• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • Tagged with
  • 22
  • 22
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anisotropic Morphologies and Properties in Perfluorosulfonate Ionomer-Based Materials

Park, Jong Keun 24 January 2010 (has links)
The overall goal of this investigation was to elucidate specific structure-property relationships in perfluorosulfonate ionomers (PFSIs)-related materials. The project can be broken into two primary foci. First, we explored the current state of understanding related to morphology-property relationships in PFSIs with specific attention to the nano-scale organization of the ionic and crystalline domains. Specifically, the effect of uniaxial orientation on the structure and transport properties of Nafion® membranes was examined. Small angle X-ray scattering (SAXS) experiments on dry membranes that were uniaxially elongated showed a strong anisotropic morphology which was shown to persist over the swelling process without a significant relaxation. Herman's order parameters for the ionomer peak were strongly influenced by uniaxial deformation, which supports the presence of cylindrical rather than spherical morphology for ionic domains. Comparison of the water diffusion coefficients between unoriented and oriented samples revealed that uniaxial deformation of Nafion® membranes essentially enhances transport ability in one direction (i.e., the parallel to draw direction) and suppresses in the other two directions (i.e., two orthogonal directions relative to the stretching direction). Based on 1-dimensional analyses of oriented SAXS patterns at the azimuthal angle 90o, three recent models (lamellar model, semicrystalline rod-like model and fringed-micelle model) for the morphology of PFSIs were critically evaluated. The loss of meridional scattering, different orientation behavior of the crystalline and ionic domains, and inherent chain stiffness precludes the possibility of a chain-folded lamellar morphology. While the inter-aggregate dimensions remain constant at high draw ratios, the inter-crystalline spacings decrease significantly. Coupled with the distinctly different orientation behavior, these observations preclude the existence of crystallites solely within rod-like aggregates. While the worm-like ionic channel model was able to explain the behavior of SAXS and wide angle X-ray scattering (WAXS) relatively well, this model also had limitations such as (1) crystalline domains directly linked to the ionic domain (and thus a lack of amorphous domains) and (2) a presence of only a single ionic channel between two neighboring crystallites. Second, electroactive materials, specifically ionic polymer-metal composites (IPMCs) that undergo bending motions with the stimulus of a relatively weak electric field were fabricated. To understand the role of the nanoscale morphology of the membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated actuation performance of IPMCs subjected to uniaxial orientation. The PFSI nanostructure altered by uniaxial orientation mimicked the fibrillar structure of biological muscle tissue and yielded a new anisotropic actuation response. It was evident that IPMCs cut from films oriented perpendicular to the draw direction yielded displacement values that were significantly greater than that of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appeared to resist bending and yield displacement values that were much less than that of the unoriented IPMC. This anisotropic actuation behavior was attributed to the contribution of the nanoscale morphology to the bulk bending modulus. Overall, this study clearly demonstrated, for the first time, the importance of the nanoscale morphology in affecting/controlling the actuation behavior in IPMC systems. / Ph. D.
12

Amélioration des propriétés de conversion électromécanique dans les polymères électrostrictifs / Electromechanical property enhancement of electrostrictive polymers

Liu, Qin 29 March 2013 (has links)
La thèse est consacrée aux matériaux électro-actifs, qui sont développés et conçus pour faire de la conversion entre énergie électrique et énergie mécanique. Avec les nouvelles technologies émergentes de transduction électromécanique, les polymères électro-actifs (EAP) ont gagné une attention considérable. Ils présentent de grandes déformations quand ils sont soumis à un champ électrique. Cependant, ces matériaux présentent de faibles permittivités et exigent pour fonctionner l’application de forts champs électriques. Les recherches entreprises dans la thèse traitent de différentes méthodes ayant pour but d'augmenter la permittivité des polymères et par conséquent d’améliorer les propriétés électromécaniques sous des champs électriques modérés. Les différentes approches consistent à la mise au point de nouveaux matériaux, par la méthode de mélange de polymères ou en utilisant un nouveau type de polymère, et par l'incorporation de nano-charges spéciales dans la matrice polymère. Un mélange de polyuréthane (PU) et PEMG obtenu à partir d'un procédé en solution conduit à des valeurs plus basses de module de Young, mais aussi à de plus faibles permittivités diélectriques. Il est cependant mis en évidence une amélioration des propriétés électromécaniques, par exemple, à le gain à des champs électriques modérés est d’un facteur 2, avec seulement 9% en poids de PEMG. Deux types de Pebax sont testés comme matrice polymère. Des valeurs très élevées de permittivités sont obtenus plus particulièrement pour le Pebax1657 mais liés pour ce matériau à des valeurs élevées de conductivité. En dépit de ces permittivités élevées, seule une légère amélioration de la conversion électromécanique est observée par rapport au polyurethane. Nous nous sommes également intéressés aux nanocomposites de polyuréthane basés sur desnanoparticules d'argent recouvertes de polymère polyvinylpyrrolidone (PVP). Un fin revêtement de polymère sur les nanoparticules d'argent conduit à une meilleure dispersion des charges dans les films de polyuréthane, et des valeurs plus élevées de permittivité. Différentes quantités d'Ag-PVP sont testées jusqu'au seuil de percolation proche de 45% en poids de charges. À partir des mesures par interférométrie laser et du nouveau dispositif de caractérisation croisée, les propriétés électromécaniques optimales sont obtenues pour 20% en poids de Ag-PVP, avecun gain de 2 à 6 par rapport au polyuréthane pur. Afin d'expliquer la différence entre les résultats expérimentaux et attendus, et par conséquent pour parvenir à une meilleure compréhension du comportement électromécanique de ces différents matériaux, certaines hypothèses ont été discutées et testées. Nous avons montré notamment une baisse des permittivités diélectriques sous champs électriques pour les Pebax et les nanocomposites, des problèmes d'absorption d'eau pour les Pebax et une diminution de cristallinité dans le cas des nanocomposites PU-Ag. / The thesis is devoted to electroactive materials, which are developed and designed to make conversion between the electricity and the mechanical form. With newer emerging electromechanical transduction technologies, electroactive polymers (EAP) have gained a considerable attention. The polymers are competitive in many applications such as actuators, sensors, robotic system and biological mimics since they are cheap, light, easy to process, and they present large electric field-induced strains. However, these materials suffer from the low permittivity and high voltage requirement to drive the actuations. The research undertaken for the thesis intends then to provide different methods in order to enhance the polymer permittivity and consequently the electromechanical activities at moderate electric fields. The different approaches consist on the development of new materials by polymer blend method or by using new kind of polymer, and on the incorporation of special nano-fillers in the polymer matrix. A blend of polyurethane (PU) and poly [ethylene-co-(methyl acrylate)-co-(glycidyl methacrylate) (PEMG) obtained from a simple solution method leads to lower values of Young modulus but also lower dielectric permittivities. The PU-PEMG blend presents however an improvement of the electromechanical capabilities, for example it is obtained a two fold increase of the strain at moderate fields with only 9%wt of PEMG.Two types of Polyetherblockamide (Pebax) are tested as polymer matrix. Very high values of permittivities are obtained particulary for Pebax1657 but accompanied for this material by high values of conductivity. Despite these high permittivities (more than 200000 for Pebax 1657 and 500 for Pebax 2533 at 0.1 Hz), only a moderate improvement of the electromechanical capability is observed compared to PU. We are also intererested on polyurethane nanocomposites based on silver nanoparticles coverered by PolyVinylPyrrolidone (PVP) polymer. A little polymer coating of the nanosilver leads to a better dispersion into the polyurethane films and higher values of permittivity. Different amounts of Ag-PVP are tested up to the percolation threshold close to 45%wt of fillers. Based on laser interferometer measurements and new cross characterization device, the optimal electromechanical properties are obtained for 20 %wt of Ag-PVP and a gain of 2 to 6 is obtained compared to pure polyurethane. In order to explain the difference between experimental and expected results and consequently to achieve a better understanding of the electromechanical behaviour of these different materials, some hypotheses were discussed and tested. We have shown particularly a drop of dielectric permittivities under electric fields for Pebax and nanocomposites, some problems of water absorption for Pebax and a decrease of crystallinity for the PU-Ag nanocomposites.
13

Couplage multiphysique à l’aide d’électret application à la récupération d’énergie / Multiphysics coupling with electret application to the Harvesting energy

Belhora, Fouad 07 December 2013 (has links)
Les matériaux actifs, tels que les matériaux piézoélectriques et électrostrictifs, sont couramment utilisés dans la conception de dispositifs exploitant leurs propriétés respectives. La propriété principale de ces matériaux réside dans le fort couplage entre les comportements électrique et mécanique (piézoélectricité). Dans la majorité des cas, ces matériaux sont utilisés séparément. L’utilisation combinée de ces matériaux permet la réalisation de dispositifs innovants basés sur l’effet électrostrictifs: l’apparition d’une polarisation électrique induite par une contrainte mécanique et réciproquement l’apparition d’une déformation mécanique sous l’action d’un champ électrique. Les applications « support » concernent les capteurs et les actionneurs. L’étude de ce couplage passe par la caractérisation de ces matériaux, puis par la mise en place de modèles décrivant finement leurs comportements et enfin par le développement d’outils pour la conception. L’objectif de la thèse est de remplacer le matériau céramique, rigide et à faible déformation, par un film polymère nanocomposite électroactifs, présentant des grandes déformations et forces d'actionnement sous champ électrique modéré grâce à l'incorporation dans la matrice polymère de micro et nano-objets (charge) conducteurs ou semi-conducteurs. De plus, pour des applications plus spécifiques de la récupération d’énergie, la charge du film polymère par des micro et nano-objets conducteurs sera également étudiée. Idéalement, il serait très intéressant de réaliser un matériau multifonctionnel, sensible à la fois à une stimulation mécanique (propriétés de détection et/ou de récupération d’énergie par couplage électromécanique). / In the last decades, direct energy conversion devices for medium and low grades waste heat have received significant attention due to the necessity to develop more energy efficient engineering systems. A great deal of research has in recent years been carried out on harvesting energy using piezoelectric, electrostatic, electromagnetic , and thermoelectric ,transduction, with the aim of harvesting enough energy to enable data transmission. For this purpose, piezoelectric elements have been extensively used in the past; however they present high rigidity and limited mechanical strain abilities as well as delicate manufacturing process for complex shapes, making them unsuitable in many applications. Thus, recent trends in both industrial and research fields have focused on electrostrictive polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, flexibility, and processability. Hence, electrostrictive polymer films are much more suitable for energy harvesting devices requiring high flexibilities, such as systems in smart textiles and mobile or autonomous devices. Electrostrictive polymers can also be obtained in many different shapes and over large surfaces. . In the last years, electrostrictive polymers have been investigated as electroactive materials for energy harvesting. However for scavenging energy a static field is necessary, since this material is isotope, there is no permanent polarization compare to piezoelectric material. A solution for avoid this problem; concern the hybridization of electrostrictive polymer with electret. Finally, the implementation of electrostrictive materials is much simpler for small-scale systems (MEMS). Hence, several studies have analyzed the energy conversion performance of electrostrictive polymers, both in terms of actuation and energy harvesting.
14

Nouveaux développements de matériaux électroactifs à base de polymères conducteurs électroniques : Vers une intégration dans des systèmes biomédicaux / New Developments in electroactive materials based on electronic conductive polymers : Towards integration into biomedical systems

Woehling, Vincent 04 May 2016 (has links)
Ces travaux de thèse s’intéressent à la conception et à la mise en forme d’actionneurs à base de polymères conducteurs électroniques dans l’optique d’une utilisation biomédicale. Actuellement, et alors que certaines problématiques récurrentes de légèreté, de flexibilité et de robustesse peuvent être résolues par ces actionneurs, des limitations restreignent encore leurs utilisations dans des dispositifs biomédicaux contrôlables.En premier lieu, nos matériaux composés de réseaux interpénétrés de polymères (RIP) poly (oxyde d’éthylène) (PEO), caoutchouc nitrile (NBR) et de polymère conducteur électronique (PCE) (poly (3,4-éthylènedioxythiophène)) (PEDOT), ont été étudiés en tant que capteur de déformation. Cette propriété est essentielle pour assurer un retour d’informations de nos systèmes dans des utilisations biomédicales exigeantes.Un troisième réseau de polymère à haut module, le polystyrène (PS), a été interpénétré au RIP PEO-NBR dans le but d’améliorer les forces générées par l’actionnement. Un matériau combinant des propriétés de conduction ionique (PEO), viscoélastiques (NBR) et vitreuses (PS) a alors été obtenu. La caractérisation approfondie de ce tri-RIP, l’incorporation du PCE ainsi que l’étude des performances en actionnement ont alors été réalisée.Dans la continuité et dans le cadre d’une collaboration avec le Pr J. Madden (Vancouver, Canada), le matériau ainsi synthétisé a été utilisé dans une mise en forme particulière de cathéter. Ainsi, un tube électroactif PEO-NBR-PS-PEDOT creux, souple, étirable, d’épaisseur homogène et contenant un gradient de rigidité a été réalisé afin de répondre aux différentes problématiques liées à cette géométrie.Enfin, la dernière partie a été dédiée à une mise en forme plus complexe et originale de notre matériau PEO-NBR. En collaboration avec le PERC (Auckland, N-Z), des tapis de microfibres élastomères électroactifs ont été élaborés par électrofilage. Ces matériaux poreux, étirables et robustes ont montré des changements de taille de pores réversibles dans différents électrolytes, y compris biologiquement compatibles. Des applications biomédicales de type filtre à porosité contrôlable ou la stimulation de cellules souches pourraient alors être envisagées. / This PhD work deal with the conception and shaping of actuators based electronic conductive polymers in the context of biomedical use. Currently, while some recurrent problems of lightness, flexibility and robustness can be resolved by these actuators, limitations still restrict their use in biomedical controllable devices.First, our materials composed of interpenetrating polymer networks (IPN) poly (ethylene oxide) (PEO), nitrile butadiene rubber (NBR) and electronically conductive polymer (ECP) (poly (3,4-ethylenedioxythiophene)) (PEDOT) have been studied as a strain sensor. This property is essential to ensure a feedback of our systems in demanding biomedical uses.A third high modulus polymer network, polystyrene (PS), was interpenetrated IPN PEO-NBR in order to improve the forces generated by the actuator. A material combining ionic conductive (PEO), viscoelastic (NBR) and vitreous (PS) properties has been obtained. The detailed characterization of this tri-IPN, the incorporation of the PCE and the study of air-operating performances were then carried out.In continuity and with the collaboration of Pr. J. Madden (Vancouver, Canada), the synthesized material has been used in a particular shaping of catheter. Thus, an electroactive, hollow, flexible, stretchable NBR-PEO-PS-PEDOT tube, with uniform thickness and containing a rigidity gradient has been created in order to solve the various problems associated with this geometry.The last part was dedicated to a more complex and original shaping of our PEO-NBR material. In collaboration with the PERC (Auckland, NZ), electroactive elastomer microfiber mats were prepared by electrospinning. These porous, stretchable and robust materials showed reversible pore size variations in various electrolytes, including biologically compatible. Biomedical applications as filters with controllable porosity or stem cells stimulation could be considered.
15

A Reticulation of Skin-Applied Strain Sensors for Motion Capture

Schroeck, Christopher A. 12 June 2019 (has links)
No description available.
16

Feedback Control of Ionic Polymer Actuators

Mallavarapu, Kiran 26 July 2001 (has links)
An ionic polymer actuator consists of a thin Nafion-117 sheet plated with gold or platinum on both sides. An ionic polymer actuator undergoes large deformation in the presence of low applied voltage across its thickness and exhibits low impedance. They can also be used as large displacement sensors by bending them to induce stresses and generate a voltage response. They operate best in a humid environment. Ionic polymer actuators have been used for various practical applications such as bio-mimetic robotic propulsion, flexible low mass robotic arms, propellors for swimming robotic structures, linear and platform type robotic actuators and active catheter systems. One of the disadvantages of ionic polymer actuators is that their settling time to a unit step voltage is on the order of 5-20 seconds in a cantilever configuration. The slow time constant of an ionic polymer limits the actuation bandwidth. The characteristics of ionic polymer actuators, low force and large displacement (as compared to other actuator technologies such as PZT or PVDF), cannot be used in applications requiring a faster response time for a given actuation signal. Due to this limitation, many applications will not be able to make use of the large displacement effectively because of the limited bandwidth of the actuator. Another disadvantage of using an ionic polymer actuator is that the stiffness of the actuator is a function of the hydration of the polymer. Difficulties in controlling the hydration, which changes with respect to time, results in inconsistencies in the mechanical response exhibited by the polymers during continual usage. Several physical models of ionic polymer actuators have been proposed. The physical phenomenon responsible for the bending is not completely understood and no clear set of principles have been able to explain the motion of the polymers completely. Physical phenomena like ionic motion, back diffusion of water and electrostatic force have been used to explain these models. This research demonstrates the use of feedback control to overcome the limitation of slow settling time. First, an empirical model of the ionic polymers developed by Kanno was modified by studying the step response of these actuators. The empirical model is used to design a feedback compensator by state space modeling techniques. Since the ionic polymer actuator has a slow settling time in the open-loop, the design objectives are to minimize the settling time and constrain the control voltage to be less than a prescribed value. The controller is designed using Linear Quadratic Regulator (LQR) techniques which reduced the number of design parameters to one variable. Simulations are performed which show settling times of 0.03 seconds for closed-loop feedback control are possible as compared to the open-loop settling time of 16-18 seconds. The maximum control voltage varied from 1.2 Volts to 3.5 Volts depending on the LQR design parameter. The controller is implemented and results obtained are consistent with the simulations. Closed-loop settling time is observed to be 4-8 seconds and the ratio of the peak response to the steady-state response is reduced by an order of magnitude. Discrepancies between the experiment and the simulations are attributed to the inconsistencies in the resonant frequency of the actuator. Experiments demonstrate that changes in the surface hydration of the polymer result in 20\% variations in the actuator resonance. Variations in the actuator resonance require a more conservative compensator design, thus limiting the performance of the feedback control system. / Master of Science
17

Designing Natural Haptic Interfaces and Signals

Sang-Won Shim (6620390) 14 May 2019 (has links)
This thesis research is concerned with the exploration, design, and validation of novel haptic technologies and signals that feel natural and meaningful in a calm and pleasant way. Our ultimate goal is to expand the possibilities of human-machine interaction by developing a single tactile display and a set of signals through a systematic design approach. It is generally a challenge to evoke a broad range of emotions with vibrotactile stimulation, especially at low signal intensities. During the first part of this thesis research, three types of prototypes were developed and explored using novel haptic technologies. The first was a circular array braille display consisting of eight small six-pin braille modules. The forty-eight pins were arranged in a circular shape to deliver circular tactile information such as time and direction. The second was a braille stick consisting of sixteen six-pin braille modules arranged in a row. The entire display could be easily grasped in the hand so that tactile information can be easily accessible. The third was a 3-by-3 electroactive polymer actuator array driven at high voltages that gives a subtle “tapping” feel on the skin. However, each of the three prototypes suffered from a limited range of expression and was not pursued further.<br> After the initial prototyping efforts, a 2-by-2 vibrotactile display, the palmScape, was conceived and developed. Custom-designed stimulation patterns based on natural phenomena that feel calm and pleasant were designed and implemented with the palmScape. We use text labels to set the context for the vibrotactile icons that attempt to capture and expresses natural metaphors through variations in signal amplitude, frequency, duration, rhythm, modulation, spatial extent, as well as slow movements. Fourteen participants evaluated twenty vibrotactile icons by rating the perceived valence and arousal levels. The twenty stimuli included sixteen custom-designed vibrotactile icons from this thesis research and four reference patterns from two published studies. The results show that our custom-designed patterns were rated at higher valence levels than the corresponding reference signals at similar arousal ratings. Five of the sixteen vibrotactile icons from this research occupied the fourth quadrant of the valence-arousal space that corresponds to calm and pleasant signals. These findings support the validity of the palmScape display and our signal design approach for achieving a calm and pleasant experience and the possibility of reaching a broader range of expressiveness with vibrotactile signals.<br> Future studies will continue with the design of signals that can express a broader range of metaphors and emotions through the palmScape, and build an emotional evaluation database that can be combined with other modalities. Our work can be further expanded to support an immersive experience with naturalistic-feeling vibrotactile effects and broaden the expressiveness of human-computer interfaces in media consumption, gaming, and other communicative application domains.
18

Modification of electrostrictive polymers and their electromechanical applications / Composites à base de polymères electrostrictifs et leurs applications électromécanique

Yin, Xunqian 07 May 2015 (has links)
Les polymères électroactifs (PAE), sont des matériaux permettant de réaliser une conversion entre l'énergie électrique et mécanique. L'objet de ce travail est de proposer des procédés de modifications des terpolymères électrostrictifs par voies composites basés sur différentes approches dans le but d’améliorer les performances électromécaniques et de développer des applications à partir de ces matériaux modifiés. Dans un premier temps, un nano-composite à base de terpolymère et de noir de carbone a été préparé pour améliorer la permittivité diélectrique. Dans un deuxième temps, sur la base de la nature hétérogène de terpolymère semi-cristallin ainsi que du rôle important que la polarisation interfaciale joue sur la réponse diélectrique et électromécanique, une faible quantité d’agent plastifiant (bis (2-ethylhexyl) phalate (DEHP)) a été introduite dans le terpolymère électrostrictif afin de former un composite tout organique permettant l'amélioration des performances électromécaniques. Enfin, l’utilisation de ces matériaux modifiés dans deux applications spécifiques a été étudiée: La récupération de l'énergie mécanique et une pompe microfluidique sans valve. / Electroactive polymers (EAPs), which can realize the conversion between electrical and mechanical energy, have been emerging as one of the most interesting smart materials in the past two decades due to their low density, excellent mechanical properties, ease of processing, low price and potential applications in the fields of sensors, actuators, generators, biomimetic robots and so on. The object of this work is to modify electrostrictive terpolymers with different approaches to improve the electromechanical performances and to develop some applications based on modified terpolymers. Firstly, an organic/inorganic (terpolymer/carbon black) nanocomposite was prepared to improve the dielectric permittivity based on the percolation theory. Secondly, based on the heterogeneous nature of semi-crystalline terpolymer and the important role that interface polarization plays for dielectric and electromechanical response, small molecular plasticizer bis(2-ethylhexyl) phalate (DEHP) was introduced into electrostrictive terpolymer to form an all-organic polymer composite with improved electromechanical performances. Finally, two applications including mechanical energy harvesting and microfluidic pump based on DEHP modified terpolymers were investigated.
19

Dielectric elastomer actuators in electro-responsive surfaces based on tunable wrinkling and the robotic arm for powerful and continuous movement

Lin, I-Ting January 2019 (has links)
Dielectric elastomer actuators (DEAs) have been used for artificial muscles for years. Recently the DEA-based deformable surfaces have demonstrated controllable microscale roughness, ease of operation, fast response, and possibilities for programmable control. DEA muscles used in bioinspired robotic arms for large deformation and strong force also become desirable for their efficiency, low manufacturing cost, high force-to-weight ratio, and noiseless operation. The DEA-based responsive surfaces in microscale roughness control, however, exhibit limited durability due to irreversible dielectric breakdown. Lowering device voltage to avoid this issue is hindered by an inadequate understanding of the electrically-induced wrinkling deformation as a function of the deformable dielectric film thickness. Also, the programmable control and geometric analysis of the structured surface deformation have not yet been fully explored. Current methods to generate anisotropic wrinkles rely on mechanical pre-loading such as stretching or bending, which complicates the fabrication and operation of the devices. With a fixed mechanical pre-loading, the device can only switch between the flat state and the preset wrinkling state. In this thesis, we overcome these shortcomings by demonstrating a simple method for fabricating fault-tolerant electro-responsive surfaces and for controlling surface wrinkling patterns. The DEA-based system can produce different reversible surface topographies (craters, irregular wrinkles, structured wrinkles) upon the geometrical design of electrode and application of voltage. It remains functional due to its ability to self-insulate breakdown faults even after multiple high voltage breakdowns, and the induced breakdown punctures can be used for amplification of local electric fields for wrinkle formation at lower applied voltages. We enhance fundamental understanding of the system by using different analytical models combined with numerical simulation to discuss the mechanism and critical conditions for wrinkle formation, and compare it with the experimental results from surface topography, critical field to induce wrinkles in films of different thickness, and wrinkling patterns quantitatively analysed by different disorder metrics. Based on the results, we demonstrate its wide applicability in adjustable transparency films, dynamic light-grating filter, molding for static surface patterns, and multi-stable mirror-diffusor-diffraction grating device. For DEAs used for macroscopic-scale deformation in robotic arms, the main issue that undermines the performance of DEA muscles is the trade-off between strong force and large displacement, which limits the durability and range of potential robotic and automation applications of DEA-driven devices. In this thesis, this challenge is tackled by using DEAs in loudspeaker configuration for independent scaling-up of force and displacement, developing a theoretical prediction to optimise the operation of such DEAs in bioinspired antagonistic system to maximise speed and power of the robotic arm, and designing a clutch-gear-shaft mechanical system collaborating with the muscles to decouple the displacement and output force. Therefore, the trade-off between force and displacement in traditional DEA muscles can be resolved. The mechanical system can also convert the short linear spurt to an unlimited rotary motion. Combining these advantages, continuous movement with high output force can be accomplished.
20

Transducteurs ultra fins à base de polymères conducteurs : fabrication, caractérisation et modélisation / Ultrathin conducting polymer transducers : fabrication, characterization, and modeling

Nguyen, Ngoc Tan 21 September 2018 (has links)
Récemment, les actionneurs ioniques ultra-minces à base de poly (3,4-éthylènedioxythiophène) (PEDOT) ont surmonté certains obstacles initiaux pour augmenter le potentiel d'applications dans les dispositifs microfabriqués. Bien que la microfabrication d’actionneurs à trois couches, n’impliquant aucune manipulation manuelle, ait été démontrée, leurs performances mécaniques restent limitées pour des applications pratiques. Le but de cette thèse est d'optimiser les transducteurs dans la phase de fabrication des couches minces en utilisant des micro technologies, de caractériser complètement les propriétés électrochimiques des transducteurs ainsi obtenus, et de développer un modèle pour simuler leurs capacités électromécaniques bidirectionnelles (actionnement et détection). Tout d'abord, les actionneurs à trois couches ultra-minces à base de PEDOT sont fabriqués par polymérisation en phase vapeur de 3,4-éthylènedioxythiophène en réalisant un procédé de synthèse couche par couche. Le travail présenté constitue la première caractérisation complète de microactionneurs ioniques à base de PEDOT fonctionnant dans l’air d’une si faible épaisseur (17 μm) présentant une déformation en flexion et une génération de force de 1% et 12 μN respectivement. En effet, les propriétés électriques, électrochimiques et mécaniques des microactionneurs ont été minutieusement étudiées. La caractérisation non linéaire a été étendue à la dépendance de la capacité volumétrique sur une fenêtre de tension. Le coefficient d'amortissement a été caractérisé pour la première fois. Par ailleurs, un modèle multi-physique non linéaire a été proposé comme méthode de simulation des réponses en mode actionneur et capteur dans des couches multiples, représenté à l'aide d'un formalisme Bond Graph, et a été capable de mettre en œuvre tous les paramètres caractérisés. La concordance entre les simulations et les mesures a confirmé l'exactitude du modèle pour prédire le comportement dynamique non linéaire des actionneurs. En outre, les informations extraites du modèle ont également permis de mieux comprendre les paramètres critiques des actionneurs et leur incidence sur l'efficacité de l'actionneur et sur la distribution de l'énergie. Enfin, un nouveau modèle linéaire électromécanique bidirectionnel a été introduit pour simuler la capacité de détection du transducteur à trois couches et a été confirmé par des résultats expérimentaux dans les domaines fréquentiel et temporel d'un déplacement d'entrée sinusoïdal. Les actionneurs résultants et les modèles proposés sont prometteurs pour la conception, l'optimisation et le contrôle des futurs dispositifs de microsystèmes souples dans lesquels l'utilisation d'actionneurs en polymère devrait être essentielle. / Recently, ultrathin poly (3,4-ethylenedioxythiophene) (PEDOT) – based ionic actuators have overcome some initial obstacles to increase the potential for applications in microfabricateddevices. While microfabrication processing of trilayer actuators that involve no manual handling has been demonstrated, their mechanical performances remain limited for practical applications. The goal of this thesis is to optimize the transducers in thin films fabrication by micro technologies, fully characterize the electrochemomechanical properties of the resulting trilayers, and develop a model to simulate their bidirectional electromechanical ability (actuation and sensing). At first, ultrathin PEDOT-based trilayer actuators are fabricated via the vapor phase polymerization of 3,4-ethylenedioxythiophene combining with the layer by layer synthesis process. This constitutes the first full characterization of ionic PEDOT-based microactuators operating in air of such a small thickness (17 μm) having bending deformation and output force generation of 1% and 12 μN respectively. Secondly, electrical, electrochemical and mechanical properties of the resulting microactuators have been thoroughly studied. Non-linear characterization was extended to volumetric capacitance dependence on voltage window. Damping coefficient was characterized for the first time. Thirdly, a nonlinear multi-physics model was proposed as a method of simulating actuator and sensor responses in trilayers, represented using a Bond Graph formalism, and was able to implement all of the characterized parameters. The concordance between the simulations and the measurements confirmed the accuracy of the model in predicting the non-linear dynamic behavior of the actuators. In addition, the information extracted from the model also provided an insight into the critical parameters of the actuators and how they affect the actuator efficiency, as well as the energy distribution. Finally, a nouveau bidirectional electromechanical linear model was introduced to simulate the sensing ability of the trilayer transducer and was confirmed via experimental results in both frequency and time domains of a sinusoidal input displacement. The resulting actuators and the proposed models are promising for designing, optimizing, and controlling of the future soft microsystem devices where the use of polymer actuators should be essential.

Page generated in 0.0814 seconds