• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 66
  • 40
  • 18
  • 18
  • 16
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 408
  • 62
  • 49
  • 44
  • 44
  • 41
  • 35
  • 35
  • 34
  • 34
  • 32
  • 31
  • 31
  • 29
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Efeito de surfatantes na eletrodeposição de gálio em meios de KOH 5,0 moll-1 e NaOH 5 moll-1 / Effect of surfactants on the electrodeposition of gallium in KOH media 5.0 moll -1 and NaOH 5 moll -1

Segala, Karen 28 April 2003 (has links)
A eletrodeposição de gálio sobre cobre em meios de KOH 5,0 molL-1 e NaOH 5,0 molL-1 contendo 5,0 mmolL-1 de íons galato foi estudada na presença de surfatantes com cadeia de doze átomos de carbono. Foram estudados três surfatantes aniônicos - o dodecil sulfato de sódio (SDS), o dodecil benzeno sulfonato de sódio (SDBS) e o laurato de potássio (LK) - e um surfatante catiônico - o cloreto de dodecil amônio (DAC), em concentrações acima da c.m.c. Os estudos foram feitos sobre eletrodo de disco rotativo de cobre a 1000 rpm, empregando soluções alcalinas desaeradas e à temperatura de 25 ºC. Foram utilizadas como técnicas eletroquímicas a voltametria linear e a cronoamperometria. A análise da superfície, após a eletrodeposição, foi feita por microscopia eletrônica de varredura (MEV) e espectroscopia por dispersão de energia (EDS). Todos os anfifílicos estudados afetam a velocidade dos processos simultâneos de redução Ga(III)/Ga e H2O/H2. A ação inibidora ou catalítica, depende do potencial aplicado e da natureza do surfatante. Os surfatantes aniônicos inibem a reação H2O/H2 a baixas sobretensões catódicas. Em tais condições se admite que haja um número menor de moléculas de água adsorvidas por estarem os sítios do metal parcialmente ocupados pelas moléculas do anfifílico. A elevadas sobretensões catódicas a reação H2O/H2 é catalisada por estes anfifílicos, admitindo-se, nestas condições, que eles favoreçam a liberação do gás hidrogênio da superfície. O DAC, surfactante catiônico, inibe a reação H2O/H2 em toda a faixa de sobretensões catódicas estudada. Atribui-se a sua adsorção a uma interação eletrostática anfifílico-eletrodo, gerando um efeito inibidor maior à medida que o potencial se torna mais negativo. O SDBS inibe a eletrodeposição do gálio, mas confere ao depósito aspecto mais brilhante, a valores de potencial em que catalisa a reação H2O/H2. Soluções recém preparadas de SDS na presença de dodecanol (produto da hidrólise do anfifílico nestes meios), eleva os rendimentos de eletrodeposição do gálio de 12% para 18% a -1 ,35V (vs Hg/HgO). Neste mesmo potencial o DAC eleva os rendimentos do processo de forma comparável, embora iniba o mesmo na região de potencial em que a reação H2O/H2 é significativa. O LK inibe a eletrodeposição do gálio em todos os potenciais estudados, o que se atribui à formação de complexos com o íon Ga(III). Os ensaios por MEV e EDS confirmaram os rendimentos maiores de gálio na presença da mistura SDS-DOH. O depósito de gálio obtido a -1,55V (vs Hg/HgO) se dá sobre toda a superfície do cobre. A análise química radial mostrou que tanto na ausência de surfatantes quanto na presença da mistura SDS+DOH, a distribuição do gálio na superfície do disco de cobre, ainda que mostre decréscimo na bordas do eletrodo, é praticamente constante na maior parte da superfície. / Gallium electrodeposition on copper in 5.0 molL-1 KOH and 5.0 molL-1 NaOH solutions containing 5.0 mmolL-1 gallate ions, has been studied in the presence of twelve carbon atoms surfactants. Three anionic surfactants have been studied - sodium dodecyl sulfate (SDS), sodium dodecyl benzenosulfonate (SDBS) and potassium laurate (LK), and one cationic surfactant - dodecyl ammonium chloride (DAC) at concentrations above the c.m.c. The experiments have been made using rotating disk copper electrode (rotation frequency equal to 1000 rpm), using deaerated alkaline solutions at 25 ºC. Electrochemical techniques as linear voltammetry and chronoamperometry were used. Surface analysis after electrodeposition was made using scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). All of the amphiphilics studied change the rate of the simultaneous cathodic Ga(III)/Ga and H2O/H2 processes. The inhibitive or catalytic reation depends on both the applied potencial and surfactant nature. Anionic surfactants inhibit the H2O/H2 reaction at lower overvoltages. It can be admitted under these conditions a lower number of adsorved water molecules due to the simultaneous adsorption of amphiphilic molecules. At higher cathodic overvoltages the H2O/H2 reaction is catalised by these surfactants. It can be admitted under these conditions that these molecules remove the hydrogen molecules from the electrode surface. DAC, a cationic surfactant, inhibits the reaction H2O/H2 on the entire range of cathodic overvoltages studied. Its adsorption can be attributed to the electrostatic interaction amphiphilic-electrode and in consequence, the inhibitive effect increases as the potencial attains more negative values. SDBS inhibits the gallium electrodeposition but the deposit is brighter with added SDBS. Recently prepared SDS solutions inhibits Ga(III)/Ga reaction. The presence of dodecanol (SDS hydrolise product in these media) increases the gallium electrodeposition yield from 12% to 18% at -1,35V/(Hg/HgO). At this same potencial DAC increases the yield of the process, similarly, but it inhibits the same reaction on the potencial range where the H2O/H2 reaction is significative. LK inhibits the gallium electrodeposition process on the entire range of potencials studied. This result can be attribuited to laurate gallium complex formation. SEM and EDS analyses have confirmed the best electrodeposition performance in the presence of SDS+DOH. The gallium deposits obtained at -1,55V/(Hg/HgO) spread on the entire copper surface. The radial chemical analysis has shown that either in the absence either in the presence of SDS+DOH mix gallium distribution is practically constant and uniform, except on the edge of the copper disk electrode.
322

Ligas magnéticas NiFe e NiFeCo eletrodepositadas, voltadas para aplicações em micro-sensores magnéticos tipo fluxgate planar / Electrodeposited NiFe and NiFeCo films for planar fluxgate sensors

Santos, Thais Cavalheri dos 31 August 2007 (has links)
O presente trabalho trata da obtenção de ligas de NiFe de NiFeCo sob a forma de filmes finos e também no seu uso na tentativa em se construir um sensor magnético tipo fluxgate planar. A técnica de produção utilizada foi a eletrodeposição com regime galvanostático. A solução eletrolítica utilizada era constituída por sais de níquel e ferro e alguns aditivos. Para depositar os filmes de NiFe, o eletrodo auxiliar era constituído de níquel; enquanto que para depositar os filmes de NiFeCo, o eletrodo auxiliar era constituído de cobalto. Os filmes foram depositados em substratos de cobre utilizando densidades de corrente no intervalo de 4 até 28 mA/cm2, com tempos totais de 40 e 60 minutos. A caracterização morfológica foi realizada utilizando Microscopia Eletrônica de Varredura superficial e de seção lateral e para encontrarmos a composição dos elementos presentes na amostra, realizamos a Espectroscopia de Energia Dispersiva e Difração de Raios-X. Quanto à caracterização magnética foi utilizado o Magnetômetro de Amostra Vibrante e também magnetometria utilizando o Superconducting Quantum Interference Devices (este foi utilizado somente para os filmes de NiFeCo) como o elemento detector do equipamento. Os filmes de NiFe crescem com orientações cristalinas ao longo dos planos (110) e (200); as quantidades de níquel e ferro atingem valores constantes a partir da densidade de corrente de 15 mA/cm2 (embora sempre haja mais níquel que ferro); o ponto de menor coercividade magnética (58,4 A/m) também ocorre a partir dessa densidade de corrente, onde filmes com 1 ?m de espessura são conseguidos para um tempo total de 40 minutos. Nota-se uma assimetria para os campos aplicados perpendicular e paralelamente à superfície do filme. Os filmes de NiFeCo crescem com orientações ao longo dos planos (111) e (200). Embora sempre haja mais níquel (constante em 70%), as concentrações de Fe e Co se igualam apenas para uma densidade de corrente próxima de 15mA/cm2. Abaixo desse valor há mais ferro, e acima mais Co. A partir dessa densidade de corrente, novamente observa-se um mínimo no valor da coercividade magnética do material (81 A/m). A partir dessa densidade de corrente, tal grandeza teve seu valor mantido praticamente constante. Para essa densidade de corrente filmes de 6 ?m de espessura são obtidos para um tempo de 40 minutos. Uma menor assimetria magnética é observada comparada com o caso anterior. Por esses dados, acreditamos que o filmes de NiFeCo seja um melhor candidato para a confecção do sensor planar tipo fluxgate, e testes iniciais de sua fabricação também são apresentados. / This work presents the results about the fabrication and characterization of thin films of NiFe and NiFeCo alloys. The attempts to construct the planar fluxgate are also presented. Galvanostatic electrodeposition using an electrolytic solution containing Ni and Fe was used: NiSO4 (0,7 mol/l); NiCl2 (0,02 mol/l); FeSO4 (0,03 mol/l); H3BO3 (0,4 mol/l) and C7H5O3NS.2H2O (0,016 mol/l). The auxiliary electrode was made on Ni for the NiFe films, while another one made on Co was used for the NiFeCo films. Films were deposited on copper substrates using current densities form 4 up to 28 mA/cm2, and total deposition time of 40 and 60 minutes. Structural characterization was performed using Scanning Electron Microscopy (surface and cross-section); Energy Dispersive Spectroscopy, and Xray Diffraction. Magnetic characterization was performed using two methods: the Vibrating Sample Magnetometry and magnetometry using a SQUID (Superconducting Quantum Interference Devices) sensor. NiFe films grow with crystalline planes oriented along the (110) e (200) directions; the amount of each material reach constant values for current densities above 15 mA/cm2 (even though there is always more Ni). The point of minimum magnetic coercivity (58,4 A/m) also occurs for this current density, where films 1 ?m-thick are obtained for a total deposition time of 40 minutes. An asymmetry is observed for magnetic fields applied parallel and perpendicular to the surface of the films. NiFeCo films grow with crystalline planes oriented along the (111) and (200) directions; the amount of Ni remains constant (about 70%) for the whole current density range. The amount of Fe decreases with increasing current density, while the amout of Co shows the opposite behavior. They have equal values for current densities of about 15mA/cm2, where the minimum coercivity of 81A/m is achieved. For higher current densities the coercivity remains constant. For the current density of 15mA/cm2, 6 ?m-thick films are obtained for a total deposition time of 40 minutes. The magnetic asymmetry is smaller than for the case of the NiFe films. According to the obtained data, we believe that NiFeCo is a better candidate for the fabrication of planar magnetic fluxgate sensors. Initial tests for the fabrication of a prototype are also presented.
323

Des complexes cage aux nanoparticules, nouveaux catalyseurs pour la production du dihydrogène / From cage complexes to nanoparticles, new catalysts for hydrogen production

Cherdo, Stéphanie 06 December 2013 (has links)
Ce travail porte sur les complexes des métaux de transitions pour la catalyse de la réduction des protons en hydrogène. La nature de l’espèce catalytiquement active mise en jeu lors du processus de réduction a été étudiée par voltampérométrie cyclique afin de comprendre le rôle et le mode d’action de ces complexes. Le premier chapitre introduit le contexte et les principaux objectifs de ce travail. Le deuxième chapitre propose une étude électochimique de complexes de cobalt et de nickel à ligands bis(glyoxime) et clathrochélates en phase homogène. Leur comportement en présence d’acide et en condition réductrice est décrit et un mécanisme réactionnel associé est proposé. L’influence des ligands de la sphère de coordination sur le comportement électrochimique de ces complexes a été rationalisé par le biais de substitution des groupements présents sur les ligands bis(glyoxime) et clathrochélates. Le troisième chapitre aborde le rôle de pré-catalyseur que peuvent tenir ces complexes en condition d’électrolyse réductrice et en milieu acide. L’électrosynthèse de nanoparticules catalytiques à partir de ces complexes a mis en évidence le rôle majeur des ligands bis(glyoxime) et clathrochélates dans ce phénomène d’électrodéposition. Ces résultats montrent que ces ligands peuvent être utilisés pour contrôler la nature et l’activité de nanoparticules catalytiques pour la réduction des protons en dihydrogène. Le quatrième chapitre vise à immobiliser les complexes de cobalt à ligand clathrochélate au sein de réseaux de coordination afin d’optimiser leur activité catalytique. Malgré la faible solubilité et l’encombrement stérique de ces complexes, des synthèses en conditions très douces ont abouti à la formation de réseaux mono et bi-dimensionels à base d’ions cadmium(II). / My PhD thesis goal was to investigate on the catalytic properties of first row transition metal complexes for the hydrogen evolving reaction (HER). The underlying question in the field concerning the catalytic species of metal complexes for the HER was then, whether it is homogeneous or heterogeneous catalysis. My work concerns the synthesis and characterization of oximato based cobalt and nickel complexes and their electrochemical behavior in presence of acids.In the first chapter, I give a general introduction on the search for catalytic molecular systems for the production of hydrogen. I also give an overview of my approach tackling the problem of homogeneous and heterogeneous catalysis. In the second chapter I discuss on the electrochemical study of cobalt and nickel complexes containing bis(glyoxime) ligands and clathrochelates complexes in homogeneous phase. Their electrochemical behavior under reductive conditions in presence of acids is described. The absence of molecular based catalysis is discussed and a mechanistic pathway for the consumption of protons and electrons is proposed. The influence of the ligands in the coordination sphere has been rationalized through substitutions of the chemical groups on the bis(glyoxime) and clathrochelates ligands. The third chapter concerns the generation of catalytic material from the molecular precursors in acidic reductive conditions. Electrochemically modified glassy carbon electrodes were characterized by TEM and evidenced the formation nanoparticles containing the initial metal ions (either cobalt of nickel). Our results show that the chemical nature of the ligands can be used in order to control the nature and reactivity patterns of these catalytically active nanoparticles for proton reduction into hydrogen.In the forth chapter, I give the preliminary results on the immobilization the cobalt clathrochelates complexes inside coordination networks in order to improve their catalytic activity. Despite the weak solubility and the bulk of these complexes, mild conditions synthesis have led to mono and bi-dimensional networks based on cadmium (II) ions.To conclude I emphasize on the different ways that can be followed to further pursue this quest for catalytic materials for the HER starting with molecular based complexes as precursors.
324

Relations procédés d’élaboration, état métallurgique, propriétés des alliages nanostructurés de Ni-W / Relationships between deposition process, metallurgical state and properties in Ni-W nanostructured alloys

Lagarde, Matthieu 08 November 2017 (has links)
Ces travaux traitent de l’influence du procédé d’élaboration sur l’état métallurgique et les propriétés mécaniques et anti-corrosion des alliages de Ni-W nanostructurés, dans le but de mieux comprendre le rôle de différents paramètres physico-chimiques sur ces propriétés. Pour cela, deux techniques de dépôt sont utilisées : l’électrodéposition et la pulvérisation cathodique magnétron. Une approche multi-échelle associant différentes techniques permet la caractérisation fine de la morphologie, de la taille de grains, de la texture, de la nature des joints de grains ainsi que de la composition chimique des alliages et de leur contamination. En fonction de la technique d’élaboration utilisée, la relation entre la teneur en W et les paramètres métallurgiques est très différente avec un impact du W beaucoup plus marqué pour les électrodépôts par rapport aux alliages obtenus par pulvérisation. Les propriétés des revêtements sont évaluées par des tests de microdureté et des essais électrochimiques (courbe de polarisation et spectroscopie d’impédance électrochimique). Une augmentation de la microdureté est généralement observée avec la diminution de la taille de grains et l’augmentation de la teneur en W dans les alliages de Ni-W. Cependant, les valeurs de microdureté les plus importantes sont toujours atteintes pour de hautes teneurs en tungstène mais pas forcément pour les tailles de grains les plus faibles. Une limite dans l’augmentation de la microdureté avec la diminution de la taille de grains a donc été mise en avant. L’étude de la réactivité électrochimique des alliages en milieu acide a permis de montrer un rôle prépondérant du tungstène qui va dépendre du pH, du domaine étudié et des réactions associées. La morphologie de surface et les défauts structuraux vont également pouvoir influencer la réactivité des alliages de Ni-W avec une influence qui peut dépasser celle des solutés. En comparaison, les autres paramètres microstructuraux (taille et orientation des grains, nature des joints de grains et contamination) ne semblent avoir qu’un impact mineur sur le comportement électrochimique. / The aim of this study is to understand the influence of the deposition process on the metallurgical state and the mechanical and anti-corrosion properties of the nanostructured Ni-W alloys. Two processes are performed to obtain our alloys : the electrodeposition and the magnetron sputtering. A combination of several microstructural techniques at different scales has permitted the characterization of the morphology, the grain size, the crystallographic texture, the nature of grain boundaries and the concentrations of alloying elements. According to the elaboration process, the relationship between the W content and the metallurgical parameters is very different. A stronger influence of W is observed for the electrodeposited coatings by comparison with the alloys obtained by sputtering. The properties of the coatings are studied with microhardness measurements and electrochemical tests (polarization curve and electrochemical spectroscopy impedance). An increase of the microhardness is mainly observed with the decrease of grain size and the increase of tungsten content. But, the highest values of microhardness are always obtained for the highest tungsten content and not necessarily for the lowest grain size. So, a limit for the increase of microhardness with the decrease of grain size is put forward. The study of the electrochemical reactivity for the alloys in acidic media have shown a dominating role of the tungsten that depend on the pH, the studied domain and the reaction path associated with the corrosion process. The surface morphology and the structural defects have also an important influence on the reactivity of the Ni-W alloys that can exceed the impact of solute. As compared, the others metallurgical parameters (grain size, texture, grain boundaries and contamination) seem to have a minor influence on the electrochemical behavior.
325

Applications of bipolar electrochemistry : from materials science to biological systems / Applications de l'électrochimie bipolaire : de la science des matériaux jusqu'aux systèmes biologiques

Fattah, Zahra Ali 22 November 2013 (has links)
L’électrochimie bipolaire est possible quand un substrat conducteur qui n’est pas directement connecté à un générateur est exposé à un champ électrique. Il s’agit donc d’une technique « sans fil ». La polarisation du substrat par rapport à la solution génère une différence de potentiel entre les extrémités du substrat qui peuvent devenir le siège de réactions rédox et briser ainsi la symétrie à la surface du substrat. Dans cette thèse, cette méthode a été appliquée à l’élaboration de matériaux ainsi qu’à l’étude de systèmes biologiques. L’électrochimie bipolaire a été adaptée pour la préparation « bulk » de particules asymétriques également appelées particules « Janus ».Des substrats conducteurs de différentes natures, tailles et formes ont été modifiées avec des dépôts métalliques, ioniques ou inorganiques. De plus, un contrôle de la morphologie du dépôt a été possible sur des substrats d’échelle variée. L’électrodéposition bipolaire permet d’étudier la génération de différentes morphologies métalliques, ainsi que la micro-structuration sur des objets conducteurs grâce au développement de nouveaux setups expérimentaux. Le concept s’est également montré très utile dans le domaine de la mise en mouvement de particules. D’une part, les objets asymétriques qui ont été préparés par électrodéposition bipolaire peuvent agir comme des micro-nageurs capables de mouvement de translation ou de rotation. D’autre part, l’application d’un champ électrique peut directement induire le déplacement d’objets isotropes par génération localisée de bulles. Un mouvement de lévitation combinée à l’émission de lumière est également possible. Finalement, l’électrochimie bipolaire a été utilisée pour étudier la conductivité de biomolécules (ADN), ce qui est d’une grande importance dans le domaine de la nanotechnologie. / Bipolar electrochemistry deals with the exposure of an isolated conducting substrate that has no direct connection with a power supply except via an electric field. Therefore it can be considered as a “wireless technique”. The polarization of the substrate with respect to the surrounding medium generates a potential difference between its opposite ends which can support localized electrochemical oxidation reduction reactions and break the surface symmetry of the substrate. The method was applied in the present thesis to materials science and biological systems. In the frame of designing asymmetric particles, also called “Janus” particles, bipolar electrochemistry was adapted for the bulk preparation of these objects. Conductive substrates with different nature, sizes and shapes have been modified with various materials such as metals, ionic and inorganic compounds using this approach. Moreover, a control over the deposit topology could be achieved for substrates at different length scales. Bipolar electrodeposition is also a good tool for investigating the generation of different metal morphologies. Further developments in the bipolar setup allowed us to use the technology for microstructuration of conductive objects. Furthermore the concept has shown to be very useful in the field of the induced motion of particles. The asymmetric objects that have been prepared by bipolar electrodeposition were employed as microswimmers which could show both translational and rotational motion. The application of electric fields in the bipolar setup can be used for the direct generation of motion of isotropic objects through bubble generation. A levitation motion of objects combined with light emission was possible using this concept. Finally, bipolar electrochemistry was also used for studying the intrinsic conductivity of biological molecules (DNA), which is of great importance in the nanotechnology.
326

Dispositifs d'Affichage de Sensations Tactiles à Base de Microsystèmes Électro-Mécaniques (MEMS) Magnétiques : Conception, Réalisation et Tests / Tactile Display Devices Based on Magnetic Micro-Electro-Mechanical Systems (MEMS) : Conception, Elaboration and Characterization

Streque, Jérémy 27 June 2011 (has links)
Les dispositifs de stimulation tactile sont des systèmes destinés à fournir un retour sensoriel à leurs utilisateurs. Ils enrichissent les interfaces homme-machine dans les applications de réalité virtuelle ou augmentée. Ce mémoire traite de l’apport des microsystèmes électromécaniques (MEMS) actionnés magnétiquement à la réalisation d’interfaces de stimulation tactile facilement intégrables.Un état de l’art des solutions d’actionnement mises en œuvre dans les dispositifs existants est proposé, ainsi qu'une définition des besoins pour les applications visées. Les solutions retenues sont basées sur l’actionnement magnétostatique.Les premiers prototypes d’interfaces de stimulation tactile se présentent sous la forme d'un réseau de 4x4 actionneurs élastomériques hybrides avec un pas de 2 mm, combinant microfabrication et techniques de fabrication conventionnelles. La conception et l’élaboration de ces micro-actionneurs est présentée en détail. L'actionnement impulsionnel permet d'atteindre des amplitudes de vibration importantes (jusqu'à 200 µm) et des forces élevées (32mN par actionneur). Des tests sensoriels confirment enfin leur efficacité. Des micro-bobines ont aussi été développées afin de répondre aux besoins des micro-actionneurs magnétiques, ainsi qu'au cahier des charges des interfaces de stimulation tactile. Diverses configurations de micro-bobines adaptées à l'actionnement de puissance sont proposées et réalisées par électrodéposition. Des micro-actionneurs basés sur ces bobines intégrées ont alors été réalisés, puis caractérisés. L'utilité des bobines pour les micro-actionneurs de puissance est alors discutée face aux solutions d’actionnement hybride / Tactile display devices are systems bound to provide a tactile feedback to their users. They improve human-machine interfaces in the fields of virtual or augmented reality. This report deals with the contribution of magnetically actuated micro-electro-mechanical systems (MEMS) to the elaboration of easily integrable tactile display devices.A state of the art of actuation techniques used in existing devices is proposed, along with a requirements analysis for tactile applications. Magnetostatic actuation was considered for these needs.First tactile display device prototypes are designed as a network of 4x4 hybrid elastomeric micro-actuators with a 2 mm pitch, and combined microfabrication and conventional fabrication techniques.The conception and elaboration of these micro-actuators is detailed. High vibration amplitudes can be reached using pulse actuation (up to 200 µm), with instantaneous forces of 32 mN per actuator. Sensitive tests were also achieved in order to confirm their efficiency.Micro-coils were also developed in order to fulfill the magnetic micro-actuators needs, and meet the requirements for tactile display devices. Various micro-coil configurations suitable for power actuation are proposed and elaborated by electrodeposition. Micro-actuators based on elastomeric membranes were fabricated and characterized. The contribution of these micro-coils for micro-actuation is discussed face with hybrid approaches
327

Exploring bipolar electrochemistry for the modification of unusual conducting substrates / Modification de substrats conducteurs originaux par électrochimie bipolaire

Malytska, Iuliia 10 September 2018 (has links)
L'électrochimie bipolaire est un phénomène basé sur la polarisation d'un objet conducteur soumis à un champ électrique. Contrairement à l'électrochimie conventionnelle, c’est la chute de potentiel en solution imposée par les deux électrodes sources qui permet de réaliser les réactions électrochimiques. Lorsqu'un objet conducteur est immergé dans une solution électrolytique et soumis à un champ électrique, il est polarisé et se comporte comme une électrode bipolaire. La différence de potentiel entre l'électrolyte et l'électrode bipolaire est la force motrice pour les réactions de réduction et d’oxydation promus aux deux extrémités de l'électrode bipolaire. L'oxydation se produira à l’une des extrémités, combinée simultanément avec la réduction à l'autre extrémité.L'électrochimie bipolaire est une technique d’adressage sans fil qui permet de générer une réactivité électrochimique asymétrique à la surface d'un objet conducteur. Au cours de la dernière décennie, l'électrochimie bipolaire a trouvé de nombreuses applications telles que la synthèse de micro- et nanoparticules asymétriques, l'électrodéposition, la détection, la propulsion de micro-objets, etc. L'avantage de cette technique repose sur le mode d’adressage sans fil qui peut être utilisé pour modifier des matériaux fragiles sans contact ou encore pour modifier simultanément un ensemble de particules en même temps.Dans la présente thèse, l'électrochimie bipolaire a été appliquée à différents matériaux semi-conducteurs et systèmes biologiques. De plus, les nouvelles propriétés générées sur ces nouveaux substrats ont été étudiées en utilisant diverses techniques de caractérisation.L'électrodéposition bipolaire est un outil de choix pour la génération d'objets asymétriques. En utilisant cette approche, un dépôt de métal a été réalisé sur substrats organiques de type complexes de transfert de charge. Ces nouveaux matériaux hybrides métal/organique se sont révélés de bons candidats pour la génération asymétrique de photo-voltage sous illumination.Un matériau semi-conducteur inorganique, tel que les dichalcogénures de métaux de transition a également été utilisé comme substrat pour l'électrochimie bipolaire. Différents dépôts de métaux ont été réalisés sur les macro-particules de MoSe2. Les dichalcogénures de métaux de transition sont également connus pour leur activité électrocatalytique, notamment pour la réaction d'évolution de l'hydrogène. La production d'hydrogène sans fil sur des cristaux de MoSe2 a également été réalisée par électrochimie bipolaire. De plus, l'électrochimie bipolaire peut être utilisée avec une suspension de microparticules de MoSe2 pour réaliser une électrolyse quantitative d’une solution contenant une espèce chimique oxydable.Enfin, l'électrochimie bipolaire pourrait également être utilisée pour étudier indirectement la conductivité de molécules biologiques telles que l’ADN. L'objectif principal était de développer une méthode en électrochimie bipolaire pour la modification asymétrique de l'ADN par des nanoparticules métalliques. Tout d'abord, des expériences ont été réalisées en utilisant l'électrodéposition bipolaire à l’aide d’une électrophorèse capillaire (CABED) suivie d'une imagerie par TEM. Des résultats positifs ont été obtenus mais avec une faible reproductibilité.La seconde approche consiste à étirer des molécules d'ADN sur une surface isolante par peignage et à visualiser cette fois-ci les dépôts par microcopie AFM. / Bipolar electrochemistry is a phenomenon based on the polarization of conductive objects in an electric field. In contrast to conventional electrochemistry, the drop of potential in the electrolyte solution triggers the involved redox reactions. When a conductive object is positioned in an electric field present in a solution between two feeder electrodes, it is polarized and becomes a bipolar electrode. The potential difference between the electrolyte and the bipolar electrode is the driving force for reduction/oxidation reactions at the two extremities of the bipolar electrode; oxidation will occur at one end, combined simultaneously with reduction at the other end.Bipolar electrochemistry is a concept that allows generating an asymmetric reactivity at the surface of a conductive object. During the last decade, bipolar electrochemistry found many applications such as the synthesis of asymmetric micro- and nano-particles, electrodeposition, sensing, propulsion of microobjects, electroanalysis etc. The advantage of this technique is its wireless character, which allows the modification of delicate materials and also to electrochemically address many objects simultaneously.In the present thesis, the approach was applied to different semiconducting materials and biological systems. In addition, properties of substrates of different nature have been studied using bipolar electrochemistry.In this way, it was possible to create metal deposits on organic charge transfer salts in a site-specific way. The resulting hybrid metal/organic particles were tested for the asymmetric generation of photovoltage under illumination.Inorganic transition metal dichalcogenides were also used as a substrate for bipolar electrochemistry. Deposition of different metals on MoSe2 macroparticles was performed. Transition metal dichalcogenides are known for their catalytic activity with respect to hydrogen evolution reaction. Therefore, wireless hydrogen production on MoSe2 crystals and microparticles could be demonstrated by using bipolar electrochemistry. In the latter case it is possible to envision their use for electrochemical decontamination of solutions in the bulk.Finally, bipolar electrochemistry has also been used for studying the conductivity of biological molecules (DNA). The primary goal was to develop a new approach for the asymmetric modification of DNA by metal nanoparticles. Experiments were performed by using either Capillary Assisted Bipolar Electrodeposition (CABED) with the DNA molecules present in the bulk, or by immobilizing DNA as stretched entities on model surfaces for subsequent modification. Encouraging first results could be evidenced by TEM or AFM measurements.
328

Study of magnetic properties of nanostructures on self-assembled patterns

Malwela, Thomas. January 2010 (has links)
In the current study, we give a report when oxalic acid was used as an electrolyte to synthesize an AAO template with hexagonal pore array. Optimum parameters were observed as 0.4 M of oxalic acid, anodizing voltage of 45 V, temperature of approximately 8 °C and the period of 120 minutes. Atomic force microscope (AFM) and High resolution scanning electron microscope (HRSEM) showed that template has an average pore diameter of 103 nm. Co and MnOx (x = 1,2) nanostructures were selectively deposited in the pores of the template using a novel atomic layer deposition (ALD) technique. The diameter sizes and the array of the nanostructures and the template were corresponding. Energy dispersive xrays (EDX) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Co and MnOx (x =1,2) on the samples while x-ray diffraction (XRD) provided an indication of their orientations. Magnetic force microscopy as main characterization tool showed the existence of multi-domains on both Co and MnOx (x =1,2) nanostructures.
329

Studies Of MnO2 As Active Material For Electrochemical Supercapacitors

Devaraj, S 05 1900 (has links)
Electrical double-layer formed at the interface between an electrode and an electrolyte has been a topic of innumerable studies. The electrical interface plays a crucial role in kinetics, mechanisms and applications in variety of electrochemical reactions. The electrical double-layer and electron-transfer reactions lead to many important applications of electrochemistry, which include energy storage devices, namely, batteries, fuel cells and supercapacitors. Electrochemical supercapacitors can withstand to higher power than batteries and deliver higher energy than the conventional electrostatic and electrolytic capacitors. A supercapacitor can be used as an auxiliary energy device along with a primary source such as a battery or a fuel cell for the purpose of power enhancement in short pulse applications. Among the various materials studied for electrochemical supercapacitors, carboneous materials, metal oxides and conducting polymers received attention. Among carboneous materials, various forms of carbon such as powders, woven cloths, felts, fibers, nanotubes etc., are frequently studied for electrochemical supercapacitors. Low cost, high porosity, higher surface area, high abundance and well established electrode fabrication technologies are the attractive features for using carboneous materials. However, specific capacitance (SC) of these materials is rather low. These electrodes store charge by electrostatic charge separation at the electrode/electrolyte interface. Electronically conducting polymers are interesting class of materials studied for supercapacitor application because of the following merits: high electronic conductivity, environmental friendliness, ease of preparation and fabrication, high stability, high capacitance and low cost. Polyaniline (PANI), polypyrrole and polythiophene are studied in this category. Transition metal oxides have attracted considerable attention as electrode materials for supercapacitors because of the following merits: variable oxidation state, good chemical and electrochemical stability, ease of preparation and handling. Hydrated RuO2 prepared by sol-gel process at low temperature has a specific capacitance as high as 720 F g-1 due to solid state pseudo faradaic reaction. However, high cost, low porosity and toxic nature limit commercialization of supercapacitors using this material. MnO2 is attractive as it is cheap, environmentally benign, its resources are abundant in nature and also it is widely used as a cathode material in batteries. An early study on capacitance behaviour of MnO2 was reported by Lee and Goodenough. Amorphous hydrous MnO2 synthesized by co-precipitation method exhibited rectangular cyclic voltammogram in various aqueous alkali salt solutions. A specific capacitance of 200 F g-1 was reported. Following this report, several reports appeared on capacitance characteristics of MnO2. According to the charge-storage mechanism reported, a specific capacitance of 1370 F g-1 is expected from MnO2. However, this value can be obtained in practice only when the mass of MnO2 is at the level of a few micrograms per cm2 area. At such a low thickness range, the utilization of the active material is high. As thin layers of MnO2 are uneconomical for practical capacitors, studies with a mass range of 0.4-0.5 mg cm-2 have been extensively reported. At this mass range, a maximum specific capacitance of about 240 F g-1 has been obtained. With an increase in mass per unit area, the specific capacitance of MnO2 decreases. The problem associated with low values of specific capacitance of thick layers of MnO2 is the following. The MnO2 deposits or coatings generally do not possess high porosity and the electrolyte cannot permeate into the coating. Only the outer layer of the electrode is exposed to the electrolyte. Consequently, the electrochemical utilization of the material decreases with an increase in thickness. Nevertheless, utilization of thick layers of the active materials is preferable for obtaining capacitance as high as possible in a given volume and area of the electrodes. Indeed, it would be ideal if specific capacitance of MnO2 is improved from its presently reported value of 240 F g-1 to a value equivalent to that of RuO2.xH2O, namely, 720 F g-1. In view of this, attempts are made to enhance specific capacitance of MnO2 by electrochemical deposition in presence of surfactants. Nanostructured MnO2 synthesized by inverse microemulsion route is also studied for electrochemical supercapacitors. The effect of crystallographic structure of MnO2 on the capacitance properties, studies on electrochemical deposition of MnO2 in acidic and neutral medium using electrochemical quartz crystal microbalance and capacitance characteristics of MnO2-polyaniline composites are also described in the thesis. Chapter 1 briefly discusses the importance of electrochemistry in energy storage and conversion, basics of electrochemical power sources, importance of MnO2, different synthetic procedures for MnO2 and its applications in energy storage and conversion in particular for electrochemical supercapacitors. Chapter 2 provides the experimental procedures and methodologies used for the studies reported in the thesis. In chapter 3, the effect of surface active agents, namely, sodium dodecyl sulphate (SDS) and Triton X-100 added to the electrolyte during electrodeposition of MnO2 on Ni substrate on capacitance properties is presented. Electrocrystallization studies show that MnO2 nucleates instantaneously under diffusion control and grows in three dimensions. The potentiodynamically prepared oxide provides higher specific capacitance than the potentiostatically and galvanostatically prepared oxides. Specific capacitance values of 310 and 355 F g-1 obtained for MnO2 electrodeposited in the presence of 100 mM SDS and 10 mM Triton X-100 are higher than the oxide electrodeposited in the absence of surfactants. Surfactant molecules adsorbed at the electrode/electrolyte interface alters structure of double-layer and kinetics of electrodeposition. Smaller particle size, greater porosity, higher specific surface area and higher efficiency of material utilization are the factors responsible for obtaining higher specific capacitance. Extended cycle-life studies indicate that the superior performance of MnO2 due to surfactants is present throughout the cycle-life tested. Chapter 4 pertains to electrochemical supercapacitor studies on nanostructured α-MnO2 synthesized by inverse microemulsion method and the effect of annealing. As synthesized nanoparticles of MnO2 was found to be in α-crystallographic structure with particles less than 50 nm size. Nanoparticles exhibited rectangular cyclic voltammograms between 0 and 1 V vs. SCE in aqueous 0.1 M Na2SO4 at sweep rates up to 100 mV s-1 due to the short diffusion path length. On annealing at different temperatures, a mixture of nanoparticles and nanorods with varying dimension is noticed. Specific capacitance of 297 F g-1 obtained during initial cycling decreases gradually on extended cycling. The capacitance loss is attributed to the increase in the resistance for intercalation/deintercalation of alkali cations into/from MnO2 lattice. MnO2 crystallizes into several crystallographic structures, namely, α-, β-, γ-, δ- and λ-structures. As these structures differ in the way MnO6 octahedra are interlinked, they possess tunnels or inter-layers with gaps of different magnitudes. Because capacitance properties are due to intercalation/deintercalation of protons or cations in MnO2, only some crystallographic structures, which possess sufficient gap to accommodate these ions, are expected to be useful for capacitance studies. The effect of crystal structure of MnO2 on its electrochemical capacitance properties is also included in chapter 4. Specific capacitance of MnO2 is found to depend strongly on the crystallographic structure, and it decreases in the following order: α ≅ δ > γ > λ > β. A specific capacitance value of 240 F g-1 is obtained for α-MnO2, whereas it is 9 F g-1 for β-MnO2. A wide (~ 4.6 Å) tunnel size and large surface area of α-MnO2 are ascribed as favorable factors for its high specific capacitance. A large interlayer separation (~7 Å) also facilitates insertion of cations in δ-MnO2 resulting in SC close to 236 F g-1. A narrow tunnel size (1.89 Å) does not allow intercalation of cations into β-MnO2. As a result, it provides very small SC. In Chapter 5, capacitance characteristics of PANI synthesized using (NH4)2S2O8, nanostructured MnO2 (α- and γ-form) and also PANI-MnO2 composites are presented. Morphology of PANI synthesized resembles the morphology of the MnO2 used as the oxidant. Electrochemical capacitance properties of PANI and composites are studied in a mixed electrolyte of 0.1 M HClO4 and 0.3 M NaClO4 between 0 and 0.75 V vs. SCE. Specific capacitance of 394 F g-1 is obtained for PANI synthesized using γ-MnO2. Chapter 6 describes the electrocatalytic behaviour of Mn3[Fe(CN)6]2 synthesized by ion-exchange reaction between MnSO4 and K3[Fe(CN)6] and the effect of annealing on its electrochemical capacitance properties. As prepared Mn3[Fe(CN)6]2 and also the sample heated at 100 oC exhibit redox couple in 0.1 M Na2SO4 electrolyte, corresponding to Fe(CN)64-/Fe(CN)63- present in the matrix. Mn3[Fe(CN)6]2 samples annealed at 150 oC and above decompose to oxides of manganese and iron, and hence exhibit capacitance characteristics in 0.1 M Na2SO4 electrolyte. A maximum specific capacitance of 129 F g-1 is obtained for Mn3[Fe(CN)6]2 annealed at 300 oC. Electrochemical quartz crystal microbalance (EQCM) investigations of kinetics of electrodeposition of MnO2 in acidic and neutral media, and capacitance behaviour are presented in chapter 7. Oxidation of Mn2+ to MnO2 is characterized by an anodic cyclic voltammetric peak both in acidic and neutral media. During the reverse sweep, however, reduction of MnO2 into Mn2+ occurs in two steps in the acidic medium and in a single step in the neutral medium. From EQCM data of mass variation during cycling, it is observed that the rate of electrodeposition of MnO2 is higher in the neutral medium than in the acidic medium. Specific capacitance of MnO2 deposited from the neutral medium is higher than that deposited from acidic medium owing to different crystallographic structures. Reversible insertion/deinsertion of hydrogen in to the layers of δ-MnO2 is observed in hydrogen evolution region. Details of the above studies are described in the thesis.
330

Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic Field

Ispas, Adriana 02 November 2007 (has links) (PDF)
The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.

Page generated in 0.1019 seconds