• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 8
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 105
  • 14
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Algebraické křivky v historii a ve škole / Algebraic curves in history and school

Fabián, Tomáš January 2016 (has links)
TITLE: Agebraic Curves in History and School AUTHOR: Bc. Tomáš Fabián DEPARTMENT: The Department of mathematics and teaching of mathematics SUPERVISOR: prof. RNDr. Ladislav Kvasz, Dr. ABSTRACT: The thesis includes a series of exercises for senior high school students and the first year of university students. In these exercises, students will increase their knowledge about conics, especially how to draw them. Furthermore, students can learn about two unfamiliar curves: Conchoid and Quadratrix. All these curves are afterwards used for solving other problems - some Apollonius's problems, Three impossible constructions etc. Most of the construction is done in GeoGebra software. All the tasks are designed for students to learn how to work with this software. The subject discussed is put into historical context, and therefore the exercises are provided with historical commentary. The thesis also includes didactic notes, important or interesting solutions of exercises, possible issues, mistakes and another relevant notes. KEYWORDS: conic, circle, ellipse, parabola, hyperbole, conchoid, quadratrix, trisecting an angle, squaring the circle, rectification of the circle, doubling a cube, Apollonius's problem, GeoGebra
92

Nonlinear architected metasurfaces for acoustic wave scattering manipulation / Métasurfaces non linéaires architecturées pour le contrôle des ondes acoustiques

Guo, Xinxin 06 December 2018 (has links)
Ces dernières années, les métamatériaux acoustiques sont largement étudiés pour leur intérêt dans la réalisation de divers types de contrôle des ondes à une échelle sub-longueur d’onde. En particulier, les métasurfaces acoustiques ont montré leur capacité à manipuler des ondes en limites de milieux de propagation via les processus de réflexion, de transmission et de réfraction. Contrairement au régime linéaire qui concerne l’immense majorité des travaux sur les métamatériaux acoustiques, les études sur les propriétés non linéaires des métamatériaux, de surcroit des métasurfaces, restent peu nombreuses, malgré la possibilité de générer des phénomènes acoustiques riches et variés. Les principaux freins au développement des métamatériaux non linéaires sont l'efficacité généralement faible de la réponse non linéaire et le manque de contrôle sur cette non-linéarité. Les travaux de recherche présentés ici ont donc pour objectif de concevoir des architectures de métasurfaces élastiques, permettant un contrôle des ondes acoustiques dans le régime non linéaire. En particulier l’effet de conversion d’une onde fondamentale vers son deuxième harmonique est étudié dans le processus de réflexion et de transmission unidirectionnelle. Cela nécessite le design de la non-linéarité élastique, qui est réalisé à base de modélisations discrètes de systèmes masses-ressorts et d'architectures composées d'éléments tournants. Les métasurfaces ainsi conçues, résonantes et à non-linéarité contrôlée, permettent de générer des effets non linéaires acoustiques inhabituels, potentiellement intéressants pour la manipulation d'ondes acoustiques. / In recent years, acoustic metamaterials have proven to be of great interest for their ability to achieve a variety of wave control at sub-wavelength scale. In particular, acoustic metasurfaces have shown their ability to manipulate waves from the boundaries of propagation media, via the reflection, transmission and refraction processes. Unlike the linear regime which has been extensively investigated in acoustic metamaterials, studies of the nonlinear acoustic properties of metamaterials, especially nonlinear acoustic metasurfaces, are quite scarce, despite the possibility to lead to a rich and diverse set of non-trivial acoustic phenomena. The key limitations in the development of nonlinear acoustic metamaterials are the typically weak efficiency of their nonlinear response together with the lack of control on this nonlinearity. This PhD research is thus dedicated to the design of nonlinear elastic metamaterial and metasurface architectures, enabling acoustic wave control in the nonlinear regime. Specifically, the conversion effect from a fundamental wave to its second harmonic is studied through the one-dimensional scattering process (reflection and transmission) by metasurfaces. This requires the elastic nonlinearity management, realized via the discrete modeling of lumped-element systems and architectures made of rotating units. Such designed metasurfaces, resonating and with harnessed nonlinearity, can create unusual nonlinear acoustic effects, potentially interesting for wave control. This research open the path to a more systematic study of nonlinear acoustic wave manipulation by metamaterials.
93

Characterization of bone marrow stromal clonal populations derived from osteoarthritis patients

Mareddy, Shobha R. January 2008 (has links)
This work is concerned with the characterization of mesenchymal stem cells (MSC) specifically from bone marrow samples derived from patients with osteoarthritis (OA). The multilineage potential of mesenchymal stem cells as well as their ease of exvivo expansion makes these cells an attractive therapeutic tool for applications such as autologous transplantation and tissue engineering. Bone marrow is considered a source of MSC. However, there is a general assumption that the occurrence of MSCs and their activity in bone marrow diminishes with age and disease. This prompted us to isolate and identify multipotential and self-renewing cells from patients with the degenerative disease osteoarthritis, with the view of using these cells for autologous cell therapies. It is therefore of great potential benefit to investigate the isolation and characterization of stem cell/progenitors from bone marrow samples of patients with osteoarthritis in greater detail. We employed a single cell clone culture method in order to develop clonal cell populations from three bone marrow samples and characterized them based on their proliferation and differentiation capabilities. The clonal populations were grouped into fast-growing and slow-growing clones based on their proliferation rates. The fastgrowing clones displayed 20-30% greater proliferation rate than the slow-growing clones. The study also revealed that the proliferation rates were directly proportional to their differentiation capacities. Most of the fast-growing clones were found to be tripotential for osteogenic, chondrogenic and adipogenic lineages, whereas the slow growing clones were either uni or bipotential. Flow cytometry analysis for the phenotype determination using putative MSC surface markers did not reveal any difference between the two clonal populations indicating a need for further molecular studies. Two approaches were employed to further investigate the molecular processes involved in the existence of such varying populations. In the first method gene expression studies were performed between the fast-growing (n=3) and slow-growing (n=3) clonal populations to identify potential genetic markers associated with cell 'sternness' using the Stem Cell RT2 ProfilerTM PCR Array comprising a series of 84 genes related to stem cell pathways. Ten genes were identified to be commonly and significantly over represented in the fast-growing stem cell clones when compared to slow-growing clones. This included expression of transcripts beyond MSC lineage specification such as SOX2, NOTCH1 and FOXA2 which signified that stem cell maintenance requires a coordinated regulation by multiple signalling pathways. The second study involved an extensive protein expression profiling of the fast growing (n=2) and slow growing (n=2) clonal populations using off-line Two Dimensional Liquid Chromatography (2D-LC)/Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry (MS). A total of 67 proteins were identified, of which 11 were expressed at significantly different levels between the subpopulations. Protein ontology revealed these proteins to be associated with cellular organization, cytokinesis, signal transduction, energy pathways and cell stress response. Of particular interest was the differential presentation of the proteins calmodulin, tropomyosin and caldesmon between fast- and slow-growing clones. Based on their reported roles in the regulation of cell proliferation and maintenance of cell integrity, we draw an association between their expression and the altered status in which the subpopulations exist. Based on our observations, these proteins may be prospective molecular markers to distinguish between the fast-growing and slow-growing subpopulations. In summary, this study demonstrated the existence of potential stem cells of therapeutic importance in spite of a supposedly smaller stem cell compartment in patients with osteoarthritis. Furthermore, the differentially expressed genes between the sub-populations highlight the 'sternness' of the potential clones, an observation supported by the expression of proteins which act as effective modulators in the maintenance of cell integrity and cell cycle regulation. This study provides a basis for more detailed investigations in search of selective cell surface markers
94

Experiments with Ultracold Fermi Gases : quantum Degeneracy of Potassium-40 and All-solid-state Laser Sources for Lithium / Expériences avec des Gaz de Fermi Ultrafroids : dégénérescence quantique de potassium-40 et sources lasers à l’état solide pour lithium

Kretzschmar, Norman 26 June 2015 (has links)
Cette thèse présente de nouvelles techniques pour l'étude expérimentale des gaz quantique ultrafroids d'atomes fermioniques de lithium et de potassium. Dans la première partie de cette thèse, nous décrivons la conception et la caractérisation des nouveaux composants de notre dispositif expérimental capable de piéger et refroidir simultanément des atomes de $^6$Li et de $^{40}$K à des températures ultrabasses. Nous rendons compte d'une nouvelle technique de refroidissement sub-Doppler, reposant sur la transition de la raie D$_1$ des atomes alcalins, pour refroidir des atomes de lithium et de potassium par laser. Après cette étape de mélasse, nous avons mesuré une densité dans l'espace des phases de l'ordre de $10^{-4}$ à la fois pour le $^6$Li et le $^{40}$K. Nous présentons le refroidissement par évaporation forcée d'atomes de $^{40}$K qui commence dans un piège magnétique quadripolaire pluggé et continue dans un piège optique dipolaire. Dans ce contexte, nous rendons compte de la production d'un gaz quantique de Fermi dégénéré de $1.5\times10^5$ atomes de $^{40}$K dans un piège dipolaire croisé avec $T/T_{_F} = 0.17$, ce qui ouvre la voie à l'étude des superfluides de $^{40}$K en interaction forte. Dans la deuxième partie de cette thèse, nous présentons une source laser à état solide, de faible largeur spectrale et capable d'émettre 5.2 W de puissance autour de 671 nm, dans la gamme des longueurs d'onde des transitions de la raie D du lithium. La source repose sur un laser en anneau pompé par diode, émettant sur la transition à 1342 nm de Nd:YVO$_4$, capable de produire 6.5 W de lumière dans un faisceau monomode limité par la diffraction. Nous rendons compte de trois différentes approches pour la génération de seconde harmonique du faisceau de sortie, à savoir en utilisant une cavité amplificatrice comprenant un cristal ppKTP, par doublage de fréquence intracavité et par un structure de guide d'onde de ppZnO:LN. / This thesis presents novel techniques for the experimental study of ultracold quantum gases of fermionic lithium and potassium atoms. In the first part of this thesis, we describe the design and characterization of the new components of our experimental apparatus capable of trapping and cooling simultaneously $^6$Li and $^{40}$K atoms to ultracold temperatures. We report on a novel sub-Doppler cooling mechanism, operating on the D$_1$ line transition of alkali atoms, for laser cooling of lithium and potassium. The measured phase space densities after this molasses phase are on the order of $10^{-4}$ for both $^6$Li and $^{40}$K. We present the forced evaporative cooling of $^{40}$K atoms, starting in an optically plugged magnetic quadrupole trap and continuing in an optical dipole trap. In this context, we report on the production of a quantum degenerate Fermi gas of $1.5\times10^5$ atoms $^{40}$K in a crossed dipole trap with $T/T_{_F} = 0.17$, paving the way for the study of strongly interacting superfluids of $^{40}$K. In the second part of this thesis, we present a narrow-linewidth, all-solid-state laser source, emitting 5.2 W in the vicinity of the lithium D-line transitions at 671 nm. The source is based on a diode-end-pumped unidirectional ring laser operating on the 1342 nm transition of Nd:YVO$_4$, capable of producing 6.5 W of single-mode light delivered in a diffraction-limited beam. We report on three different approaches for second-haromonic generation of its output beam, namely by employing an enhancement cavity containing a ppKTP crystal, intracavity frequency doubling and a ppZnO:LN waveguide structure.
95

Renormalisation dans les algèbres de HOPF graduées connexes / Renormalization in connected graded Hopf algebras

Belhaj Mohamed, Mohamed 29 November 2014 (has links)
Dans cette thèse, nous nous intéressons à la renormalisation de Connes et Kreimer dans le contexe des algèbres de Hopf de graphes de Feynman spécifiés. Nous construisons une structure d'algèbre de Hopf $\mathcal{H}_\mathcal{T}$ sur l'espace des graphes de Feynman spécifié d'une théorie quantique des champs $\mathcal{T}$. Nous définissons encore un dédoublement $\wt\mathcal{D}_\mathcal{T}$ de la bigèbre de graphes de Feynman spécifiés, un produit de convolution \divideontimes et un groupe de caractères de cette algèbre de Hopf à valeurs dans une algèbre commutative qui prend en compte la dépendance en les moments extérieurs. Nous mettons en place alors la renormalisation décrite par A. Connes et D. Kreimer et la décomposition de Birkhoff pour deux schémas de renormalisation : le schéma minimal de renormalisation et le schéma de développement de Taylor. Nous rappelons la définition des intégrales de Feynman associées à un graphe. Nous montrons que ces intégrales sont holomorphes en une variable complexe D dans le cas des fonctions de Schwartz, et qu'elles s'étendent en une fonction méromorphe dans le cas des fonctions de types Feynman. Nous pouvons alors déterminer les parties finies de ces intégrales en utilisant l'algorithme BPHZ après avoir appliqué la procédure de régularisation dimensionnelle. / In this thesis, we study the renormalization of Connes-Kreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure.
96

Problèmes de transport partiel optimal et d'appariement avec contrainte / Optimal partial transport and constrained matching problems

Nguyen, Van thanh 03 October 2017 (has links)
Cette thèse est consacrée à l'analyse mathématique et numérique pour les problèmes de transport partiel optimal et d'appariement avec contrainte (constrained matching problem). Ces deux problèmes présentent de nouvelles quantités inconnues, appelées parties actives. Pour le transport partiel optimal avec des coûts qui sont donnés par la distance finslerienne, nous présentons des formulations équivalentes caractérisant les parties actives, le potentiel de Kantorovich et le flot optimal. En particulier, l'EDP de condition d'optimalité permet de montrer l'unicité des parties actives. Ensuite, nous étudions en détail des approximations numériques pour lesquelles la convergence de la discrétisation et des simulations numériques sont fournies. Pour les coûts lagrangiens, nous justifions rigoureusement des caractérisations de solution ainsi que des formulations équivalentes. Des exemples numériques sont également donnés. Le reste de la thèse est consacré à l'étude du problème d'appariement optimal avec des contraintes pour le coût de la distance euclidienne. Ce problème a un comportement différent du transport partiel optimal. L'unicité de solution et des formulations équivalentes sont étudiées sous une condition géométrique. La convergence de la discrétisation et des exemples numériques sont aussi établis. Les principaux outils que nous utilisons dans la thèse sont des combinaisons des techniques d'EDP, de la théorie du transport optimal et de la théorie de dualité de Fenchel--Rockafellar. Pour le calcul numérique, nous utilisons des méthodes du lagrangien augmenté. / The manuscript deals with the mathematical and numerical analysis of the optimal partial transport and optimal constrained matching problems. These two problems bring out new unknown quantities, called active submeasures. For the optimal partial transport with Finsler distance costs, we introduce equivalent formulations characterizing active submeasures, Kantorovich potential and optimal flow. In particular, the PDE of optimality condition allows to show the uniqueness of active submeasures. We then study in detail numerical approximations for which the convergence of discretization and numerical simulations are provided. For Lagrangian costs, we derive and justify rigorously characterizations of solution as well as equivalent formulations. Numerical examples are also given. The rest of the thesis presents the study of the optimal constrained matching with the Euclidean distance cost. This problem has a different behaviour compared to the partial transport. The uniqueness of solution and equivalent formulations are studied under geometric condition. The convergence of discretization and numerical examples are also indicated. The main tools which we use in the thesis are some combinations of PDE techniques, optimal transport theory and Fenchel--Rockafellar dual theory. For numerical computation, we make use of augmented Lagrangian methods.
97

Algebraické křivky v historii a ve škole / Algebraic Curves in History and School

Fabián, Tomáš January 2015 (has links)
TITLE: Agebraic Curves in History and School AUTHOR: Bc. Tomáš Fabián DEPARTMENT: The Department of mathematics and teaching of mathematics SUPERVISOR: prof. RNDr. Ladislav Kvasz, Dr. ABSTRACT: The thesis includes a series of exercises for senior high school students and the first year of university students. In these exercises, students will increase their knowledge about conics, especially how to draw them. Furthermore, students can learn about two unfamiliar curves: Conchoid and Quadratrix. All these curves are afterwards used for solving other problems - some Apollonius's problems, Three impossible constructions etc. Most of the construction is done in GeoGebra software. All the tasks are designed for students to learn how to work with this software. The subject discussed is put into historical context, and therefore the exercises are provided with historical commentary. The thesis also includes didactic notes, important or interesting solutions of exercises, possible issues, mistakes and another relevant notes. KEYWORDS: conic, circle, ellipse, parabola, hyperbole, conchoid, quadratrix, trisecting an angle, squaring the circle, rectification of the circle, doubling a cube, Apollonius's problem, GeoGebra
98

Problematika hodnocení poruch a vad systémů ETICS / Assessment of defects and faults of ETICS Systems

David, Jan January 2016 (has links)
This diploma thesis discusses the problems of defects and faults of external thermal insulation composite systems. The first part describes the correct procedures for application systems, the next part describes defects, faults and their causes and the end of the thesis describes the contactless diagnostic methods used for the survey of ETICS. This part is mainly focus on detection of anchors. The example shows the calculation of anchoring.
99

Feigenbaum Scaling

Sendrowski, Janek January 2020 (has links)
In this thesis I hope to provide a clear and concise introduction to Feigenbaum scaling accessible to undergraduate students. This is accompanied by a description of how to obtain numerical results by various means. A more intricate approach drawing from renormalization theory as well as a short consideration of some of the topological properties will also be presented. I was furthermore trying to put great emphasis on diagrams throughout the text to make the contents more comprehensible and intuitive.
100

Φαινόμενα μεταφοράς και συσσωμάτωσης σε δυναμικά συστήματα κοκκώδους ύλης / Transport and clustering phenomena in dynamical systems of granular matter

Κανελλόπουλος, Γεώργιος 30 April 2014 (has links)
Τα κοκκώδη υλικά είναι αναπόσπαστο κομμάτι του κόσμου μέσα στον οποίο ζει ο άνθρωπος, και συνεπώς, για την καλύτερη κατανόηση του κόσμου αυτού, επιβάλλεται η μελέτη τους. Αυτός είναι και ο σκοπός της παρούσας διδακτορικής διατριβής. Επικεντρωνόμαστε σε διάδρομο μεταφοράς ο οποίος αποτελεί αντιπροσωπευτικό μοντέλο για πληθώρα εφαρμογών τόσο στην βιομηχανία όσο και στο φυσικό περιβάλλον. Αποτελεί επίσης χαρακτηριστικό παράδειγμα της οικογένειας ανοικτών πολυσωματιδιακών συστημάτων, η οποία βρίσκεται στην καρδιά της σύγχρονης επιστήμης της Πολυπλοκότητας. Αρχικά εισάγουμε το μοντέλο ροής στο οποίο το κοκκώδες υλικό αντιμετωπίζεται ως ένα ειδικό ρευστό (συνεχές μέσο) με εσωτερική απώλεια ενέργειας. Μελετάμε τη δυναμική ισορροπία που επικρατεί στο σύστημα υπό σταθερές συνθήκες, καθώς και την κατάρρευση της ομαλής ροής μέσω του σχηματισμού συσσωματώματος. Ειδική μνεία γίνεται στα πρόδρομα φαινόμενα της συσσωμάτωσης, τα οποία ερμηνεύουμε μέσω μίας αντίστροφης διακλάδωσης διπλασιασμού περιόδου. Διερευνώντας την εξάρτηση μεταξύ της μορφής της ροϊκής συνάρτησης και του τρόπου με τον οποίο το σύστημα μεταβαίνει σε καθεστώς συσσωμάτωσης αποκαλύπτουμε τόσο ποιοτικές όσο και ποσοτικές διαφορές σε σχέση με τον παραπάνω τύπο διακλάδωσης. Μια σημαντική παραλλαγή του συστήματος μεταφοράς προκύπτει εφαρμόζοντας ανατροφοδότηση του πρώτου δοχείου με το συνολικό υλικό που εκρέει από το τελευταίο. Η μαθηματική επεξεργασία αποδεικνύει ότι σε αυτήν την περίπτωση η δημιουργία συσσωματώματος συντελείται μέσω μιας διακλάδωσης Hopf αντί για διακλάδωσης διπλασιασμού περιόδου. Επιστρέφοντας στο αρχικό μας σύστημα, μελετάμε και το συνεχές όριο, θεωρώντας το διάδρομο μεταφοράς να έχει «άπειρο» μήκος. Η δυναμική ισορροπία, που ισοδυναμεί με το ισοζύγιο της μάζας ανάμεσα σε διαδοχικά δοχεία του διακριτού συστήματος, τώρα παίρνει τη μορφή μιας μη γραμμικής μερικής διαφορικής εξίσωσης δεύτερης τάξης με μη σταθερούς συντελεστές. Η προσεκτική μελέτη της εξίσωσης και των συντελεστών της, σε συνδυασμό πάντα με τις συνοριακές συνθήκες στην είσοδο και έξοδο του διαδρόμου, μας επιτρέπει όχι μόνο να αναπαραγάγουμε τα προηγούμενα αποτελέσματα υπό το πρίσμα του συνεχούς ορίου αλλά και να τα ερμηνεύσουμε βάσει φυσικών διεργασιών όπως είναι η μεταφορά (drift) και η διάχυση (diffusion). Ειδικότερα, η συσσωμάτωση συμβαίνει σε καθεστώς αρνητικής διάχυσης (antidiffusion). Κλείνουμε την διατριβή προτείνοντας γενικεύσεις των συστημάτων που ερευνήσαμε. Επεκτείνουμε το διάδρομο μεταφοράς σε πλέγματα δύο διαστάσεων και μελετάμε άλλα μοντέλα που σχετίζονται με ροές διακριτών σωματιδίων όπως είναι η κυκλοφορία οχημάτων στους αυτοκινητοδρόμους. / Granular materials are ubiquitous in nature and in our daily lives, and understanding their behavior is therefore of crucial importance. The present thesis wants to contribute to this. We focus on a conveyor belt, which is not only a representative model for numerous applications both in industry and the natural environment, but also a prime example of an open multi-particle system prone to spontaneous pattern formation. This places our study right in the center of the modern science of complexity. Initially we introduce the flux model, in which the granular material is treated as a special fluid (a continuous medium) with internal energy losses. We examine the dynamic equilibrium that exists in the system under steady state conditions and also the breakdown of this equilibrium when the inflow rate exceeds a certain critical threshold value, resulting in the formation of a cluster and the obstruction of the conveyor belt. We focus especially on the pre-clustering phenomena and find that these can be described mathematically by a reverse period doubling bifurcation. Investigating the relation between the precise form of the flux function and the way in which the transition to the clustered state takes place, we reveal that the above scenario via a reverse period doubling bifurcation is not universal. Also other bifurcation types are possible. An important variation of our transport system is obtained by applying a feedback mechanism: All the particles that flow out from the last compartment are inserted into the first, making the system closed with respect to matter (mass conservation). The mathematical analysis proves that in this case the cluster formation occurs via a Hopf bifurcation instead of a period doubling. Returning to our original system, we study its continuum limit by considering a conveyor belt of ‘infinite’ length. The dynamics of the system is now described by a second-order nonlinear partial differential equation with non-constant coefficients. A careful analysis of this PDE and its coefficients, in combination with the special boundary conditions at the entrance and exit of the system, allows us not only to reproduce the results of the discrete system in the setting of differential equations but also to interpret these results in terms of physical processes such as drift and diffusion. In particular, the clustering occurs when the diffusion coefficient becomes negative, which gives antidiffusion. We close this thesis by discussing several generalizations of the system investigated. Among other things we expand the one-dimensional conveyor belt to a two-dimensional lattice. We further propose to use a similar flux model for the study of other, non-granular instances of discrete particle flows, such as vehicles on a highway.

Page generated in 0.1009 seconds