• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 42
  • 21
  • 20
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 246
  • 246
  • 246
  • 48
  • 47
  • 45
  • 43
  • 40
  • 34
  • 34
  • 33
  • 31
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Kinetic investigation of LiMn2O4 for rechargeable lithium batteries

Hjelm, Anna-Karin January 2002 (has links)
This thesis is concerned with kinetic characterisation of theinsertion compound LiMn2O4, which is used as positive electrodematerial in rechargeable lithium batteries. Three different typesof electrode configurations have been investigated, namely singleparticles, thin films and composite electrodes. Differentelectrochemical techniques, i.e. linear sweep voltammetry (LSV),electrochemical impedance spectroscopy (EIS), potential step, andgalvanostatic experiments were applied under various experimentalconditions. The majority of the experimental data were analysedby relevant mathematical models used for describing the reactionsteps of insertion compounds. It was concluded that a model based on interfacialcharge-transfer, solid-phase diffusion and an external iR-dropcould be fairly well fitted to LSV data measured on a singleelectrode system over a narrow range of sweep rates. However, itwas also found that the fitted parameter values vary greatly withthe characteristic length and the sweep rate. This indicates thatthe physical description used is too simple for explaining theelectrochemical responses measured over a large range of chargeand discharge rates. EIS was found to be a well-suited technique for separatingtime constants for different physical processes in the insertionand extraction reaction. It was demonstrated that the impedanceresponse is strongly dependent on the current collector used.According to the literature, reasonable values of theexchange-current density and solid-phase diffusion coefficientwere determined for various states-of-discharge, temperatures andelectrolyte compositions. Experiments were carried out in bothliquid and gel electrolytes. A method which improves thedistinction between the time constants related to thematerial’s intrinsic properties and possible porous effectsis presented. The method was applied to composite electrodes.This method utilises, in addition to the impedance responsemeasured in front of the electrode, also the impedance measuredat the backside of the electrode. Finally, the kinetics of a composite electrode was alsoinvestigated by in situ X-ray diffraction (in situ XRD) incombination with galvanostatic and potentiostatic experiments. Noevidence of lithium concentration gradients could be observedfrom XRD data, even at the highest rate applied (i.e. ~6C), thusexcluding solid-phase diffusion and also phase-boundary movement,as described by Fick’s law, as the ratelimiting step. <b>Key words:</b>linear sweep voltammetry, electrochemicalimpedance spectroscopy, potential step, in situ X-raydiffraction, microelectrodes, electrode kinetics, LiMn2O4cathode, rechargeable lithium batteries
72

Kinetic investigation of LiMn2O4 for rechargeable lithium batteries

Hjelm, Anna-Karin January 2002 (has links)
<p>This thesis is concerned with kinetic characterisation of theinsertion compound LiMn2O4, which is used as positive electrodematerial in rechargeable lithium batteries. Three different typesof electrode configurations have been investigated, namely singleparticles, thin films and composite electrodes. Differentelectrochemical techniques, i.e. linear sweep voltammetry (LSV),electrochemical impedance spectroscopy (EIS), potential step, andgalvanostatic experiments were applied under various experimentalconditions. The majority of the experimental data were analysedby relevant mathematical models used for describing the reactionsteps of insertion compounds.</p><p>It was concluded that a model based on interfacialcharge-transfer, solid-phase diffusion and an external iR-dropcould be fairly well fitted to LSV data measured on a singleelectrode system over a narrow range of sweep rates. However, itwas also found that the fitted parameter values vary greatly withthe characteristic length and the sweep rate. This indicates thatthe physical description used is too simple for explaining theelectrochemical responses measured over a large range of chargeand discharge rates.</p><p>EIS was found to be a well-suited technique for separatingtime constants for different physical processes in the insertionand extraction reaction. It was demonstrated that the impedanceresponse is strongly dependent on the current collector used.According to the literature, reasonable values of theexchange-current density and solid-phase diffusion coefficientwere determined for various states-of-discharge, temperatures andelectrolyte compositions. Experiments were carried out in bothliquid and gel electrolytes. A method which improves thedistinction between the time constants related to thematerial’s intrinsic properties and possible porous effectsis presented. The method was applied to composite electrodes.This method utilises, in addition to the impedance responsemeasured in front of the electrode, also the impedance measuredat the backside of the electrode.</p><p>Finally, the kinetics of a composite electrode was alsoinvestigated by in situ X-ray diffraction (in situ XRD) incombination with galvanostatic and potentiostatic experiments. Noevidence of lithium concentration gradients could be observedfrom XRD data, even at the highest rate applied (i.e. ~6C), thusexcluding solid-phase diffusion and also phase-boundary movement,as described by Fick’s law, as the ratelimiting step.</p><p><b>Key words:</b>linear sweep voltammetry, electrochemicalimpedance spectroscopy, potential step, in situ X-raydiffraction, microelectrodes, electrode kinetics, LiMn2O4cathode, rechargeable lithium batteries</p>
73

Study of cation-dominated ionic-electronic materials and devices

Greenlee, Jordan Douglas 08 June 2015 (has links)
The memristor is a two-terminal semiconductor device that is able to mimic the conductance response of synapses and can be utilized in next-generation computing platforms that will compute similarly to the mammalian brain. The initial memristor implementation is operated by the digital formation and dissolution of a highly conductive filament. However, an analog memristor is necessary to mimic analog synapses in the mammalian brain. To understand the mechanisms of operation and impact of different device designs, analog memristors were fabricated, modeled, and characterized. To realize analog memristors, lithiated transition metal oxides were grown by molecular beam epitaxy, RF sputtering, and liquid phase electro-epitaxy. Analog memristors were modeled using a finite element model simulation and characterized with X-ray absorption spectroscopy, impedance spectroscopy, and other electrical methods. It was shown that lithium movement facilitates analog memristance and nanoscopic ionic-electronic memristors with ion-soluble electrodes can be key enabling devices for brain-inspired computing.
74

Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods

Ukyo, Yoshio, Horibuchi, Kayo, Kondo, Hiroki, Oka, Hideaki, Kojima, Yuji, Tatsumi, Kazuyoshi, Muto, Shunsuke 05 1900 (has links)
No description available.
75

Estudo da reação de oxidação do metanol sobre fases intermetálicas ordenadas Pt-M com a técnica de espectroscopia de impedância eletroquímica

Perez, Letícia [UNESP] 30 April 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-04-30Bitstream added on 2014-06-13T19:09:17Z : No. of bitstreams: 1 perez_l_me_bauru.pdf: 2493638 bytes, checksum: 26329bfa30a60d575a769d58ce9d9493 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A oxidação do metanol apresenta problemas acentuadamente complexos que ainda não foram satisfatoriamente solucionados. Possui um mecanismo duplo caminho, ou seja, diretamente a CO2 ou pelo caminho alternativo via intermediários. Também como intermediário/produto da reação ocorre a formação de CO que é usualmente identificado como o agente bloqueador da superfície eletródica devido à sua adsorção irreversível. Baseado em um estudo recente da reação de oxidação do metanol sobre Pt por espectroscopia de impedância eletroquímica (EIE), este trabalho teve por objetivo aplicar a técnica de EIE no estudo da eletrocatálise da reação de oxidação do metanol sobre fases intermetálicas ordenadas de PtMn, PtSb e PtSn em meio ácido, visto que os metais Mn, Sb e Sn por apresentarem característica oxifílica, podem formar mais facilmente espécies OH que promovem a oxidação de intermediários fortemente adsorvidos nos sítios ativos da superfície eletródica. Os intermetálicos também apresentam maior distância entre os sítios da platina o que pode favorecer uma configuração de adsorção vertical da molécula de CO que é mais fácil de oxidar quando comparado a uma configuração em ponte. Uma análise prévia da atividade catalítica desses materiais para a reação de oxidação do metanol foi realizada empregando-se as técnicas de voltametria cíclica cronoamperometria. Os resultados obtidos mostraram que o processo de oxidação do metanal utilizando os intermetálicos apresentou um deslocamento para valores menos positivos do potencial de início de oxidação, necessitando de uma menor demanda energética para que o processo de oxidação ocorra sobre a superfície destes intermetálicos. A oxidação do metanol apresentou densidade de corrente de corrente de pico superior para esses materiais quando comparado... / Methanol oxidation reaction congregates very complex constraints that were not conveniently solved so far. This reaction usually follows a dual pathway, i.e. direct oxidation to CO2 or through an alternative path via stable intermediates. CO is the most commom identified intermediate of the reaction and surface blocking agent due to its irreversible adsorption characteristic. The here in research is based on recent study performed with the methanol oxidation reaction on Platinum by employing the Electrochemical Impedance Spectroscopy (EIS) technique. The aim of the research was to investigate the methanol oxidation reaction on PtMn, PtSb and PtSn ordered intermetallic surfaces, in acid medium, by means of the EIS technique. These materials were selected to the study since they have oxophilic metals (Mn, Sb and Sn) that could provide OH species on the electrode surface at electrode potentials less positive than polycrystalline Platinum under the same experimental conditions. Moreover, these surfaces also exhibits a larger Pt-Pt distance in comparison to polycrystalline Platinum that inhibits the stable bridge configuration adsorption of CO. The electrochemical data obtained have demonstrated that ehe methanol oxidation reaction on the studied surfaces presented a less positive onset potential as compared to Pt. The materials also have exhibited a higher maxima current densities and lower susceptibility for CO blocking than Pt. EIS spectra obtained fot the reaction taking place on Pt, PtSb and PtSn have presented an inductive component that is characteristic of stable intermediate adsorption process. Steady state measurements have pointed to a change in the mechanism of the reaction probably due to the action of surface oxygenated species. Furthemore, the EIS technique has been proved o be a powerful tool to investigate... (Complete abstract click electronic access below)
76

Polyamic acid composites for multiiple sensing applications in complex sample matrices

Hess, Euòdia Hallouise January 2013 (has links)
Philosophiae Doctor - PhD / Polyamic acid-polypyrrole (PAA/PPy) composite films were prepared and characterised for the use as conducting platforms in the design of biosensor systems. The thin films were synthesised by electrochemical method from a solution containing controlled molar ratio of chemically synthesised polyamic acid (PAA) and pyrrole monomer. Homogenous films were obtained incorporating PAA into electropolymerised polypyrrole (PPy) thin film. The concentration of PAA (1.37 × 10-6 M) was kept fixed throughout the composite ratio analysis, whilst the concentration of PPy was varied from 1.9 × 10-3 M to 9.9 × 10-3 M. The PAA/PPy thin films were electrodeposited at a glassy carbon electrode (GCE) and characterised using Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, Atomic Force microscopy (AFM), Scanning electron microscopy (SEM) and electrochemical (CV, SWV) techniques. The composition that best represented the homogenous incorporation of PAA into PPy matrix was observed at a PAA/PPy ratio of 1: 4.13 × 10-3. This composite was observed to have two sets of coupled peaks with formal potential 99 mV and 567 mV respectively. The De determined from cyclic voltammetry using the anodic peak currents were found to be twice as high (5.82 × 10-4 cm2/s) as the De calculated using the cathodic peak currents (2.60 × 10-4 cm2/s), indicating that the composite favours anodic electron mobility. Surface morphology and spectroscopy data support the formation of a homogenous polymer blend at the synthesis ratio represented by composite 3. For the construction of a biosensor the spectroscopic and electrochemical properties of the enzyme, luciferase and the analytes i.e naphthalene and fluoranthene were evaluated. Fluorescence spectroscopy studies were carried out to characterize the enzyme’s bioluminescence response in PBS at pH 7. Luciferase showed an absorption peak at 340 nm. The bioluminescence properties of the enzyme with the analytes were explored by fluorescence spectroscopy. The emmision peak at 340 nm gradually decreased as the concentration of each analyte was increased respectively.
77

Estudo da reação de oxidação do metanol sobre fases intermetálicas ordenadas Pt-M com a técnica de espectroscopia de impedância eletroquímica /

Perez, Letícia. January 2010 (has links)
Orientador: Antonio Carlos Dias Ângelo / Banca: Joelma Perez / Banca: Mauro Coelho dos Santos / Resumo: A oxidação do metanol apresenta problemas acentuadamente complexos que ainda não foram satisfatoriamente solucionados. Possui um mecanismo duplo caminho, ou seja, diretamente a CO2 ou pelo caminho alternativo via intermediários. Também como intermediário/produto da reação ocorre a formação de CO que é usualmente identificado como o agente bloqueador da superfície eletródica devido à sua adsorção irreversível. Baseado em um estudo recente da reação de oxidação do metanol sobre Pt por espectroscopia de impedância eletroquímica (EIE), este trabalho teve por objetivo aplicar a técnica de EIE no estudo da eletrocatálise da reação de oxidação do metanol sobre fases intermetálicas ordenadas de PtMn, PtSb e PtSn em meio ácido, visto que os metais Mn, Sb e Sn por apresentarem característica oxifílica, podem formar mais facilmente espécies OH que promovem a oxidação de intermediários fortemente adsorvidos nos sítios ativos da superfície eletródica. Os intermetálicos também apresentam maior distância entre os sítios da platina o que pode favorecer uma configuração de adsorção vertical da molécula de CO que é mais fácil de oxidar quando comparado a uma configuração em ponte. Uma análise prévia da atividade catalítica desses materiais para a reação de oxidação do metanol foi realizada empregando-se as técnicas de voltametria cíclica cronoamperometria. Os resultados obtidos mostraram que o processo de oxidação do metanal utilizando os intermetálicos apresentou um deslocamento para valores menos positivos do potencial de início de oxidação, necessitando de uma menor demanda energética para que o processo de oxidação ocorra sobre a superfície destes intermetálicos. A oxidação do metanol apresentou densidade de corrente de corrente de pico superior para esses materiais quando comparado... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Methanol oxidation reaction congregates very complex constraints that were not conveniently solved so far. This reaction usually follows a dual pathway, i.e. direct oxidation to CO2 or through an alternative path via stable intermediates. CO is the most commom identified intermediate of the reaction and surface blocking agent due to its irreversible adsorption characteristic. The here in research is based on recent study performed with the methanol oxidation reaction on Platinum by employing the Electrochemical Impedance Spectroscopy (EIS) technique. The aim of the research was to investigate the methanol oxidation reaction on PtMn, PtSb and PtSn ordered intermetallic surfaces, in acid medium, by means of the EIS technique. These materials were selected to the study since they have oxophilic metals (Mn, Sb and Sn) that could provide OH species on the electrode surface at electrode potentials less positive than polycrystalline Platinum under the same experimental conditions. Moreover, these surfaces also exhibits a larger Pt-Pt distance in comparison to polycrystalline Platinum that inhibits the stable bridge configuration adsorption of CO. The electrochemical data obtained have demonstrated that ehe methanol oxidation reaction on the studied surfaces presented a less positive onset potential as compared to Pt. The materials also have exhibited a higher maxima current densities and lower susceptibility for CO blocking than Pt. EIS spectra obtained fot the reaction taking place on Pt, PtSb and PtSn have presented an inductive component that is characteristic of stable intermediate adsorption process. Steady state measurements have pointed to a change in the mechanism of the reaction probably due to the action of surface oxygenated species. Furthemore, the EIS technique has been proved o be a powerful tool to investigate... (Complete abstract click electronic access below) / Mestre
78

Conception de biocapteurs à ADN photoélectrochimiques et impédancemétriques à base de polymères électrogénérés / Photoelectrochemical and impedancemetric dna biosensors based on electrogenerated polymers

Haddache, Fatima 08 December 2015 (has links)
Cette thèse porte sur la modification d'électrodes par des polymères électrogénérés, capables d'immobiliser une biomolécule et/ou de fournir des propriétés de transduction électrochimique afin d'élaborer des biocapteurs à ADN faisant intervenir différents types d'interactions : ADN/protéine de réparation, hybridation et aptamère/molécule cible.Dans un premier temps, nous avons immobilisé la protéine Formamidopyrimidine ADN Glycosylase (Fpg) de D. radiodurans portant un tag histidine sur un film de poly-(pyrrole-NTA) via l'interaction NTA/Cu2+/Histidine. Dans le but d'étudier, par spectroscopie d'impédance électrochimique et SPR, l'interaction de cette protéine avec un duplex d'ADN sans lésions et un duplex d'ADN portant une lésion -oxo-guanine (8-oxo-G), car la Fpg est une protéine impliquée dans la réparation de l'ADN lorsque celui-ci comporte un site 8 (8-oxo-G).Dans un second temps, nous avons élaboré un biocapteur photoélectrochimique à partir d'un complexe multifonctionnel, (Ru(bpy-pyrrole)2(dppn)]2+) (bpy-pyrrole=4-méthyl-4'-butylpyrrole-2,2'-bipyridine, dppn=benzo[i]dipyrido-[3,2-a:2'.3'-c]phénazine) pouvant être électropolymérisé, intercalé l'ADN et photoactivé. La preuve de concept a été réalisée pour une séquence type d'ADN du VIH. Une limite de détection de 10-15 mol.L-1 et une sensibilité de 0,01 unité par décade avec une gamme de linéarité allant de 10-15 à 10-10 mol.L-1 ont été obtenue. Puis, nous avons conçu un aptacapteur pour la détection de la cocaïne à l'aide d'un aptamère double-fragment, formant une seule entité en présence de cocaïne, pouvant être immobilisée par intercalation sur le ligand dppn du métallopolymère. Ainsi une gamme de linéarité comprise entre 10-6 et 5x10-4 mol L-1 a été obtenue pour une concentration d'aptamère de 10-7 mol L-1, avec une limite de détection de l'ordre de 10-6 mol L-1. / This work focuses on the conception and optimization of impedancemetric and photoelectrochemical DNA biosensors based on the modification of electrodes with electrogenerated polymers. Different types of interactions involving DNA were studied: DNA/DNA repair protein, hybridization and aptamer/target molecule.In the first part, a poly-(pyrrole-NTA)-modified electrode was used to immobilize a protein involved in DNA repair: the Fpg (Formamidopyrimidine DNA Glycosylase) from D. radiodurans. This protein was previously tagged with histidine to be immobilized via a (NTA)Cu-histidine interaction. This protein detects and removes 8-oxo-guanine (8-oxo-G), a DNA damage caused by irradiation in double stranded DNA. We studied the behavior of this Fpg with DNA duplexes with and without 8-oxo-G nucleotide by electrochemical impedance spectroscopy and SPR.In the second part, we report the design of novel photoelectrochemical biosensor based on a multifunctional complex, (Ru(bpy-pyrrole)2(dppn)]2+) (bpy-pyrrole=4-methyl-4'-butylpyrrole-2,2'-bipyridine, dppn= benzo[i]dipyrido-[3,2-a:2'.3'-c]phenazine) exhibiting photo-sensitive, DNA-intercalating and electro-polymerizable properties. This modified electrode achieves photoelectrochemical detection on planar electrode by intercalating HIV-DNA duplexes or aptamer–cocaine complexes. The photocurrent generated through visible irradiation was correlated to the oligonucleotides concentration. Low detection limits of 10-15 mol L-1 and sensitivity of 0.01 unit per decade were measured, demonstrating excellent adequacy of these modified electrodes towards duplex HIV DNA detection. For the cocaine detection, the photelectrochemical aptasensor was based on the immobilization of a 10-7 mol L-1 double-fragment anti-cocaine aptamer and finally exhibited a linear range between 10-6 and 5x10-4 mol L-1 and a detection limit of 10-6 mol L-1.
79

Surface treated cp-titanium for biomedical applications : a combined corrosion, tribocorrosion and biological approach / Fonctionnalisations d’une surface de titane commercialement pur en vue d’applications biomédicales : une triple approche combinant corrosion, tribocorrosion et biologie

Yang, Yaqin 16 October 2014 (has links)
La tribocorrosion peut être définie comme l’ étude de l’influence des facteurs environnementaux (chimiques et/ou électrochimiques) et mécanique (frottement) sur le comportement tribologique de surfaces en mouvement relatifs. En raison de leurs caractéristiques particulières: performances mécaniques, associées à une faible densité, bonne tenue à la corrosion, biocompatibilité, le titane et ses alliages sont souvent utilisés dans le domaine médical comme implants dentaires et orthopédiques. Cependant, leur faible résistance vis-À-Vis du frottement en milieu agressif et plus spécifiquement biologique reste un frein à leur usage courant dans le domaine prothétique. Pour améliorer la résistance à la corrosion et à l'usure du titane et de ses alliages, différentes méthodes de modification de la surface ont été proposées durant ces dernières décennies. Dans ce cadre, le but de ce travail est de comparer les comportements en corrosion et tribocorrosion du titane commercialement pur (cp Ti), avec ce même matériau ayant subi au préalable les traitements suivants :- soit une étape d'oxydation thermique à 650 °C à l’air durant 48 h (formation d’un film d'oxyde de titane (TiO2) en surface),- soit un dépôt électrochimique de calcium phosphate (CaP) en surface,- soit un dépôt électrochimique de calcium phosphate (CaP) suivi d’une tape d’oxydation thermique à 650 °C à l’air durant 6 h (formation d’un dépôt de type CaP/TiO2 en surface). Les phases cristallines des films modifiés ont été identifiées par diffraction des rayons X (XRD). La microscopie électronique à balayage (MEB) en combinaison avec la spectroscopie à dispersion d'énergie (EDS) a été utilisée pour caractériser la morphologie et la composition de ces films.Le comportement en corrosion pure des échantillons cp Ti avec ou sans modifications de surface à été étudié in situ à partir des mesures électrochimiques de suivi du potentiel en circuit ouvert (OCP), de la spectroscopie d'impédance électrochimique (EIS) et du tracé de courbes de polarisation potentio-Dynamiques.Le comportement en tribocorrosion à été étudié quant à lui à l'aide d'un tribomètre de type pion-Disque apte à travailler en milieu aqueux et permettant outre l’enregistrement des paramètres tribologiques classiques, la mise en œuvre in situ des techniques électrochimiques utilisées lors de l’étude en corrosion pure. Caractérisation et analyses de la surface(composition, morphologie, rugosité …) sont effectuées avant et après chaque étude de comportement (corrosion et tribocorrosion). Un protocole pour la culture des cellules sur la surface de titane a été validé, en se basant sur les résultats expérimentaux préliminaires. / Tribocorrosion is defined as the study of the interplay between chemical, electrochemical and mechanical processes that leads to a degradation of passivating materials in a corrosive environment. Due to the low density, excellent mechanical properties, high corrosion resistance and good biocompatibility, titanium and its alloys are widely used as dental and orthopedic implants. However, the poor wear resistant and bio-Inert properties limit their further development as more efficient and economic biomedical implants. To improve the corrosion-Wear resistance and even bioactivity of metallic implants, different surface modification methods are imposed in the past decades.The aim of this work is to provide a deep insight in the area of corrosion and tribocorrosion behavior of commercially pure titanium (cp Ti) under the guidance of a tribocorrosion protocol for passivating materials. And then three different surface modification treatments, as:- one-Step thermal oxidation at 650 °C for 48 h in air atmosphere to form a titania (TiO2) film on the surface of cp Ti.- one-Step electrochemical deposition of calcium phosphate (CaP) bioactive film on the surface of cp Ti.- electrochemical deposition of CaP bioactive film followed by thermal oxidation at 650 °C for 6 h in air atmosphere to form a CaP/TiO2 bioceramic film on cp Ti surface.The crystalline phases of the modified films were identified by X-Ray diffraction (XRD). Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) was used to characterize the morphology and composition of these films on cp Ti surface. In situ electrochemical measurements, like open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization are used to characterize the corrosion behavior of cp Ti samples without or with surface modification. The tribocorrosion behavior was investigated in an aqueous environment by combining a pin-On-Disc tribometer with the in situ electrochemical equipment. The classical tribological parameters could be also recorded under mechanical loaded condition. Surface characterization and analysis (like chemical composition, morphology, roughness...) are carried out before and after each corrosion and tribocorrosion test. A protocol for the culture of cells on the surface of titanium was validated, basing on the preliminary experimental results.
80

Low temperature tungsten trioxide nano/micro-systems for applications in gas sensing and electrochromism

Tumbain, Sone Bertrand January 2013 (has links)
Philosophiae Doctor - PhD / In this work we primarily set out to investigate the technique of Aqueous Chemical Growth as a means of producing WO3 thin films that find applications in gas sensing and electrochromism. For the first time we demonstrated in this work, the heterogenous nucleation and growth of WO3 thin films on plain glass substrates and F-doped SnO2-glass substrates. This was achieved without the use of surfactants and template directing methods, using as a precursor solution Peroxotungstic Acid generated from the action of 30% H2O2 on pure W powder. The substrates used needed no surface-modification. On the plain glass substrates (soda lime silicates) a variety of micronanostructures could be observed prime of which were nanoplatelets that acted as a basic building block for the self-assembly of more hierarchical 3-d microspheres and thin films. On FTO a wide variety of micro-/nanostructures were observed dominant amongst which were urchin-like microspheres. The dominant crystallographic structure observed (through X-ray diffraction analysis, SAED, HRTEM) for the WO3 thin films on both substrate types post-annealing at 500 ˚C for a period of 1 - 2 h, was hexagonal-WO3. Next was monoclinic WO3. On rarer occasions the formation of triclinic and cubic WO3 was observed. The thin films produced showed a fairly high degree of porosity and had thicknesses in the range of 900 nm - 3.5 μm. I-V characterisation measurements using a 4-point collinear probe Keithley source alongside photoluminescence was used to establish the insulating nature of some of the films as well as their sub-stoichiometric nature. X-ray Photoelectron Spectroscopy was used to confirm the substoichiometric nature of some of the films.

Page generated in 0.1463 seconds