégrité de voies spinales spécifiques après lésion complète et partielle. De plus, l'activité des neurones spinaux a pu être détectée par IRM fonctionnelle chez des chats anesthésiés. Bien qu'encourageants, ces résultats mettent en lumière la nécessité de développer davantage ces nouvelles techniques. L'existence d'un outil de neuroimagerie fiable et robuste, capable de confirmer les paramètres cliniques, permettrait d'améliorer le diagnostic et le pronostic chez les patients atteints de lésions médullaires. Un des enjeux majeurs serait de suivre et de valider l'effet de diverses stratégies thérapeutiques. De telles outils représentent un espoir immense pour nombre de personnes souffrant de traumatismes et de maladies neurodégénératives telles que les lésions de la moelle épinière, les tumeurs spinales, la sclérose en plaques et la sclérose latérale amyotrophique. / Spinal cord injury has a significant impact on quality of life since it can lead to motor (paralysis) and sensory deficits. These deficits evolve in time as reorganisation of the central nervous system occurs, involving physiological and neurochemical mechanisms that are still not fully understood. Given that both the severity of the deficit and the successful rehabilitation process depend on the anatomical pathways that have been altered in the spinal cord, it may be of great interest to assess white matter integrity after a spinal lesion and to evaluate quantitatively the functional state of spinal neurons. The great potential of magnetic resonance imaging (MRI) lies in its ability to investigate both anatomical and functional properties of the central nervous system non invasively. To address the problem of spinal cord injury, this project aimed to evaluate the benefits of diffusion-weighted MRI to assess the integrity of white matter axons that remain after spinal cord injury. The second objective was to evaluate to what extent functional MRI can measure the activity of neurons in the spinal cord. Although widely applied to the brain, diffusion-weighted MRI and functional MRI of the spinal cord are not straightforward. Various issues arise from the small cross-section width of the cord, the presence of cardiac and respiratory motions, and from magnetic field inhomogeneities in the spinal region. The main purpose of the present thesis was therefore to develop methodologies to circumvent these issues. This development notably focused on the optimization of acquisition parameters to image anatomical, diffusion-weighted and functional data in cats and humans at 3T using standard coils and pulse sequences. Moreover, various strategies to correct for susceptibility-induced distortions were investigated and the sensitivity and specificity in spinal cord functional MRI was studied. As a result, acquisition of high spatial and angular diffusion-weighted images and evaluation of the integrity of specific spinal pathways following spinal cord injury was achieved. Moreover, functional activations in the spinal cord of anaesthetized cats was detected. Although encouraging, these results highlight the need for further technical and methodological development in the near-future. Being able to develop a reliable neuroimaging tool for confirming clinical parameters would improve diagnostic and prognosis. It would also enable to monitor the effect of various therapeutic strategies. This would certainly bring hope to a large number of people suffering from trauma and neurodegenerative diseases such as spinal cord injury, tumours, multiple sclerosis and amyotrophic lateral sclerosis.
186

Sex Differences in the Connectivity of the Subgenual Anterior Cingulate Cortex: Implications for Pain Habituation

Wang, Gang 11 December 2013 (has links)
Women exhibit greater habituation to painful stimuli than men. The neural mechanism underlying this sex difference is unknown. However, pain habituation has been associated with pain-evoked activity of the subgenual anterior cingulate cortex (sgACC), implicating a connection between the sgACC and the descending pain antinociceptive system. Therefore, the thesis hypothesis was that women have stronger connectivity than men between the sgACC and the descending antinociceptive system. Healthy subjects provided informed consent. 3T MRI images included anatomical diffusion-weighted imaging for structural connectivity analyses (SC) with probabilistic tractography and resting-state functional images for functional connectivity (FC) analyses. Women had stronger sgACC FC with nodes of the descending pain modulation system (raphe, PAG) and the medial thalamus. In contrast, men had stronger sgACC FC with nodes of the salience/attention network (anterior insula, TPJ) and stronger sgACC SC with the hypothalamus. These findings implicate a mechanism for pain habituation and its associated sex differences.
187

Sex Differences in the Connectivity of the Subgenual Anterior Cingulate Cortex: Implications for Pain Habituation

Wang, Gang 11 December 2013 (has links)
Women exhibit greater habituation to painful stimuli than men. The neural mechanism underlying this sex difference is unknown. However, pain habituation has been associated with pain-evoked activity of the subgenual anterior cingulate cortex (sgACC), implicating a connection between the sgACC and the descending pain antinociceptive system. Therefore, the thesis hypothesis was that women have stronger connectivity than men between the sgACC and the descending antinociceptive system. Healthy subjects provided informed consent. 3T MRI images included anatomical diffusion-weighted imaging for structural connectivity analyses (SC) with probabilistic tractography and resting-state functional images for functional connectivity (FC) analyses. Women had stronger sgACC FC with nodes of the descending pain modulation system (raphe, PAG) and the medial thalamus. In contrast, men had stronger sgACC FC with nodes of the salience/attention network (anterior insula, TPJ) and stronger sgACC SC with the hypothalamus. These findings implicate a mechanism for pain habituation and its associated sex differences.
188

Diffusion tensor imaging at long diffusion time

Rane, Swati 30 June 2009 (has links)
Diffusion Tensor Imaging (DTI) is a well-established magnetic resonance technique that can non-invasively interpret tissue geometry and track neural pathways by sampling the diffusion of water molecules in the brain tissue. However, it is currently limited to tracking large nerve fiber bundles and fails to faithfully resolve thinner fibers. Conventional DTI studies use a diffusion time, t[subscript diff] of 30 ms - 55 ms for diffusion measurements. This work proposes the use of DTI at long t[subscript diff] to enhance the sensitivity of the method towards regions of low diffusion anisotropy and improve tracking of smaller fibers. The Stimulated Echo Acquisition Mode (STEAM) sequence was modified to allow DTI measurements at long t[subscript diff] (approximately 200 ms), while avoiding T2 signal loss. For comparison, DTI data was acquired using STEAM at the shorter value of t[subscript diff] and with the standard Double Spin Echo sequence with matched signal-to-noise ratio. This approach was tested on phantoms and fixed monkey brains and then translated to in vivo studies in rhesus macaques. Qualitative and quantitative comparison of the techniques was based on fractional anisotropy, diffusivity, three-phase plots and directional entropy. Tensor-field maps and probabilistic connectivity fronts were evaluated for all three acquisitions. Comparison of the tracked nerve pathways showed that fibers obtained at long t[subscript diff] were much longer. Further, the optic tract was tracked in ex vivo fixed rhesus brains for cross validation. The optic tract, traced at long t[subscript diff], conformed to the well documented anatomical description, thus confirming the accuracy of tract tracing at long t[subscript diff]. The benefits of DTI at long t[subscript diff] indeed help to realize the potential of tensor based tractography towards studying neural development and diagnosing neuro-pathologies, albeit the improvement is more significant ex vivo than in vivo.
189

Nutrition and neurodevelopment of the preterm and term infant

Xanthy Hatzigeorgiou Unknown Date (has links)
Introduction Optimal nutrition is vital in the management of infants born preterm. Dietary fat in infancy is fundamental for the provision of energy for growth and development. Essential fatty acids, specifically Long Chain Polyunsaturated Fatty Acids (LC-PUFAs) such as docosahexaenoic acid (DHA), have been under investigation by several international research groups in the past decade. Essential fatty acids are critical in neurodevelopment as DHA is found in high proportions in structural lipids of cell membranes, particularly in the central nervous system (CNS). The accumulation of essential fatty acids and particularly DHA in the brain and retina occurs most rapidly during the perinatal period, therefore preterm infants are of particular concern (Singer, 2001). Current scientific consensus is that the optimum growth rate for preterm infants is equal to the in utero growth rate throughout the last trimester, however, failure to achieve the optimum intrauterine growth rate is common in preterm infants (Olhager and Forsum, 2003). Preterm infants require large amounts of energy and nutrients with which many infants are not provided or are not able to absorb, due to immature gastrointestinal and metabolic systems and other medical complications (Olhager and Forsum, 2003). There are a number of unresolved issues regarding optimal growth rate and total energy requirements (ER) for preterm infants. Hypotheses/Objectives This study is a “side study” to a double blind randomised controlled trial (RCT) of DHA supplementation in preterm infants. The hypothesis of this “side study” is that increased DHA during the neonatal period would increase total energy expenditure (TEE) and improve neurodevelopmental outcome. Specifically, at term postconceptual age (PCA) it was hypothesised that preterm infants receiving higher intake of DHA would have higher TEE’s due to the acceleration in brain maturation. Also, it was hypothesised that preterm infants receiving high levels of DHA would have TEE’s equivalent to term born infants due to their same brain maturation status. Other hypothesised effects of DHA supplementation include an accelerated maturation of the visual cortical pathways, and accelerated white matter (WM) tract development aiding in brain maturation. The first objective of this study was to measure TEE and ER in very preterm infants when they reached an age of 31-33 weeks post conceptional age (PCA). The effects of DHA supplementation on TEE, at simulated in utero levels, in very preterm infants (born < 33 weeks PCA), when assessed at term equivalent (40 weeks PCA) were studied. Another objective was to compare WM brain tissue volume at term PCA between two preterm groups and then with the term born infants. Visual latency was also compared between the two preterm infant groups and then with the term born infants. Methods TEE was measured using the doubly labelled water (DLW) method which is based on the differential elimination of 2H (deuterium) and 18O from the body subsequent to a loading dose of these isotopes. TEE was measured at the preterm age between 31-33 weeks PCA and again at term PCA. TEE measurements are made at term PCA in a term born control group. Brain assessment was by Magnetic Resonance Imaging and (MRI) and Visual Evoked Potential (VEP). Magnetic resonance imaging quantitatively measured brain volumes and WM. Visual evoked potential would provide information on visual latency and amplitude. Results The cohort consisted of 38 infants. The TEE of the very preterm infant group was measured at 31-33 weeks PCA. The mean (±standard deviation) (SD) TEE was calculated at 80(±27) kcal/kg/d, and using data in the literature for foetal energy accretion of 28kcal/kg/d, the mean ER was calculated to be 108(±27) kcal/kg/d. At term PCA TEE was calculated for the preterm DHA supplemented group to be 56(±19) kcal/kg/d and for the non-DHA supplemented group 70(±39) kcal/kg/d. These measurements were not statistically different. Flash VEP conducted on preterm given different amounts of DHA tested at term PCA found no statistically different measurements. When combining these results and comparing them to measurements of term born infants at term PCA, the right eye measurements showed that preterm infants had statistically greater latencies than term infants. When combining the left and right eye measurements the latencies no statistical significance was found. Amplitude was also not statistically significant between the groups. MRI measures at term PCA were not statistically different DHA supplemented and the non-DHA supplemented preterm infant group. When the preterm infant cohort was combined and compared to the term born infant group, the results showed that preterm infants imaged at term PCA had reduced WM development in a number of frontal lobe projections, and anterior and posterior commissarial pathways of the corpus callosum and corona radiata. Discussion The TEE and ER measurements in this study represent the largest preterm infant cohort to date. The ER values reported here are of value in allowing the calculation of appropriate feeding and nutritional strategies for preterm infants. Although no differences in TEE between the DHA and non DHA supplemented groups were found this may have been due to the small sample size. With regard to the latency outcomes, it can be speculated that if measurements were conducted at a later PCA the correlations may have been stronger and significant. Several other factors may have also affected the results, including alertness of the infant at the time of testing, thickness of the cranium, and other health factors could not be controlled for. This study contains the youngest cohort to be compared via Flash VEP. The MRI data did not find significant differences in brain volume and WM between the DHA supplemented and the non-DHA supplemented groups. The infant CNS is rapidly developing and there are multiple environmental factors which may have affected outcomes. The data did however find differences in WM development between the preterm and term infants. The reduced WM development found in the preterm infants compared to term born infants may provide some explanation for the correlation between preterm birth and poorer cognitive and functional outcomes. Larger studies which extend beyond the first months of life are recommended in order to investigate the long-term relationships between DHA supplementation, TEE and brain maturation.
190

Modifications neurométaboliques et microstructurales à la suite d'une commotion cérébrale chez les athlètes féminines

Chamard, Emilie 04 1900 (has links)
No description available.

Page generated in 0.0899 seconds