Spelling suggestions: "subject:"elasticity."" "subject:"clasticity.""
1461 |
Cantilever properties and noise figures in high-resolution non-contact atomic force microscopyLübbe, Jannis Ralph Ulrich 03 April 2013 (has links)
Different methods for the determination of cantilever properties in non-contact atomic force microscopy (NC-AFM) are under investigation. A key aspect is the determination of the cantilever stiffness being essential for a quantitative NC-AFM data analysis including the extraction of the tip-surface interaction force and potential. Furthermore, a systematic analysis of the displacement noise in the cantilever oscillation detection is performed with a special focus on the thermally excited cantilever oscillation. The propagation from displacement noise to frequency shift noise is studied under consideration of the frequency response of the PLL demodulator.
The effective Q-factor of cantilevers depends on the internal damping of the cantilever as well as external influences like the ambient pressure and the quality of the cantilever fixation.
While the Q-factor has a strong dependence on the ambient pressure between vacuum and ambient pressure yielding a decrease by several orders of magnitude, the pressure dependence of the resonance frequency is smaller than 1% for the same pressure range.
On the other hand, the resonance frequency highly depends on the mass of the tip at the end of the cantilever making its reliable prediction from known cantilever dimensions difficult.
The cantilever stiffness is determined with a high-precision static measurement method and compared to dimensional and dynamic methods. Dimensional methods suffer from the uncertainty of the measured cantilever dimensions and require a precise knowledge its material properties. A dynamic method utilising the measurement of the thermally excited cantilever displacement noise to obtain cantilever properties allows to characterise unknown cantilevers but requires an elaborative measurement equipment for spectral displacement noise analysis.
Having the noise propagation in the NC-AFM system fully characterised, a proposed method allows for spring constant determination from the frequency shift noise at the output of the PLL demodulator with equipment already being available in most NC-AFM setups.
|
1462 |
[pt] O MÉTODO HÍBRIDO DE ELEMENTOS DE CONTORNO PARA PROBLEMAS DE ELASTICIDADE GRADIENTE / [en] THE HYBRID BOUNDARY ELEMENT METHOD FOR GRADIENT ELASTICITY PROBLEMSDANIEL HUAMAN MOSQUEIRA 28 January 2015 (has links)
[pt] Atualmente está bem difundido o uso de novas modelagens matemáticas para o estudo do comportamento de micro e nano sistemas mecânicos e eléctricos. O problema de escala é notável quando o tamanho das moléculas, partículas, grãos ou cristais de um sólido é relativamente considerável em relação ao comprimento do microdispositivo. Nesses casos a teoria clássica dos meios contínuos não descreve apropriadamente a solicitação estrutural e é necessária uma abordagem mais geral através de teorias generalizadas não-clássicas que contém a elasticidade clássica como um caso particular delas, onde os parâmetros constitutivos que representam às partículas são desprezíveis. Quando os efeitos microestruturais são importantes, o comportamento não responde como um material homogêneo se não como um material homogêneo. Cem anos atrás os irmãos Cosserat desenvolveram uma teoria de grãos rígidos imersos dentro de um macromeio elástico; posteriormente Toupin, Mindlin e outros pesquisadores na década de 60 formularam a chamada teoria gradiente de deformações, que recentemente é um objeto de muitas investigações analíticas e experimentais. Na década de oitenta, Aifantis e colaboradores conseguiram desenvolver uma teoria de gradiente de deformações simplificada, baseada em só uma constante elástica adicional não-clássica representativa da energia de deformação volumétrica para caracterizar satisfatoriamente os padrões dos fenômenos não-clássicos. Beskos e colaboradores estenderam o campo de aplicações da proposta inicial de Aifantis e fizeram as primeira implementações de elementos de contorno 2D e 3D para análises de elasticidade gradiente estática, no domínio da frequência e a mecânica da fratura. Desde o tempo de Toupin e Mindlin, procura-se estabelecer uma base variacional da teoria e uma formulação consistente das condições de contorno cinemáticas e de equilíbrio, o que parece ter tido êxito com os recentes trabalhos de Amanatidou e Aravas. Esta tese apresenta a formulação do método híbrido de elementos de contorno e finitos na elasticidade gradiente desenvolvida por Dumont e Huamán decompondo o potencial de Hellinger-Reissner em dois princípios de trabalhos virtuais: o primeiro em deslocamentos virtuais e o segundo em forças virtuais. Com esta finalidade é considerado além dos parâmetros clássicos, o trabalho realizado pelas tensões, deformações, forças e deslocamentos não-clássicos. É apresentado o desenvoltimento das soluções fundamentais singulares e polinomiais atráves das equações diferenciais de sexta ordem obtidas da equação de equilíbrio em termos de deslocamento na elasticidade gradiente. É apresentada também a aplicaçõ do método híbrido de contorno para problemas de tensão axial unidimensional e flexão bidimensional de vigas. Finalmente mostra-se a aplicação numérica do método em elementos finitos, é verificado o patch test de elementos finitos de diferentes ordem e mostra-se também análises de convergência. / [en] The use of new mathematical modeling in the study of micro and Nano electro mechanical systems is currently becoming widespread. The scaling problem is apparent when the length of molecules, particles or grains immersed in the material is relatively important compared with the whole micro device dimension. Under this approach the classical theories of mechanics cannot describe suitably the structural requirement and it is necessary a more general outlook through non classical generalized theories which enclose the classical elasticity as a particular case where the non-classical constitutive parameters are negligible. When the microstructural effects are important, the material does not respond as a homogeneous but as a non-homogeneous one. A hundred years ago Cosserat brothers formulated a new theory of rigid grains which were embedded in an elastic macro medium; later Toupin, Mindlin along others researchers in 1960s developed a gradient strain theory which has been recently the source of many analystics and experimental investigations. In 1980s Ainfantis et al could develop a simplified strain gradient theory with just one additional non classical elastic constant which represents the volumetric elastic strain energy and characterized successfully the whole non classical pattern phenomenon. Beskos et al extended the treatment proposed initially by Aifantis and developed the first numerical applications for 2D and 3D boundary element methods and solved static as dynamic and crack problems. Since the times of Toupin and Mindlin it is looking for to establish a variational theory with a consistent cinematic and equilibrium boundary conditions, which seemed to have had success in the recent works of Amanatiodou and Aravas. This work presents the formulation of the hybrid boundary and finite element methods under the strain gradient scope which were developed by Dumont and Huamán through the versatile decomposition of the Hellinger-Reissner potential in two work principles: the displacements virtual work and the forces virtual work; both principles contain the virtual work performed by the non-classical magnitudes. Following, it is presented the complete development of singular and polynominal fundamental solutions abtained through the sixth order strain gradient differential equilibrium equations in terms of displacements. Next it is shown an application of the method to unidimensional truss element and bidimensional beam. Finally, it is presented a numerical application to strain gradient finite element, it is checked the patch tests to different elements orders and it is also shown a series of convergence analysis.
|
1463 |
Adaptive least-squares finite element method with optimal convergence ratesBringmann, Philipp 29 January 2021 (has links)
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis’ under the project ‚Foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics‘. / Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert.
Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution.
This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
|
1464 |
Gesteinsmechanische Versuche und petrophysikalische Untersuchungen – Laborergebnisse und numerische SimulationenBaumgarten, Lars 26 May 2016 (has links) (PDF)
Dreiaxiale Druckprüfungen können als Einstufenversuche, als Mehrstufenversuche oder als Versuche mit kontinuierlichen Bruchzuständen ausgeführt werden. Bei der Anwendung der Mehrstufentechnik ergeben sich insbesondere Fragestellungen hinsichtlich der richtigen Wahl des Umschaltpunktes und des optimalen Verlaufs des Spannungspfades zwischen den einzelnen Versuchsstufen. Fraglich beim Versuch mit kontinuierlichen Bruchzuständen bleibt, ob im Versuchsverlauf tatsächlich Spannungszustände erfasst werden, welche die Höchstfestigkeit des untersuchten Materials repräsentieren. Die Dissertation greift diese Fragestellungen auf, ermöglicht den Einstieg in die beschriebene Thematik und schafft die Voraussetzungen, die zur Lösung der aufgeführten Problemstellungen notwendig sind. Auf der Grundlage einer umfangreichen Datenbasis gesteinsmechanischer und petrophysikalischer Kennwerte wurde ein numerisches Modell entwickelt, welches das Spannungs-Verformungs-, Festigkeits- und Bruchverhalten eines Sandsteins im direkten Zug- und im einaxialen Druckversuch sowie in dreiaxialen Druckprüfungen zufriedenstellend wiedergibt. Das Festigkeitsverhalten des entwickelten Modells wurde in Mehrstufentests mit unterschiedlichen Spannungspfaden analysiert und mit den entsprechenden Laborbefunden verglichen.
|
1465 |
Gesteinsmechanische Versuche und petrophysikalische Untersuchungen – Laborergebnisse und numerische SimulationenBaumgarten, Lars 25 November 2015 (has links)
Dreiaxiale Druckprüfungen können als Einstufenversuche, als Mehrstufenversuche oder als Versuche mit kontinuierlichen Bruchzuständen ausgeführt werden. Bei der Anwendung der Mehrstufentechnik ergeben sich insbesondere Fragestellungen hinsichtlich der richtigen Wahl des Umschaltpunktes und des optimalen Verlaufs des Spannungspfades zwischen den einzelnen Versuchsstufen. Fraglich beim Versuch mit kontinuierlichen Bruchzuständen bleibt, ob im Versuchsverlauf tatsächlich Spannungszustände erfasst werden, welche die Höchstfestigkeit des untersuchten Materials repräsentieren. Die Dissertation greift diese Fragestellungen auf, ermöglicht den Einstieg in die beschriebene Thematik und schafft die Voraussetzungen, die zur Lösung der aufgeführten Problemstellungen notwendig sind. Auf der Grundlage einer umfangreichen Datenbasis gesteinsmechanischer und petrophysikalischer Kennwerte wurde ein numerisches Modell entwickelt, welches das Spannungs-Verformungs-, Festigkeits- und Bruchverhalten eines Sandsteins im direkten Zug- und im einaxialen Druckversuch sowie in dreiaxialen Druckprüfungen zufriedenstellend wiedergibt. Das Festigkeitsverhalten des entwickelten Modells wurde in Mehrstufentests mit unterschiedlichen Spannungspfaden analysiert und mit den entsprechenden Laborbefunden verglichen.
|
Page generated in 0.0381 seconds