• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 16
  • 7
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 165
  • 165
  • 86
  • 36
  • 31
  • 30
  • 28
  • 27
  • 25
  • 24
  • 24
  • 23
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Playgrounds in a New Light : An Exploration of Sustainable Lighting Design for Children’s Outdoor Play Spaces - A case study at Ringmuren preschool

Hultman, Rikard January 2023 (has links)
Two phenomena form the basis for this thesis; bad lighting for children and our connection to nature. The former has somehow largely stayed unchanged through the years, the second one is rapidly changing for the worse. Lighting in spaces designed for children in Sweden often seem like an afterthought focusing on the quantitative aspects, ignoring the qualitative; following standards but often forgetting who the space is meant for. At the same time, cities are becoming denser, making nature something many people actively have to seek out to experience - children’s definition of nature is slowly changing.How can outdoor lighting for children become better? Using the Ringmuren preschool in Uppsala, Sweden, as a case study, this thesis proposes an alternative way of thinking when designing light for children and how it can encourage a connection to nature. The design proposal was made using interviews, site analysis, research and experiments inside a digital twin custom made for RIngmuren preschool. The direct result of this project is a digital twin and a lighting concept, but it also argues that the practicalities of analysing and designing lighting is one thing; getting the people in power to understand why good lighting is important is the first, and largest, hurdle. Producing good, affordable examples of good lighting design that can be applied to varying situations is a good place to start to at the least initiate a discussion.
62

[en] ANNOTATION SYSTEM BASED ON 3D VISUALIZATION WITH 360 DEGREES IMAGES OF INDUSTRIAL INSTALLATIONS / [pt] SISTEMA DE ANOTAÇÃO BASEADO EM VISUALIZAÇÃO 3D COM IMAGENS 360 GRAUS DE INSTALAÇÕES INDUSTRIAIS

ANDERSON SILVA FONSECA 12 January 2023 (has links)
[pt] Com a chegada da Industria 4.0, empresas aderiram a usar gêmeos digitais para melhorar seus processos de produção e as condições de trabalhos de seus empregados. Os gêmeos digitais são normalmente associados a modelos tridimensionais, permitindo a realização de planejamentos, extração de dados, simulação e treinamento a partir das condições reais. Infelizmente, gêmeos digitais incorretos ou desatualizados podem induzir a erros e a desencontro de informações o que retira todas as vantagens do processo de virtualização, arruinando quaisquer comparativos com a realidade. Em contrapartida, gêmeos digitais ricos em informação permitem que simulações e extrações de dados sejam mais fieis a realidade. Atualmente, as tecnologias capazes de enriquecer as informações de gêmeos digitais são escassos, pois é um procedimento que leva tempo devido a necessidade de análises de especialistas, custos, equipamentos e ferramentas específicas. Recursos como fotografias 360 graus, vídeos e modelos tridimensionais podem ser usados para realizar uma avaliação e atualização nos gêmeos digitais. Porém, diferenças temporais, condições do ambiente e erros humanos entre os recursos podem gerar confusão durante a transferência e conexão da informação. Este trabalho apresenta uma ferramenta que explora as vantagens de combinar fotografias 360 graus com modelos 3D para gerar gêmeos digitais as-built. Cada imagem pode ser ajustada a uma localização dentro do sistema de coordenadas do modelo, inclusive permitindo alterações nos eixos e no campo de visão. Durante a navegação, é possível navegar livremente pelo modelo e pelas posições de interesse criadas pelo usuário. Além da visualização, a ferramenta propõe uma interação mais eficaz para realizar anotações entre modelos e fotografias 360 graus com o propósito de verificar consistências ou agregar novas informações ao gêmeo digital. Estas interações são importantes para a inspeção e manutenção, como avaliação de peças, análise das condições atuais ou a criação de comparativos entre o planejado e o real. / [en] With the arrival of Industry 4.0, companies have adopted digital twins to improve their production processes and the working conditions of their employees. Digital twins are generally associated with three-dimensional models and allow planning, data extraction, simulation, and training based on current conditions. Unfortunately, incorrect or outdated digital twins can lead to errors and information mismatch, which takes away all the advantages of the virtualization and computerization process, ruining any comparisons with reality. In contrast, information-rich digital twins allow simulations and data extraction to be more faithful to reality. Currently, technologies capable of enriching the information of digital twins are scarce, as it is a procedure that takes time due to the need for expert analysis, costs, equipment, and specific tools. Resources such as 360 degrees photographs, videos, and 3D models can be used to perform an evaluation and update the digital twins. However, temporal differences, environmental conditions, and human errors between the images and the model can generate confusion during the transfer and connection of information. This work presents a tool that explores the advantages of combining 360 degrees photographs with 3D models to generate as-built digital twins. Each image can be adjusted to a location within the model s coordinate system, allowing changes to axes and field of view. During navigation, it is possible to navigate the model and the user-created positions of interest freely. In addition to visualization, the tool proposes a more effective interaction to annotate between models and 360 degrees photographs to verify consistency or add new information to the digital twin. These interactions are essential for inspection and maintenance, such as evaluating parts, analyzing current conditions, or creating comparisons between planned and actual.
63

DIGITAL TWIN MACHINE TOOL FEED DRIVE TEST BENCH FOR RESEARCH ON CONDITION MONITORING AND MODELING / DIGITAL TWIN MACHINE TOOL FEED DRIVE TEST BENCH

Sicard, Brett January 2024 (has links)
Machine tools are essential components of modern manufacturing. They are com posed of various mechanical, hydraulic, and electrical systems such as the spindle, tool changer, cooling system, and the linear and rotary feed drives. Due to their com plexity, high cost, and importance to the manufacturing process it is recommended to implement some sort of condition monitoring and predictive maintenance to ensure that they remain reliable and high performing. One way of potentially implement ing predictive maintenance and condition monitoring is digital twins. Digital twins enable the real-time, accurate, and complex modeling and monitoring of mechanical systems. They utilize data collected from the system to constantly update their mod els which can be used for monitoring of the systems state and future predictions. This work presents a digital twin workbench of a machine tool feed drive. The workbench enables the collection and analysis of large, varied, high-frequency data which can be used to construct a digital twin of the feed drive. A digital twin can enable many other useful functionalities. Some of these functionalities include condition moni toring, modeling, control, visualization, and simulation. These functionalities can enable maximum asset performance and are key in implementing effective predictive maintenance. The main contributions of this work are the following: The design and iv construction of a machine tool feed drive which implements a novel external distur bance force method. A new method of fault detection in ball screws using interacting multiple models which was shown to provide accurate estimates of levels of preloads in a ball screw driven feed drive. A digital twin based modeling strategy and analysis of the data generated by the system including system modeling and observations on modeling difficulties. / Thesis / Master of Applied Science (MASc) / Digital twins enable the real-time, accurate, and complex modeling and monitoring of mechanical systems. Machine tools are essential components of modern manufac turing. They are composed of various mechanical, hydraulic, and electrical systems such as the spindle, tool changer, cooling system, and linear and rotary feed drives. This work presents the design of a workbench of a machine tool linear feed drive, a fault detection strategy, and a digital twin modeling solution. The workbench enables the collection and analysis of large, varied, high-frequency data which can be used to construct a digital twin of the feed drive. A digital twin can enable many other useful functionalities. Some of these functionalities include condition monitoring, modeling, control, visualization, and simulation. These functionalities can enable maximum asset performance and are key in implementing effective predictive maintenance.
64

Simulating Professional Dance with a Biomechanical Model of a Human Body / Simulering av professionell dans med en biomekanisk modell aven människokropp

Cedermalm, Sophia, Sars, Erik January 2022 (has links)
A digital twin project is launched by the Integrative Systems Biology (ISB) research team and led by Gunnar Cedersund. The digital twin project is based on biological models of physiological processes, that can interact and be tailored for a specific person. However, the digital twin can currently not analyse movements of a human body. In this master thesis, the aim was to create a useful pipeline that expands the digital twin project with biomechanical modelling of movements, and also visualises the twins by letting the concept take human form. The biomechanical analysis was done in the software OpenSim, where the movements of a motion captured dance were analysed. To generate a simulation of the motion with an acceptable error in a reasonable computation time, a musculoskeletal model was created in OpenSim and scaled to best fit the anthropometry of the dancer. Then, the motion was estimated with an optimised procedure by using the scaled model and the motion capture data. The Root-Mean Squared (RMS) error of the estimated dance with accuracy 10-6 was 2.39 cm. In this thesis, the torque in each joint for the dance motion was estimated. The loads and muscle forces can also be estimated in OpenSim. One useful application is for calculating energy consumption. In order to calculate muscle forces, external forces needs to be measured while recording motion capture. This is something that will be focused on in the future, when continuing with this project. The visualisation of the digital twins were made in Unreal Engine with MetaHuman avatars. The dance recorded in motion capture, were applied to the avatars in order to make them dance. The recorded dance was the same for both OpenSim and Unreal Engine, so the dance could both be viewed and analysed. In conclusion, we have added a new feature to the existing digital twin technology: movements and simulation of the musculoskeletal system. This new feature can in the future be used for both medical purposes such as movement-based rehabilitation as well as for integration into dance performances.
65

Evaluating usability optimization of Global Fleet Management utilizing VR

Sellgren, Fredrik January 2022 (has links)
A rapidly growing interest in augmented and virtual reality within industrial areas such as manufacturing, quality control, and fleet monitoring has been seen in the last couple of years. This technology shift could bring a new era to the industry sector in the near future. This study aims to evaluate if using virtual reality can be a more efficient way of monitoring lots of data than a traditional monitor based solution or not. In this study, a virtual reality application has been created in order to provides a virtual environment where operators can access and monitor their assets, which a proof-of-concept digital model represents. The digital model presents information about the components from a physical asset’s current state and status. This VR application was then evaluated in an A/B test against an existing monitor-based dashboard application. The A/B test was conducted with 10 participants performing 11 different tasks. The results show that VR technology could be a promising solution for operating and monitoring fleet unit assets, with an overall improvement in the efficiency of 17% for all of the participants.
66

CHALLENGES AND OPPORTUNITIES WHEN DEVELOPING A DIGITAL MODEL OF A PROCESS

Lindblad, Amanda January 2022 (has links)
BACKGROUND - The development of Industry 4.0 increases the opportunities to both automate and digitize processes in the manufacturing industry. The steel industry has been around for many years, which means firmly anchored operations and both manual- and automated processes. To make better decisions, identify bottlenecks, and test new functions without having to stop the production, a digital model of the process can be helpful. Furthermore, with the rapid development of technology, digital models can be further developed into digital twins. A digital twin should be able to handle the communication between the physical- and digital world automatically and analyze data to make decisions in the process. RESEARCH QUESTIONS What are the challenges of developing a digital model representing a production line within a global steel manufacturing company? What opportunities could a digital model of a production line entail, and how could Industry 4.0 technologies create opportunities to further develop the digital model into a digital twin? METHODS - In this project, both a literature- and case study have been carried out. During the literature study, techniques that can be used to develop the digital model further have been investigated. During the case study, a digital model of a Quench Line was developed to gather practical experience of what it can mean to create a digital model of a manufacturing process within a steel manufacturing company. The model has been developed in MATLAB/Simulink. RESULTS - The most significant challenges when developing digital flow simulation models identified in this project were data management/access, handling variations, verifying the model, andlack of knowledge linked to digital models in general. The opportunities identified and confirmed in this project were that the model could be used to carry out new logistics planning, bottleneck analyses, and test new machine implementations. To further develop the digital model into a digital twin, Industry 4.0 technologies will be crucial. The technologies that will be useful are the Internet of Things, Artificial Intelligence, Machine Learning, Cloud Computing, and Big Data.
67

Digital tvilling och dess implementering inom fastighetsförvaltning : En kartläggning över möjligheter och utmaningar inom fastighetsbranschen / Digital Twin and its Implementation in Property Management

Ghebrehiwot, Daniel, Dabrowski, Piotr January 2021 (has links)
Digitaliseringens framfart har frambringat ett värdefullt verktyg inom förvaltningen – digital tvilling. Ett sätt att digitalt avbilda ett objekt, en fysisk motpart med information om objektets egenskaper, användning mm. Etableringen inom andra branscher har mer eller mindre varit påtaglig. Däremot har utvecklingen specifikt inom fastighetsbranschen stagnerat en aning gentemot övriga. Rapporten syftar därmed till att undersöka inte bara de eventuella utmaningar, utan även de potentiella möjligheter som digital tvilling kan tänkas medföra inom fastighetsbranschen. Utöver det har en undersökning om definitionsgrunden för digital tvilling genomförts för att ytterligare avgränsa arbetet. Som ett tillägg har andra frågeställningar, relaterat till implementeringen av digital tvilling, beaktats.  Det som kan konkluderas beträffande arbetet, handlar främst om de incitament som krävs för att implementera digital tvilling, de utmaningar och möjligheter som finns förestående samt vilka åtgärder som krävs för att konceptet ska bli applicerbart i underhållsplanen. Resultatet från denna information har uthämtats från litteraturstudie och inte minst intervjuer. Där slutsatsen som kan dras är hur arbetet har effektiviserats och medfört till bland annat kostnadsbesparingar och effektivare arbetssätt i förvaltningen. Utmaningar fanns dock vad gäller att hålla sig uppdaterat beträffande informationen i underlaget och nya arbetssätt med att göra den digitala tvillingen lätthanterlig för berörda aktörer. Slutligen krävs det även engagemang och att sakkunniga inom området är mottaglig för den nya tekniken som har presenterats, både för att implementeringen av digital tvilling ska initieras och för att den inte minst ska bli användbar i underhållsplanen. / The rise of digitalization has produced a valuable tool in property management– digital twin. A way to digitally create and depict an object, a physical prototype with information about the object's properties, usage, etc. The implementation in other industries has more or less been succesful. However, the development, particularly in the real estate industry, have stagnated somewhat compared to forementioned industries. The report thus aims to examine and study the potential challenges and opportunitites that digital twin may bring in the real estate industry. In addition, a study on the definition basis for digital twin has been carried out to further delimit the study. As an addition, other research questions related to the implementation of digital twin have been taken into account. What can be concluded regarding the work is mainly about the incentives required to implement digital twin, the challenges and opportunities that are imminent and what measures are required for the concept to be applicable in the maintenance plan. The results of this information have been obtained from literature studies and interviews. Where the conclusion that can be drawn is how the work has been streamlined and brought, among other things, cost savings and more efficient working methods in property management. However, there were challenges in keeping up to date with the information in the basis material and new ways of working to make the digital twin easy to manage for stakeholders. Finally, it also requires commitment and that experts in the field are receptive to the new technology that has been presented, both for the implementation of digital twin to be initiated and for it to be useful in the maintenance plan.
68

Traffic Signal Phase and Timing Prediction: A Machine Learning and Controller Logic Hybrid Approach

Eteifa, Seifeldeen Omar 14 March 2024 (has links)
Green light optimal speed advisory (GLOSA) systems require reliable estimates of signal switching times to improve vehicle energy/fuel efficiency. Deployment of successful infrastructure to vehicle communication requires Signal Phase and Timing (SPaT) messages to be populated with most likely estimates of switching times and confidence levels in these estimates. Obtaining these estimates is difficult for actuated signals where the length of each green indication changes to accommodate varying traffic conditions and pedestrian requests. This dissertation explores the different ways in which predictions can be made for the most likely switching times. Data are gathered from six intersections along the Gallows Road corridor in Northern Virginia. The application of long-short term memory neural networks for obtaining predictions is explored for one of the intersections. Different loss functions are tried for the purpose of prediction and a new loss function is devised. Mean absolute percentage error is found to be the best loss function in the short-term predictions. Mean squared error is the best for long-term predictions and the proposed loss function balances both well. The amount of historical data needed to make a single accurate prediction is assessed. The assessment concludes that the short-term prediction is accurate with only a 3 to 10 second time window in the past as long as the training dataset is large enough. Long term prediction, however, is better with a larger past time window. The robustness of LSTM models to different demand levels is then assessed utilizing the unique scenario created by the COVID-19 pandemic stay-at-home order. The study shows that the models are robust to the changing demands and while regularization does not really affect their robustness, L1 and L2 regularization can improve the overall prediction performance. An ensemble approach is used considering the use of transformers for SPaT prediction for the first time across the six intersections. Transformers are shown to outperform other models including LSTM. The ensemble provides a valuable metric to show the certainty level in each of the predictions through the level of consensus of the models. Finally, a hybrid approach integrating deep learning and controller logic is proposed by predicting actuations separately and using a digital twin to replicate SPaT information. The approach is proven to be the best approach with 58% less mean absolute error than other approaches. Overall, this dissertation provides a holistic methodology for predicting SPaT and the certainty level associated with it tailored to the existing technology and communication needs. / Doctor of Philosophy / Automated and connected vehicles waste a lot of fuel and energy to stop and go at traffic signals. The ideal case is for them to be able to know when the traffic signal turns green ahead of time and plan to reach the intersection by the time it is green, so they do not have to stop. Not having to stop can save up to 40 percent of the gas used at the intersection. This is a difficult task because the green time is not fixed. It has a minimum and maximum setting, and it keeps extending the green every time a new vehicle arrives. While this is good for adapting to traffic, it makes it difficult to know exactly when the traffic signal turns green to reach the intersection at that time. In this dissertation, different models to know ahead of time when the traffic signal will change are used. A model is chosen known as long-short term memory neural network (LSTM), which is a way to recognize how the traffic signal is expected to behave in the future from its past behavior. The point is to reduce the errors in the predictions. The first thing is to look at the loss function, which is how the model deals with error. It is found that the best thing is to take the average of the absolute value of the error as a percentage of the prediction if the prediction is that traffic signal will change soon. If it is a longer time until the traffic signal changes, the best way is to take the average of the square of the error. Finally, another function is introduced to balance between both. The second thing explored is how far back in time data was needed to be given to the model to predict accurately. For predictions of less than 20 seconds in the future, only 3 to 10 seconds in the past are needed. For predictions further in the future, looking further back can be useful. The third thing explored was how these models would do after rare events like COVID-19 pandemic. It was found that even though much fewer cars were passing through the intersections, the models still had low errors. Techniques were used to reduce the model reliance on specific data known as regularization techniques. This did not help the models to do better after COVID, but two techniques known as L1 and L2 regularization improved overall performance. The study was then expanded to include 6 intersections and used three additional models in addition to LSTM. One of these models, known as transformers, has never been used before for this problem and was shown to make better predictions than other models. The consensus between the models, which is how many of the models agree on the prediction, was used as a measure for certainty in the prediction. It was proven to be a good indicator. An approach is then introduced that combines the knowledge of the traffic signal controller logic with the powerful predictions of machine learning models. This is done by making a computer program that replicates the logic of the traffic signal controller known as a digital twin. Machine learning models are then used to predict vehicle arrivals. The program is then run using the predicted arrivals to provide a replication of the signal timing. This approach is found to be the best approach with 58 percent less error than the other approaches. Overall, this dissertation provides an end-to-end solution that uses real data generated from intersections to predict the time to green and estimate the certainty in prediction that can help automated and connected vehicles be more fuel efficient.
69

Digital Twin Sterilizer

Jacobsson, Sebastian, Johnsson, Marcus January 2024 (has links)
An autoclave is an advanced machine that sterilizes objects using high-pressure and high heat, with water steam as the medium. Autoclaves are frequently found in hospitals and other places where sterility is required. This project aims to meet the company's need to create a digital twin (DT) of an autoclave. The purpose is to test the control unit that controls the physical autoclave by exposing the DT to the same program as a real autoclave. A DT is a virtual model of a physical system, and in this project, it represented the autoclave and its sensors. The model was programmed in a graphical programming language NI LabView, with the same input and output signals as a real autoclave. The model was based on data-driven logic rather than physical based logic. From a real autoclave run where signals were recorded every second, conclusions could be drawn about how much each unique analog signal changed in combination with other signals through interpolation. The interpolation of the analog signals was used to capture the characteristics of these signals.  For validation, the DT was loaded into a Hardware In the Loop (HIL) system that simulates the autoclave with the DT but retains the control unit from the autoclave, which is the unit the company wants to test. The developed DT was tested against three goals describing how closely the values should align over an accumulated time. The results were compared each second between the real run and the DT run. The data-driven DT model met one of the three goals set, however, the DT model's characteristics resembled those of the real run, making the model useful as the control system does not interrupt the simulation for disallowed or deviant values. / En autoklav är en avancerad maskin som rengör objekt till en steril nivå med ett högt tryck och hög temperatur, där vattenånga används som medium. Autoklaven har ett vanligt förekommande på sjukhus och andra platser där sterilitet är ett krav. Det här projektet går ut på att möta företagets behov av att skapa en digital tvilling (DT) av en autoklav. Syftet är att testa kontrollenheten som styr den fysiska autoklaven genom att en DT ska utsättas för samma programkörning som en verklig autoklav. En DT är en virtuell modell av ett fysiskt system och i detta projekt var autoklaven och sensorerna i maskinen en DT. Modellen programmerades i ett grafiskt programmeringsspråk, NI LabVIEW med samma in- och utsignaler som en verklig autoklav. Modellen utgår ifrån en datadriven metod och inte en fysikalisk formulerad logik. Datan samlades in från en körning av en verklig autoklav, där signalerna sparades varje sekund. Slutsatser för hur mycket varje unik analog signal förändrades i kombination med övriga signaler kunde dras med hjälp av interpolering. Interpoleringen av de analoga signalera kunde användas för att fånga deras karakteristik.  För validering integrerades DT i ett Hardware In the Loop (HIL) system som hjälper till att simulera autoklaven. HIL-systemet har kontrollenheten kvar från autoklaven som är den enhet företaget vill utföra tester på. Den framtagna DT testades mot tre mål som beskriver hur nära värdena skall ligga under en ackumulerad tid. Resultatet jämfördes för varje sekund mellan den verkliga och DT körningen. Den datadrivna DT modellen uppfyllde 1 av 3 mål som ställdes, men DT modellens karakteristik efterliknade den från verkliga körningen vilket gör modellen användbar då kontrollsystemet inte avbryter simuleringen för ej tillåtna eller avvikande värden.
70

Chatter model for enabling a digital twin in machining

Afazov, S., Scrimieri, Daniele 09 November 2020 (has links)
Yes / This paper presents the development of a new chatter model using measured cutting forces instead of a mathematical model with empirical nature that describes them. The utilisation of measured cutting forces enables the prediction of real-time chatter conditions and stable machining. The chatter model is validated using fast Fourier transform (FFT) analyses for detection of chatter. The key contribution of the developed chatter model is that it can be incorporated in digital twins for process monitoring and control in order to achieve greater material removal rates and improved surface quality in future industrial applications involving machining processes. / Research Development Fund Publication Prize Award winner, Sep 2020.

Page generated in 0.051 seconds