• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 639
  • 175
  • 156
  • 57
  • 40
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • Tagged with
  • 1512
  • 205
  • 188
  • 179
  • 161
  • 150
  • 141
  • 106
  • 100
  • 99
  • 93
  • 92
  • 88
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Régulation de l'excitabilité et des oscillations du potentiel membranaire des neurones stratiaux: rôles des récepteurs de la dopamine et de l'adénosine et de leurs cascades de signalisation

Azdad, Karima 03 December 2008 (has links)
Les ganglions de la base forment un réseau neuronal mettant en jeu une circuiterie complexe et jouant un rôle essentiel dans la régulation des fonctions motrices, dans différentes formes d'apprentissage sensorimoteur, ainsi que dans les processus motivationnels. Cette régulation met en jeu une boucle cortico-striato-thalamo-corticale dans laquelle le striatum tient une position centrale en étant la principale structure d’entrée de ce réseau. Il joue le rôle de filtre en intégrant et traitant l’ensemble des informations qui y parviennent. Ce réseau neuronal complexe peut être altéré par différentes pathologies humaines (maladie de Parkinson, schizophrénie, chorée de Huntington, addiction aux drogues, …) qui résultent d’une perturbation ou d’une lésion au niveau d’une ou plusieurs structures composant le système des ganglions de la base.<p>Le striatum, premier relais du système des ganglions de la base, reçoit deux afférences principales :les voies dopaminergique nigro-striatale et glutamatergique cortico-striatale. En plus de ces deux afférences majeures, l’adénosine, par son action sur ses récepteurs, joue de nombreux rôles de régulation dans ce système. Ainsi, l’activité neuronale des neurones épineux moyens du striatum est modulée par les récepteurs de la dopamine qui sont en étroites interactions avec les récepteurs de l’adénosine. Bien que la signalisation de la dopamine et de l’adénosine ait été l’objet de nombreuses attentions, les mécanismes impliqués dans la régulation, par les récepteurs D2 de la dopamine et A2A de l’adénosine, dans le contrôle du potentiel membranaire et de l’excitabilité intrinsèque des neurones épineux moyens du striatum et leurs conséquences sur cette excitabilité en cas de déplétion en dopamine (mimant la maladie de Parkinson) restent encore très méconnues.<p>Dans ce travail de thèse, nous avons donc tenté d’élucider les mécanismes de régulation des récepteurs D2 et A2A et leurs interactions dans la modulation de la transition du potentiel membranaire et de l’excitabilité intrinsèque des neurones striataux, ainsi que les conséquences d’une déplétion en dopamine sur cette excitabilité neuronale. <p><p>Dans le premier travail de thèse, sur un modèle in vitro de transition du potentiel membranaire et par l’utilisation de peptides compétitifs, nous avons montré que les récepteurs D2 et A2A régulent le plateau de dépolarisation du potentiel membranaire induit par le NMDA via un mécanisme d’interaction protéine-protéine intramembranaire. En effet, l’activation du récepteur D2 supprime la transition entre un potentiel membranaire hyperpolarisé, le « down-state » et un plateau de dépolarisation du potentiel membranaire, le « up-state » par la régulation de l’activité du canal calcique Cav1.3a interagissant avec la protéine d’ancrage Shank. L’activation du récepteur A2A per se n’a pas d’effet, mais il réverse totalement la modulation de la transition du potentiel membranaire par le récepteur D2 selon un mécanisme dans lequel l’hétéromérisation des récepteurs A2A-D2 est strictement nécessaire, démontrant ainsi un intérêt physiologique direct de ces hétéromères. Nos travaux démontrent que la transition du potentiel membranaire et la fréquence de décharge des potentiels d’action des neurones striataux sont étroitement contrôlées par les récepteurs D2 et A2A via des interactions spécifiques protéine-protéine impliquant une hétéromérisation des récepteurs A2A-D2.<p><p>Dans la seconde étude présentée dans cette thèse, nous avons mis en évidence une régulation antagoniste de l’excitabilité intrinsèque des neurones épineux moyens du striatum par les récepteurs D2 et A2A via des mécanismes impliquant la modulation d’une conductance potassique de type A (IA). Par ailleurs, nous avons montré qu’une déplétion en dopamine conduit à une augmentation de l’excitabilité intrinsèque de ces neurones via une diminution d’une conductance IA. Malgré une forte diminution des afférences synaptiques excitatrices déterminées par une diminution de la densité des épines dendritiques et une augmentation du courant minimal nécessaire pour induire un premier EPSP, l’augmentation de l’excitabilité intrinsèque induite par la déplétion en dopamine résulte en un renforcement de la réponse des synapses restantes, permettant aux neurones striataux de répondre à une stimulation en provenance des afférences excitatrices de manière similaire voire même, plus efficace que dans les conditions contrôles. De plus, cette augmentation de l’excitabilité intrinsèque via la régulation d’une conductance IA représente une forme de plasticité homéostatique permettant au neurone de compenser une perturbation de l’activité neuronale ou de la transmission synaptique et donc d’assurer une stabilité de son patron de décharge des potentiels d’action. Ces données montrent la capacité de cette homéostasie à maintenir la fréquence de décharge des neurones striataux dans une gamme fonctionnelle, et ce dans des conditions pathologiques, permettant de stabiliser l’activité neuronale dans un réseau altéré.<p><p><p>En conclusion, l’ensemble de ce travail de thèse a permis de mettre en évidence une interaction fonctionnelle des récepteurs D2 de la dopamine et A2A de l’adénosine dans la régulation du contrôle de l’excitabilité des neurones épineux moyens du striatum. Il a également permis d’établir l’existence d’un mécanisme de plasticité homéostasique intervenant dans ce système neuronal altéré, afin de maintenir une activité électrique fonctionnelle des neurones striataux.<p> / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished
622

A perspective on neural and cognitive mechanisms of error commission

Hoffmann, Sven, Beste, Christian 28 July 2015 (has links)
Behavioral adaptation and cognitive control are crucial for goal-reaching behaviors. Every creature is ubiquitously faced with choices between behavioral alternatives. Common sense suggests that errors are an important source of information in the regulation of such processes. Several theories exist regarding cognitive control and the processing of undesired outcomes. However, most of these models focus on the consequences of an error, and less attention has been paid to the mechanisms that underlie the commissioning of an error. In this article, we present an integrative review of neuro-cognitive models that detail the determinants of the occurrence of response errors. The factors that may determine the likelihood of committing errors are likely related to the stability of task-representations in prefrontal networks, attentional selection mechanisms and mechanisms of action selection in basal ganglia circuits. An important conclusion is that the likelihood of committing an error is not stable over time but rather changes depending on the interplay of different functional neuro-anatomical and neuro-biological systems. We describe factors that might determine the time-course of cognitive control and the need to adapt behavior following response errors. Finally, we outline the mechanisms that may proof useful for predicting the outcomes of cognitive control and the emergence of response errors in future research.
623

Dopamine Receptor Supersensitivity

Kostrzewa, Richard M. 01 January 1995 (has links)
Dopamine (DA) receptor supersensitivity refers to the phenomenon of an enhanced physiological, behavioral or biochemical response to a DA agonist. Literature related to ontogenetic aspects of this process was reviewed. Neonatal 6-hydroxydopamine (6-OHDA) destruction of rat brain DA neurons produces overt sensitization to D1 agonist-induced oral activity, overt sensitization of some D2 agonist-induced stereotyped behaviors and latent sensitization of D1 agonist-induced locomotor and some stereotyped behaviors. This last process is unmasked by repeated treatments with D1 (homologous "priming") or D2 (heterologous "priming") agonists. A serotonin (5-HT) neurotoxin (5,7-dihydroxytryptamine) and 5-HT2C receptor antagonist (mianserin) attenuate some enhanced behavioral effects of D1 agonists, indicating that 5-HT neurochemical systems influence D1 receptor sensitization. Unlike the relative absence of change in brain D1 receptor number, DA D2 receptor proliferation accompanies D2 sensitization in neonatal 6-OHDA-lesioned rats. Robust D2 receptor supersensitization can also be induced in intact rats by repeated treatments in ontogeny with the D2 agonist quinpirole. In these rats quinpirole treatments produce vertical jumping at 3-5 wk after birth and subsequent enhanced quinpirole-induced antinociception and yawning. The latter is thought to represent D3 receptor sensitization. Except for enhanced D1 agonist-induced expression of c-fos, there are no changes in the receptor or receptor-mediated processes which account for receptor sensitization. Adaptive mechanisms by multiple "in series" neurons with different neurotransmitters may account for the phenomenon known as receptor supersensitivity.
624

Ex vivo Binding of the Agonist PET Radiotracer [11C]-(+)-PHNO to Dopamine D2/D3 Receptors in Rat Brain: Lack of Correspondence to the D2 Recepor Two-affinity-state Model

McCormick, Patrick N. 18 February 2011 (has links)
The dopamine D2 receptor exists in vitro in two states of agonist affinity: a high-affinity state mediating dopamine’s physiological effects, and a physiologically-inert low-affinity state. Our primary goal was to determine the in vivo relevance of this two-affinity-state model for the agonist PET radiotracer [11C]-(+)-PHNO, developed for measurement of the D2 high-affinity state. Our second goal was to characterize the regional D2 versus D3 pharmacology of [3H]-(+)-PHNO binding and assess its utility for measuring drug occupancy at both receptor subtypes. Using ex vivo dual-radiotracer experiments in conscious rats, we showed that, contrary to the two-affinity-state model, the binding of [11C]-(+)-PHNO and the antagonist [3H]-raclopride were indistinguishably inhibited by D2 partial agonist (aripiprazole), indirect agonist (amphetamine) and full agonist ((-)-NPA) pretreatment. Furthermore, ex vivo [11C]-(+)-PHNO binding was unaffected by treatments that increase in vitro high-affinity state density (chronic amphetamine, ethanol-withdrawal), whereas unilateral 6-OHDA lesion, which increases total D2 receptor expression, similarly increased the ex vivo binding of [11C]-(+)-PHNO and [3H]-raclopride. These results do not support the in vivo validity of the two-affinity-state model, suggesting instead a single receptor state for [11C]-(+)-PHNO and [3H]-raclopride in conscious rat. Importantly, we also demonstrated that the increased amphetamine-sensitivity of the agonist radiotracers [11C]-(+)-PHNO and [11C]-(-)-NPA, commonly seen in isoflurane-anaesthetized animals and cited as evidence for the two-affinity-state model, is due to the confounding effects of anaesthesia. Using in vitro and ex vivo autoradiography in rat and the D3 receptor-selective drug SB277011, we found that [3H]-(+)-PHNO binding in striatum and cerebellum lobes 9 and 10 was due exclusively to D2 and D3 receptor binding, respectively, but in other extra-striatal regions to a mix of the two receptor subtypes. Surprisingly, the D3 contribution to [3H]-(+)-PHNO binding was greater ex vivo than in vitro. Also surprising, several antipsychotic drugs, at doses producing 80% D2 occupancy, produced insignificant (olanzapine, risperidone, haloperidol) or small (clozapine, ~35%) D3 occupancy, despite similarly occupying both receptor subtypes in vitro. These data reveal a significant discrepancy between in vitro and ex vivo measures of dopamine receptor binding and suggest that the D3 occupancy is not necessary for the therapeutic effect of antispychotic drugs.
625

Leptin modulation of locomotor and emotional behaviors : the role of STAT3 signaling in dopamine neurons

de Andrade Fernandes, Maria Fernanda 06 1900 (has links)
La leptine circule en proportion de la masse graisseuse du corps et la transduction de son signal à travers la forme longue de son récepteur via un certain nombre de voies neurales , y compris MAPK, PI3-K ,AMPK et JAK2 - STAT3 . Il faut noter que STAT3 constitue une voie clée au récepteur de la leptine par laquelle la leptine module l'expression des gènes impliqués dans la régulation du bilan énergétique. La plupart des recherches ont porté sur la fonction du récepteur de la leptine au sein de l' hypothalamus, en particulier la fonction du récepteur de la leptine dans le noyau arqué. Toutefois, les récepteurs de la leptine sont également exprimés sur les neurones dopaminergiques de l'aire tégmentale ventrale et la leptine agit sur cette région du cerveau pour influencer la prise alimentaire, la motivation, la locomotion, l'anxiété et la transmission de la dopamine. De plus, la leptine active la STAT3 dans les dopaminergiques et GABAergiques populations neuronales. Bien que ces résultats contribuent à notre compréhension des multiples actions de la leptine dans le système nerveux central, il reste à résoudre les cellules et la signalisation du récepteur de la leptine qui sont responsables des effets neurocomportementaux de la leptine dans le mésencéphale. Visant à déterminer la contribution de la voie de signalisation STAT3 dans les neurones dopaminergiques du mésencéphale, nous avons généré une lignée de souris knockout conditionnel dans lequel l'activation du gène de STAT3 sur son résidu tyrosine 705 ( Tyr 705 ) est absent spécifiquement dans les neurones dopaminergiques. Avec l'utilisation de ce modèle de souris génétique, nous avons évalué l'impact de l'ablation de la signalisation STAT3 dans les neurones dopaminergiques sur un certain nombre de fonctions liées à la dopamine, y compris l'alimentation, la locomotion, les comportements liés à la récompense, l'émotion et la libération de dopamine dans le noyau accumbens. Fait intéressant, nous avons observé un dimorphisme sexuel dans le phénotype des souris STAT3DAT-KO. L'activation de la voie de signalisation STAT3 dans les neurones dopaminergiques est responsable de l'action de la leptine dans la réduction de la locomotion, récompense liée à l'activité physique, et de l'augmentation de la libération et de la disponibilité de la dopamine chez les souris mâles. Cependant, il ne module pas le comportement émotionnel. D'autre part, les souris femelles STAT3DAT-KO augmentent les niveaux d'anxiété et les niveaux plasmatiques de corticostérone, sans provoquer de changements de la dépression. Cependant, la perte d'activation de STAT3 dans les neurones dopaminergiques ne module pas le comportement locomoteur chez les souris femelles. Notamment, les actions de la leptine dans le mésencéphale pour influencer le comportement alimentaire ne sont pas médiées par l'activation de STAT3 dans les neurones dopaminergiques, considérant que les souris mâles et femelles ont un comportement alimentaire normal. Nos résultats démontrent que la voie de signalisation STAT3 dans les neurones dopaminergiques est responsable des effets anxiolytiques de la leptine, et soutient l'hypothèse que la leptine communique l'état d'énergie du corps (i.e. la relation entre la dépense et les apports énergétiques) pour les régions mésolimbiques pour atténuer les effets de motivation et de récompense de plusieurs comportements qui servent à réhabiliter ou à épuiser les réserves d'énergie. En outre, ce travail souligne l'importance d'étudier la modulation de la signalisation de la leptine dans différente types de cellules, afin d'identifier les voies de signalisation et les mécanismes cellulaires impliqués dans les différentes fonctions neuro-comportementales de la leptine. / The adipocyte-derived hormone leptin circulates in proportion to the body fat content and transduces its signal through the long form of its receptor via a number of neural pathways, including MAPK, PI3-K, AMPK and JAK2-STAT3. Of note, STAT3 constitutes a key pathway downstream to the leptin receptor by which leptin modulates the expression of genes involved in energy balance. Most research has focused on leptin receptor function within the hypothalamus, in particular leptin receptor function within the arcuate nucleus. However, leptin receptors are also expressed on dopaminergic neurons of the ventral tegmental area, and leptin has been shown to target this brain region to influence feeding, motivation, locomotion, anxiety and dopamine tone. Moreover, leptin activates STAT3 in both dopaminergic and GABAergic neuronal populations. Although these findings contribute to our understanding of the multiple actions of leptin in the central nervous system, it remains to be resolved which cells and leptin receptor signaling pathway mediates the neurobehavioral effects of leptin in the midbrain. Aiming at determining the contribution of STAT3 signaling in midbrain DA neurons, we generated a line of conditional knockout mice in which the main activation site of STAT3 gene (tyr 705) is absent specifically in dopaminergic neurons (STAT3DAT-KO mice). Using this genetic mouse model, we assessed the impact of ablation of STAT3 signaling in dopaminergic neurons on a number of dopamine-related functions, including feeding, locomotion, reward-related behaviors, emotion and nucleus accumbens dopamine release. Interestingly, we observed a sexual dimorphism in the phenotype of STAT3DAT-KO mice. STAT3 signaling in DA neurons mediates the actions of leptin in the midbrain to decrease locomotion and running reward, and to increase dopamine release and availability in male mice. However, it does not modulate emotional behavior. On the other hand, STAT3DAT-KO female mice exhibited increased anxiety-like behavior accompanied by increased plasma corticosterone levels, without changes in behavioral despair relative to littermate controls. However, loss of STAT3 activation in dopaminergic neurons does not modulate locomotor behavior in female mice. Notably, the actions of leptin in the midbrain to influence feeding behavior are not mediated by STAT3 signaling in dopaminergic neurons, as both male and female STAT3DAT-KO mice have normal feeding behavior as compared to littermate controls. Our results demonstrate that STAT3 signaling in dopaminergic neurons mediates the anxiolytic actions of leptin, and support the hypothesis that leptin communicates body energy status (defined as a relationship between energy intake and energy expenditure) to mesolimbic regions to adjust the motivational and rewarding effects of multiple behaviors that serve to either restore or deplete energy stores. In addition, this work highlight the importance of studying cell-type specific modulation of leptin signaling molecules to tease apart pathways and the mechanisms involved in the different neurobehavioral functions of this adipocyte-derived hormone.
626

Rôle de la D-sérine dans les interactions entre systèmes dopaminergique et glutamatergique dans le cortex préfrontal du rat adulte / Role of D-serine in the interaction between dopaminergic and glutamatergic systems in the prefrontal cortex of adult rat

Turpin, Fabrice 21 December 2010 (has links)
Le cortex préfrontal (PFC) est le principal locus des perturbations dans l’activité des réseaux de neurones chez les schizophrènes. Ces perturbations résultent d’une dérégulation des interactions entre le système dopaminergique et le système glutamatergique dont l’origine demeure inconnue. Il est acquis que les cellules gliales détectent et intègrent les signaux synaptiques, et libèrent différentes substances neuroactives comme la D-sérine. Cet acide aminé est aujourd’hui reconnu comme le coagoniste endogène des récepteurs au glutamate de type NMDA dans de nombreuses aires cérébrales. Mon travail de thèse est centré sur le rôle de la d-sérine dans la transmission synaptique excitatrice glutamatergique dans le PFC du rongeur adulte et dans la gouvernance des interactions entre systèmes glutamatergique et dopaminergiques J’ai tout d’abord montré en utilisant des enregistrements électrophysiologiques sur tranches que la d-sérine est le coagoniste des récepteurs NMDA synaptiques dans les couches V/VI du PFC. Cet acide aminé est synthétisé par les astrocytes et contrôle l’induction de la potentialisation à long terme. D’autre part, j’ai montré que la dopamine exerce un effet biphasique sur l’activité des récepteurs NMDA synaptiques et sur l’excitabilité des neurones pyramidaux des couches V/VI du PFC et ce en contrôlant la libération de d-sérine. Une approche pharmacologique sélective a permis de mettre en évidence le rôle des récepteurs D1 dans les effets potentialisateurs et le rôle des récepteurs D2/D3 dans les effets inhibiteurs de la dopamine. Mon travail démontre que les astrocytes arborent des récepteurs à la dopamine qui contrôlent la libération de la d-sérine. / The prefontal cortex (PFC) is the main locus where dysfunctions of neuronal networks are evident in schizophrenia. These dysfunctions are caused by an impairment of cross-talk between dopaminergic and glutamatergic systems whose origin is unknown. It is now accepted that glia detect and integrate synaptic signals and then release many neuroactive substances such as D-serine. This amino acid is now considered to be the endogenous coagonist of the NMDA subtype receptors for glutamate in many brain areas. My PhD work focuses on the functions of d-serine in glutamatergic excitatory synaptic transmission in the PFC of adult rodent and in governing the interactions between dopaminergic and glutamatergic systems. First, using electrophysiological recordings on brain slices, I have shown that d-serine is the coagonist of synaptic NMDA receptors in layers V/VI of PFC. This amino acid is synthesized by glia and is crucial for the induction of long term potentiation. In addition, I have shown that dopamine has a bell-shape effect on the activity of synaptic NMDA receptors and on the excitability of excitatory pyramidal neurons by controlling the release of d-serine. The use of specific pharmacological tools allowed me to show the potentiating effects of dopamine are mediated by D1 receptors whereas the inhibitory effects are due to the activation of D2/D3 receptors. Finally, my work highlights the presence of functional dopaminergic receptors on astrocytes that modulate the release of d-serine in the PFC, thus impacting NMDA receptor activity.
627

Une lésion neurotoxique de l’habenula latérale amplifie la locomotion induite par un psychostimulant sans altérer la récompense

Gifuni, Anthony 12 1900 (has links)
L’habenula, un noyau épithalamique, est située au centre de la voie dorsale diencéphalique. Cette voie relie les structures limbiques et les ganglions de la base aux cellules monoaminergiques du mésencéphale. En particulier, l’habenula latérale (HbL) projette directement aux cellules dopaminergiques et GABAergiques de l’aire tegmentale ventrale (ATV). L’ATV est le site d’origine de la voie mésolimbique dopaminergique, une voie impliquée de façon cruciale dans la manifestation des comportements dirigés. L’importance de cette projection habenulaire pour le comportement demeure encore méconnue. Ainsi, l’objectif de cette étude est d’approfondir notre compréhension du rôle de régulation de l’HbL sur les comportements dépendants de la neurotransmission dopaminergique. MATÉRIEL ET MÉTHODES: Des rats adultes mâles Sprague-Dawley ont été anesthésiés avec de l’isofluorane et installés sur un appareil stéréotaxique. L’acide iboténique, une neurotoxine agoniste des récepteurs glutamatergiques, était infusée bilatéralement dans l’HbL (0,25 μg/0,25 μl/côté). Les rats du groupe contrôle recevaient des infusions NaCl 0,9%. Les rats de l’expérience d’autostimulation intracérébrale (ASIC) étaient aussi implantés d’une électrode monopolaire dans le mésencéphale postérieur. Un groupe de rats était testé pour leur réponse de locomotion à l’amphétamine (0; 0,5 ou 1 mg/kg, intrapéritonéal), dix jours suivant la lésion de l’HbL. La locomotion était mesurée dans des chambres d’activité, chacune équipée de deux faisceaux parallèles infrarouges. Le jour du test, les rats étaient pesés et placés dans la chambre d’activité puis leur activité locomotrice de base était mesurée pendant une heure. Les rats recevaient ensuite une dose d’amphétamine ou le véhicule (NaCl 0,9%) par voie intrapéritonéale et l’activité locomotrice était mesurée pendant deux heures supplémentaires. Un groupe de rats distinct a été utilisé dans l’expérience d’ASIC. Commençant sept jours suivant la lésion, les rats étaient entraînés à appuyer sur un levier afin de s’autoadministrer des stimulations électriques, au cours de sessions quotidiennes. Nous avons ensuite mesuré chacun des taux de réponses d’une série de stimulations aux fréquences décroissantes. À partir d’une courbe réponses-fréquences, le seuil de récompense était inféré par la fréquence de la stimulation nécessaire pour produire une réponse semi-maximale. Les seuils de récompense étaient stabilisés à un niveau similaire pour l’ensemble des rats. Enfin, l’effet sur la récompense de l’amphétamine était testé aux mêmes doses employées pour l’expérience de locomotion. RÉSULTATS: Une lésion neurotoxique de l’HbL n’a pas altéré les niveaux de base de l’activité locomotrice dans chaque groupe. Cependant, une telle lésion a potentialisé l’effet de locomotion de l’amphétamine (1 mg/kg) pendant la première heure suivant son administration, et une tendance similaire était observable pendant la seconde heure. À l’inverse, nous n’avons observé aucune interaction entre une lésion à l’HbL et l’effet amplificateur sur la récompense de l’amphétamine. CONCLUSION: Nos résultats révèlent une importante contribution fonctionnelle de l’HbL à la locomotion induite par l’activation de la voie mésolimbique dopaminergique avec une dose de 1 mg/kg d’amphétamine. À l’opposé, aucun effet sur la récompense n’a été observé. Ces résultats suggèrent que l’activation psychomotrice et l’amplifiation de la récompense produite par l’amphétamine dépendent de substrats dissociables, chacun étant différentiellement sensible à la modulation provenant de l’HbL. / The habenula, an epithalamic nucleus, is centrally located within the dorsal diencephalic conduction system. This dorsal pathway connects the limbic forebrain and basal ganglia to midbrain monoaminergic cell groups intricately involved in the control of behavior. In particular, the lateral habenula (LHb) projects to, among other sites, the ventral tegmental area (VTA). Indeed, recent work has revealed direct LHb innervation of VTA dopamine as well as GABA cells. Little is known, however, about the behavioral relevance of this innervation but this knowledge is of potential importance, since the VTA gives rise to the mesolimbic dopamine pathway, a system critically involved in goal-directed behavior. Our aim here was to begin to understand the contribution of the LHb to dopamine-dependent behaviors. To do this, we produced neurotoxic lesions of the LHb and measured amphetamine-enhanced locomotion and intracranial self-stimulation (ICSS), two behaviors highly sensitive to mesolimbic dopamine neurotransmission. METRIALS AND METHODS: Adult male Sprague-Dawley rats were anesthetised with isoflurane and mounted onto a stereotaxic apparatus. Ibotenic acid, an excitatory neurotoxin at glutamatergic receptors, was infused bilaterally into the LHb (0.25 μg/0.25 μl/side). Sham-lesioned rats received infusions of 0.9% sterile saline. Rats in the ICSS experiment were additionally implanted with a monopolar stimulation electrode in the posterior mesencephalon. One group of rats was tested for their locomotor response to amphetamine (0, 0.5 or 1 mg/kg, i.p.), ten days after LHb lesion. Locomotion was measured in rectangular activity chambers, each equipped with two parallel infrared photobeams. On test day, rats were weighed, placed in the activity chamber and baseline locomotor activity was measured for 1 hour. Rats then received amphetamine or vehicle (0.9% saline) and locomotor activity was measured for 2 more hours. A separate group of rats was used in the ICSS experiment. Beginning seven days post-lesion, rats were trained to press a lever in order to self-administer trains of stimulation pulses. We then measured response rates at each of a series of pulse frequencies during daily sessions. From these response-frequency curves, we obtained estimates of reward thresholds, defined as the pulse frequency necessary for half-maximal responding. Baseline reward thresholds were matched across all rats and once stable, we tested the reward-enhancing effect of amphetamine, at the same doses tested in the locomotion experiment. RESULTS: Neurotoxic lesions of the LHb did not alter baseline locomotor activity in either group. Amphetamine enhanced locomotor activity throughout the entire 2 hour test. Importantly, the locomotor stimulant effect of amphetamine (1 mg/kg) was significantly greater in lesioned rats during the first hour, and a similar tendency was observed during the second hour. On the other hand, we did not observe any difference in amphetamine-induced enhancement of reward between lesioned and sham rats, at any dose or any time post-injection. CONCLUSION: Our findings reveal an important functional contribution of the LHb to dopamine-mediated locomotion. On the other hand, the clear dissociation between the locomotor-stimulant and rewarding effects of amphetamine suggests that the neural substrates mediating these two are dissociable and differentially sensitive to LHb modulation.
628

L’amphétamine intra-habenulaire n’altère pas l’effet de récompense induit par la stimulation électrique du raphé dorsal

Duchesne, Vincent 08 1900 (has links)
La contribution de la neurotransmission dopaminergique dans le noyau accumbens à l’effet de récompense induit par la stimulation électrique du cerveau a été l’objet de plusieurs années de recherche. Cependant, d’autres sites recevant des terminaisons dopaminergiques pourraient contribuer à moduler la récompense dans d’autres régions cérébrales. Parmi elles, on retrouve l’habenula qui reçoit des projections dopaminergiques de l’aire tegmentale ventrale. La contribution de cette voie au phénomène de récompense en général et à l’effet de recompense induit par l’autostimulation intracrânienne est peu connue. Le but de cette recherche était d’étudier la contribution de la dopamine mésohabenulaire à l’effet de recompense induit par la stimulation électrique du raphé dorsal. Des rats ont été implantés d’une bicanule dans l’Hb et d’une électrode dans le raphé dorsal. Le paradigme du déplacement de la courbe a été utilisé pour évaluer les changements dans l’effet de récompense à la suite de l’injection intra-habenulaire d’amphétamine (10-40 μg). À titre de contrôles positifs, des rats ont reçu l’amphétamine dans le core et dans le shell (1-20 μg) du noyau accumbens. Les injections d’amphétamine dans l’habenula n’ont pas changé l’effet de récompense induit par la stimulation électrique. Dans le noyau accumbens, les injections dans le shell et le core provoquent des augmentations dans l’effet de récompense comme il a déjà été démontré. Nos résultats suggèrent que la neurotransmission dopaminergique dans l’habenula latérale ne contribue pas significativement au circuit soutenant l’effet renforçant de la stimulation électrique du cerveau. / The contribution of nucleus accumbens dopamine neurotransmission to reward and reinforcement has been the focus of many years of study. Other terminal sites have received comparatively less research attention, but may be potentially important. One of these sites is the lateral habenula, which receives dopaminergic innervation from cells arising from the ventral tegmental area. Very little is known about the contribution of this pathway to reward in general and to the rewarding effect of electrical brain stimulation in particular. The goal of this study was to study the contribution of mesohabenular dopamine to reward induced by electrical stimulation of the dorsal raphe. Male Sprague-Dawley rats were implanted with bilateral cannulae in the lateral habenula and a stimulation electrode aimed at the dorsal raphe nucleus. Using the curveshift paradigm, we measured the rewarding effect of intra-habenular infusions of amphetamine (10-40 μg). Control rats received amphetamine infusions into nucleus accumbens core or shell subregions (1-20 μg). Our findings show that regardless of concentration, intra-habenular amphetamine did not alter brain stimulation reward. Infusions into the nucleus accumbens enhanced the rewarding effectiveness of the stimulation, as previously shown. Our findings suggest that dopaminergic neurotransmission within the lateral habenula does not contribute significantly to the circuitry that mediates the rewarding effect of electrical brain stimulation.
629

La perception du contraste de 1er et de 2e ordre chez des personnes atteintes de la maladie de Parkinson sous médication dopaminergique

Chevrier, Éliane January 2007 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
630

Effets neurophysiologiques de la stimulation du nerf vague : implication dans le traitement de la dépression résistante et optimisation des paramètres de stimulation

Manta, Stella 01 1900 (has links)
La dépression est une pathologie grave qui, malgré de multiples stratégies thérapeutiques, demeure résistante chez un tiers des patients. Les techniques de stimulation cérébrale sont devenues une alternative intéressante pour les patients résistants à diverses pharmacothérapies. La stimulation du nerf vague (SNV) a ainsi fait preuve de son efficacité en clinique et a récemment été approuvée comme traitement additif pour la dépression résistante. Cependant, les mécanismes d’action de la SNV en rapport avec la dépression n’ont été que peu étudiés. Cette thèse a donc eu comme premier objectif de caractériser l’impact de la SNV sur les différents systèmes monoaminergiques impliqués dans la pathophysiologie de la dépression, à savoir la sérotonine (5-HT), la noradrénaline (NA) et la dopamine (DA), grâce à l’utilisation de techniques électrophysiologiques et de la microdialyse in vivo chez le rat. Des études précliniques avaient déjà révélé qu’une heure de SNV augmente le taux de décharge des neurones NA du locus coeruleus, et que 14 jours de stimulation sont nécessaires pour observer un effet comparable sur les neurones 5-HT. Notre travail a démontré que la SNV modifie aussi le mode de décharge des neurones NA qui présente davantage de bouffées, influençant ainsi la libération terminale de NA, qui est significativement augmentée dans le cortex préfrontal et l’hippocampe après 14 jours. L’augmentation de la neurotransmission NA s’est également manifestée par une élévation de l’activation tonique des récepteurs postsynaptiques α2-adrénergiques de l’hippocampe. Après lésion des neurones NA, nous avons montré que l’effet de la SNV sur les neurones 5-HT était indirect, et médié par le système NA, via l’activation des récepteurs α1-adrénergiques présents sur les neurones du raphé. Aussi, tel que les antidépresseurs classiques, la SNV augmente l’activation tonique des hétérorécepteurs pyramidaux 5-HT1A, dont on connait le rôle clé dans la réponse thérapeutique aux antidépresseurs. Par ailleurs, nous avons constaté que malgré une diminution de l’activité électrique des neurones DA de l’aire tegmentale ventrale, la SNV induit une augmentation de la DA extracellulaire dans le cortex préfrontal et particulièrement dans le noyau accumbens, lequel joue un rôle important dans les comportements de récompense et l’hédonie. Un deuxième objectif a été de caractériser les paramètres optimaux de SNV agissant sur la dépression, en utilisant comme indicateur le taux de décharge des neurones 5-HT. Des modalités de stimulation moins intenses se sont avérées aussi efficaces que les stimulations standards pour augmenter l’activité électrique des neurones 5-HT. Ces nouveaux paramètres de stimulation pourraient s’avérer bénéfiques en clinique, chez des patients ayant déjà répondu à la SNV. Ils pourraient minimiser les effets secondaires reliés aux périodes de stimulation et améliorer ainsi la qualité de vie des patients. Ainsi, ces travaux de thèse ont caractérisé l’influence de la SNV sur les trois systèmes monoaminergiques, laquelle s’avère en partie distincte de celle des antidépresseurs classiques tout en contribuant à son efficacité en clinique. D’autre part, les modalités de stimulation que nous avons définies seraient intéressantes à tester chez des patients recevant la SNV, car elles devraient contribuer à l’amélioration des bénéfices cliniques de cette thérapie. / Depression is a severe psychiatric disorder, in which a third of patients do not achieve remission, despite the wide variety of therapeutic strategies that are currently available. Brain stimulation has emerged as a promising alternative therapy in cases of treatment resistance. Vagus nerve stimulation (VNS) has shown promise in treating resistant-depressed patients, and it has been approved as an adjunctive treatment for resistant depression. However, the mechanism of action by which VNS exerts its antidepressant effects has remained elusive. The first goal of this thesis was therefore to characterize the impact of VNS on monoaminergic systems known to be implicated in the pathophysiology of depression such as serotonin (5-HT), norepinephrine (NE) and dopamine (DA), by means of electrophysiologic techniques and microdialysis in the rat brain. Previous research has indicated that one hour of VNS increased the basal firing activity of locus coeruleus NE neurons and, secondarily, that of 5-HT neurons, but only after 14 days of stimulation. Our work demonstrated that VNS also modified the firing pattern of NE neurons towards a bursting mode of discharge. This mode of firing was shown to lead to enhanced NE release in the prefrontal cortex and hippocampus after 14 days. Increased NE neurotransmission was also evidenced by enhanced tonic activation of postsynaptic α2-adrenoceptors in the hippocampus. Selective lesioning of NE neurons was then used to demonstrate that the effects of VNS on the 5-HT system were indirect, and mediated by the activation of α1-adrenoceptors located on the dorsal raphe 5-HT neurons. Similar to classical antidepressants, VNS also enhanced the tonic activation of pyramidal 5-HT1A heteroreceptors, which are known to play a key role in the antidepressant response. We also found that in spite of a diminished firing activity of ventral tegmental area DA neurons after VNS, extracellular DA levels were significantly elevated in the prefrontal cortex, and particularly in the nucleus accumbens which plays an important role in reward behavior and hedonia. A second objective was to characterize the optimal VNS parameters to treat depression using the firing activity of 5-HT neurons as an indicator. It was found that less stimulation was as effective as the standard levels to increase 5-HT neurons firing rate. These novel parameters could be helpful for clinical application in VNS responsive patients, to potentially minimize and/or even prevent stimulation-related side effects, thus improving their quality of life. In brief, these studies reveal an influence of VNS on all three central monoamine systems, which differs in part from that of classical antidepressants while contributing to the clinical efficacy of this approach. It will also be interesting to determine whether the proposed lower stimulation parameters are as effective in providing antidepressant response in patients receiving VNS, which should contribute to improve the clinical benefits of that therapy.

Page generated in 0.056 seconds