• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 50
  • 24
  • 8
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 181
  • 51
  • 39
  • 26
  • 25
  • 23
  • 23
  • 23
  • 22
  • 19
  • 18
  • 17
  • 17
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Multivariate Vorhersagbarkeit von ICD-Schocks und Mortalität bei Patienten nach einer ICD-Neuimplantation / Risikostratifikation für maligne ventrikuläre Rhythmusstörungen / Multivariate predictability of ICD shocks and mortality in patients after an ICD new implant / Risk assessment for malignant ventricular rhythm disturbances

Lercher, Hendrik 22 November 2016 (has links)
No description available.
172

Evaluation eines neuartigen kapazitiven EKG-Systems bei Patienten mit akutem ST-Hebungs-Myokardinfarkt / First clinical evaluation of a novel capacitive ECG system in patients with acute myocardial infarction

Weil, Mareike Bianca 11 December 2013 (has links)
No description available.
173

Detekce fibrilace síní v EKG / ECG based atrial fibrillation detection

Prokopová, Ivona January 2020 (has links)
Atrial fibrillation is one of the most common cardiac rhythm disorders characterized by ever-increasing prevalence and incidence in the Czech Republic and abroad. The incidence of atrial fibrillation is reported at 2-4 % of the population, but due to the often asymptomatic course, the real prevalence is even higher. The aim of this work is to design an algorithm for automatic detection of atrial fibrillation in the ECG record. In the practical part of this work, an algorithm for the detection of atrial fibrillation is proposed. For the detection itself, the k-nearest neighbor method, the support vector method and the multilayer neural network were used to classify ECG signals using features indicating the variability of RR intervals and the presence of the P wave in the ECG recordings. The best detection was achieved by a model using a multilayer neural network classification with two hidden layers. Results of success indicators: Sensitivity 91.23 %, Specificity 99.20 %, PPV 91.23 %, F-measure 91.23 % and Accuracy 98.53 %.
174

Metoda dynamického borcení časové osy v oblasti zpracování biosignálů / Dynamic time warping in biosignal processing

Novobilský, Petr January 2008 (has links)
The thesis deals with one of the non-linear methods for signal processing - dynamic time warping (DTW). The method observes shape changes, which should be used in biomedical signals processing. The thesis involves the method description and consecution for finding DTW optimal way. The method is applied on the number series in the edutainment program, on the group of simulated signals and real electrocardiograms (ECG). ECG recordings were gained by performing experiments on the Masaryk University and their aim was clarifying the influence of voltage-sensitive dye on the heart tissue. One-lead ECG was described in time domain, frequency domain, time-frequency domain and subsequently remitted to DTW algorithm. The method outcomes evaluates the diversity rate of ECG signals obtained in each experiment stages. During the data evaluation were followed up the changes in process of the tension-sensible paint application and the stage of scouring toward control. The difference of elaborating signals group was verified in the time domain (37,5 %), in the frequency domain (75 %) and in the time-frequency domain (25 %). However, due to the small data group was not possible to explicitly approve the activity of voltage-sensitive dye on the heart tissue and to determinate limiting value of minimum algorithm way DTW for each heart round electrocardiogram classification. In the more data group analysis it is supposed to manifest the trend of growth heart round ECG differences in the stage of staining toward the stage of scouring.
175

Využití neuronových sítí pro klasifikaci alternací vlny T / Application of neural networks for classification of T-wave alternations

Procházka, Tomáš January 2008 (has links)
This thesis deals with analysis of T-wave Alternans (TWA), periodical changes of T wave in ECG signal. Presence of these alternans may predict higher risk of sudden cardiac death. From the several possible ways of TWA classification, the training algorithms of self organizing maps are used in this thesis. Result of the thesis is a program, which in the first step detects QRS complexes in the signal. Then, in the next step, gained reference points are used for T-waves detection. Detected waves are represented by a vector of significant points, which is used as an input for artificial neural network. Final output of the program is a decision about presence of TWA in the signal and its rate.
176

Automatická detekce ischemie v EKG / Automatic detection of ischemia in ECG

Noremberczyk, Adam January 2016 (has links)
This thesis discusses the utilization of the artificial neural networks (ANN) for detection of coronary artery disease (CAD) in frequency area. The first part of this thesis is orientated towards the theoretical knowledge. Describes the issue of ECG pathological changes. ECQ are converted to frequency area. Described statistical methods and methods for automatic detection of CAD and MI. Explained the issue of the perceptron and ANN. The second deals with use of Neural Network Toolbox MATLAB®. This part focuses on counting and finding suitable parameters and making connection of band. At the end of the thesis UNS is used to detect ischemic parameters and the results are discussed. Average values for the best settings are 100% accuracy.
177

Investigating The Universality And Comprehensive Ability Of Measures To Assess The State Of Workload

Abich, Julian 01 January 2013 (has links)
Measures of workload have been developed on the basis of the various definitions, some are designed to capture the multi-dimensional aspects of a unitary resource pool (Kahneman, 1973) while others are developed on the basis of multiple resource theory (Wickens, 2002). Although many theory based workload measures exist, others have often been constructed to serve the purpose of specific experimental tasks. As a result, it is likely that not every workload measure is reliable and valid for all tasks, much less each domain. To date, no single measure, systematically tested across experimental tasks, domains, and other measures is considered a universal measure of workload. Most researchers would argue that multiple measures from various categories should be applied to a given task to comprehensively assess workload. The goal for Study 1 to establish task load manipulations for two theoretically different tasks that induce distinct levels of workload assessed by both subjective and performance measures was successful. The results of the subjective responses support standardization and validation of the tasks and demands of that task for investigating workload. After investigating the use of subjective and objective measures of workload to identify a universal and comprehensive measure or set of measures, based on Study 2, it can only be concluded that not one or a set of measures exists. Arguably, it is not to say that one will never be conceived and developed, but at this time, one does not reside in the psychometric catalog. Instead, it appears that a more suitable approach is to customize a set of workload measures based on the task. The novel approach of assessing the sensitivity and comprehensive ability of conjointly utilizing subjective, performance, and physiological workload measures for theoretically different tasks within the same domain contributes to the theory by laying the foundation for improving methodology for researching workload. The applicable contribution of this project is a stepping-stone towards developing complex profiles of workload for use in closed-loop systems, such as human-robot team iv interaction. Identifying the best combination of workload measures enables human factors practitioners, trainers, and task designers to improve methodology and evaluation of system designs, training requirements, and personnel selection
178

Improving Deep Representations by Incorporating Domain Knowledge and Modularization for Synthetic Aperture Radar and Physiological Data

Agarwal, Tushar January 2022 (has links)
No description available.
179

Enhanching the Human-Team Awareness of a Robot

Wåhlin, Peter January 2012 (has links)
The use of autonomous robots in our society is increasing every day and a robot is no longer seen as a tool but as a team member. The robots are now working side by side with us and provide assistance during dangerous operations where humans otherwise are at risk. This development has in turn increased the need of robots with more human-awareness. Therefore, this master thesis aims at contributing to the enhancement of human-aware robotics. Specifically, we are investigating the possibilities of equipping autonomous robots with the capability of assessing and detecting activities in human teams. This capability could, for instance, be used in the robot's reasoning and planning components to create better plans that ultimately would result in improved human-robot teamwork performance. we propose to improve existing teamwork activity recognizers by adding intangible features, such as stress, motivation and focus, originating from human behavior models. Hidden markov models have earlier been proven very efficient for activity recognition and have therefore been utilized in this work as a method for classification of behaviors. In order for a robot to provide effective assistance to a human team it must not only consider spatio-temporal parameters for team members but also the psychological.To assess psychological parameters this master thesis suggests to use the body signals of team members. Body signals such as heart rate and skin conductance. Combined with the body signals we investigate the possibility of using System Dynamics models to interpret the current psychological states of the human team members, thus enhancing the human-awareness of a robot. / Användningen av autonoma robotar i vårt samhälle ökar varje dag och en robot ses inte längre som ett verktyg utan som en gruppmedlem. Robotarna arbetar nu sida vid sida med oss och ger oss stöd under farliga arbeten där människor annars är utsatta för risker. Denna utveckling har i sin tur ökat behovet av robotar med mer människo-medvetenhet. Därför är målet med detta examensarbete att bidra till en stärkt människo-medvetenhet hos robotar. Specifikt undersöker vi möjligheterna att utrusta autonoma robotar med förmågan att bedöma och upptäcka olika beteenden hos mänskliga lag. Denna förmåga skulle till exempel kunna användas i robotens resonemang och planering för att ta beslut och i sin tur förbättra samarbetet mellan människa och robot. Vi föreslår att förbättra befintliga aktivitetsidentifierare genom att tillföra förmågan att tolka immateriella beteenden hos människan, såsom stress, motivation och fokus. Att kunna urskilja lagaktiviteter inom ett mänskligt lag är grundläggande för en robot som ska vara till stöd för laget. Dolda markovmodeller har tidigare visat sig vara mycket effektiva för just aktivitetsidentifiering och har därför använts i detta arbete. För att en robot ska kunna ha möjlighet att ge ett effektivt stöd till ett mänskligtlag måste den inte bara ta hänsyn till rumsliga parametrar hos lagmedlemmarna utan även de psykologiska. För att tyda psykologiska parametrar hos människor förespråkar denna masteravhandling utnyttjandet av mänskliga kroppssignaler. Signaler så som hjärtfrekvens och hudkonduktans. Kombinerat med kroppenssignalerar påvisar vi möjligheten att använda systemdynamiksmodeller för att tolka immateriella beteenden, vilket i sin tur kan stärka människo-medvetenheten hos en robot. / <p>The thesis work was conducted in Stockholm, Kista at the department of Informatics and Aero System at Swedish Defence Research Agency.</p>
180

Atrial Fibrillation Detection Algorithm Evaluation and Implementation in Java / Utvärdering av algoritmer för detektion av förmaksflimmer samt implementation i Java

Dizon, Lucas, Johansson, Martin January 2014 (has links)
Atrial fibrillation is a common heart arrhythmia which is characterized by a missing or irregular contraction of the atria. The disease is a risk factor for other more serious diseases and the total medical costs in society are extensive. Therefore it would be beneficial to improve and optimize the prevention and detection of the disease.   Pulse palpation and heart auscultation can facilitate the detection of atrial fibrillation clinically, but the diagnosis is generally confirmed by an ECG examination. Today there are several algorithms that detect atrial fibrillation by analysing an ECG. A common method is to study the heart rate variability (HRV) and by different types of statistical calculations find episodes of atrial fibrillation which deviates from normal sinus rhythm.   Two algorithms for detection of atrial fibrillation have been evaluated in Matlab. One is based on the coefficient of variation and the other uses a logistic regression model. Training and testing of the algorithms were done with data from the Physionet MIT database. Several steps of signal processing were used to remove different types of noise and artefacts before the data could be used.   When testing the algorithms, the CV algorithm performed with a sensitivity of 91,38%, a specificity of 93,93% and accuracy of 92,92%, and the results of the logistic regression algorithm was a sensitivity of 97,23%, specificity of 93,79% and accuracy of 95,39%. The logistic regression algorithm performed better and was chosen for implementation in Java, where it achieved a sensitivity of 97,31%, specificity of 93,47% and accuracy of 95,25%. / Förmaksflimmer är en vanlig hjärtrytmrubbning som kännetecknas av en avsaknad eller oregelbunden kontraktion av förmaken. Sjukdomen är en riskfaktor för andra allvarligare sjukdomar och de totala kostnaderna för samhället är betydande. Det skulle därför vara fördelaktigt att effektivisera och förbättra prevention samt diagnostisering av förmaksflimmer.   Kliniskt diagnostiseras förmaksflimmer med hjälp av till exempel pulspalpation och auskultation av hjärtat, men diagnosen brukar fastställas med en EKG-undersökning. Det finns idag flertalet algoritmer för att detektera arytmin genom att analysera ett EKG. En av de vanligaste metoderna är att undersöka variabiliteten av hjärtrytmen (HRV) och utföra olika sorters statistiska beräkningar som kan upptäcka episoder av förmaksflimmer som avviker från en normal sinusrytm.   I detta projekt har två metoder för att detektera förmaksflimmer utvärderats i Matlab, en baseras på beräkningar av variationskoefficienten och den andra använder sig av logistisk regression. EKG som kommer från databasen Physionet MIT används för att träna och testa modeller av algoritmerna. Innan EKG-signalen kan användas måste den behandlas för att ta bort olika typer av brus och artefakter.   Vid test av algoritmen med variationskoefficienten blev resultatet en sensitivitet på 91,38%, en specificitet på 93,93% och en noggrannhet på 92,92%. För logistisk regression blev sensitiviteten 97,23%, specificiteten 93,79% och noggrannheten 95,39%. Algoritmen med logistisk regression presterade bättre och valdes därför för att implementeras i Java, där uppnåddes en sensitivitet på 91,31%, en specificitet på 93,47% och en noggrannhet på 95,25%.

Page generated in 0.0202 seconds