• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 13
  • 12
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Topics in the theory of inhomogeneous media composite superconductors and dielectrics /

Kim, Kwangmoo, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 166-181).
22

Les effets de taille finie au-dessus de la dimension critique supérieure / Finite-size scaling above the upper critical dimension

Flores-Sola, Emilio José 20 September 2016 (has links)
Dans cette thèse on étudie les effets de taille finie au-dessus de la dimension critique supérieure d_c. Les effets de taille finie y ont longtemps été incomplètement compris, en particulier vis-à-vis de leur dépendance en fonction des conditions aux limites. La violation de la relation d’échelle dite d’hyperscaling a été l’un des aspects les plus évidents des difficultés rencontrées. Le désaccord avec le scaling usuel est dû au caractère de variable non pertinente dangereuse du terme de self-interaction dans la théorie en ϕ^4. Celle-ci était considérée comme dangereuse pour la densité d’énergie libre et les fonctions thermodynamiques associées, mais pas dans le secteur des corrélations. Récemment, un schéma nouveau de scaling a été proposé dans lequel la longueur de corrélation joue un rôle central et est également affectée par la variable non pertinente dangereuse. Ce nouveau schéma, appelé QFSS, est basé sur le fait que la longueur de corrélation exhibe au lieu du scaling usuel ξ~L un comportement en puissance de la taille finie ξ~L^ϙ. Ce pseudo-exposant critique ϙ est lié à la dimension critique supérieure et à la variable dangereuse. Au-dessous de d_c, cet exposant prend la valeur ϙ=1, mais au-dessus, il vaut ϙ=d/d_c. Le schéma QFSS est parvenu à réconcilier les exposants de champs moyen et le Finite-Size-Scaling tel que dérivé du Groupe de Renormalisation pour les modèles avec interactions à courte portée au-dessus de d_c en conditions aux limites périodiques. Si ϙ est un exposant universel, la validité de la théorie doit toutefois s’étendre également aux conditions de bords libres. Des tests initiaux dans de telles conditions ont mis en évidence de nouvelles difficultés: alors que le QFSS est valable au point pseudo-critique auquel les grandeurs thermodynamiques telles que la susceptibilité manifestent un pic à taille finie, au point critique on a pensé que c’était le FSS standard qui prévalait avec les exposants de champ moyen et ξ~L. On montre dans ce travail qu’il en va différemment de la situation au point critique et qu’à la place ce sont les exposants gaussiens qui s’appliquent en l’absence de variable non pertinente dangereuse. Pour mettre en évidence ce résultat, nous avons mené des simulations de modèles avec interactions à longue portée, qui peuvent être à volonté étudiés au-dessus de leur dimension critique supérieure. Nous avons aussi développé une étude des modes de Fourier qui permet de fournir des exemples de quantités non affectées par la présence de la variable non pertinente dangereuse / In this project finite-size size scaling above the upper critical dimension〖 d〗_c is investigated. Finite-size scaling there has long been poorly understood, especially its dependency on boundary conditions. The violation of the hyperscaling relation above d_c has also been one of the most visible issues. The breakdown in standard scaling is due to the dangerous irrelevant variables presented in the self-interacting term in the ϕ^4 theory, which were considered dangerous to the free energy density and associated thermodynamic functions, but not to the correlation sector. Recently, a modified finite-size scaling scheme has been proposed, which considers that the correlation length actually plays a pivotal role and is affected by dangerous variables too. This new scheme, named QFSS, considers that the correlation length, instead of having standard scaling behaviour ξ~L , scales as ξ~L^ϙ. This pseudocritical exponent is connected to the critical dimension and dangerous variables. Below d_c this exponent takes the value ϙ=1, but above the upper critical dimension it is ϙ=d/d_c. QFSS succeeded in reconciling the mean-field exponents and FSS derived from the renormalisation-group for the models with short-range interactions above d_c with periodic boundary conditions. If ϙ is an universal exponent, the validity of that theory should also hold for the free boundary conditions. Initial tests for such systems faced new problems. Whereas QFSS is valid at pseudocritical points where quantities such as the magnetic susceptibility experience a peak for finite systems, at critical points the standard FSS seemed to prevail, i.e., mean-field exponents with ξ~L. Here, we show that this last picture at critical point is not correct and instead the exponents that applied there actually arise from the Gaussian fixed-point FSS where the dangerous variables are suppressed. To achieve this aim, we study Ising models with long-range interaction, which can be tuned above〖 d〗_c, with periodic and free boundary conditions. We also include a study of the Fourier modes which can be used as an example of scaling quantities without dangerous variables
23

Disorder-induced metal-insulator transition in anisotropic systems

Milde, Frank 13 July 2000 (has links)
Untersucht wird der Auswirkung von Anisotropie auf den unordnungsinduzierten Metall-Isolator-Übergang (MIÜ) im Rahmen des dreidimensionalen Anderson-Modells der Lokalisierung für (schwach) gekoppelte Ebenen bzw. Ketten. Mittels numerischer Verfahren (Lanczos- und Transfer-Matrix-Methode) werden Eigenwerte und -vektoren bzw. die Lokalisierungslänge berechnet. Zur Bestimmung des kritischen Exponenten dieses Phasenüberganges 2. Ordnung wird ein allgemeiner Skalenansatz verwendet, der auch den Einfluss einer irrelevanten Skalenvariablen und Nichtlinearitäten berücksichtigt. Ein Kapitel untersucht die verwendeten numerischen Verfahren, verschiedene Methoden werden verglichen und die Portierbarkeit zu Parallelrechnern diskutiert. Der MIÜ wird mit zwei unabhängigen Methoden charakterisiert: Eigenwertstatistik und Transfer-Matrix-Methode. Die Systemgrößenunabhängigkeit der betrachteten Größen am Phasenübergang wird benutzt um den MIÜ zu identifizieren. Sie resultiert aus der Multifraktalität der kritischen Eigenzustände, die für den isotropen Fall bis zu einer Systemgröße von 111^3 Gitterplätzen gezeigt wird. Es stellt sich heraus, daß der MIÜ auch bei sehr starker Anisotropie existiert und bereits bei geringerer Potentialunordnung als im isotropen Fall auftritt. Für den Fall sehr schwach gekoppelter Ebenen wird gezeigt, daß der kritische Exponent mit dem des isotropen Falles übereinstimmt und damit die übliche Einteilung in Universalitätsklassen bestätigt.
24

Topics in the theory of inhomogeneous media: composite superconductors and dielectrics

Kim, Kwangmoo 26 June 2007 (has links)
No description available.
25

Anderson transitions on random Voronoi-Delaunay lattices

Puschmann, Martin 05 December 2017 (has links)
The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed.:1. Introduction 2. Random Voronoi-Delaunay lattice 2.1. Definition 2.2. Properties 2.3. Numerical construction 3. Anderson localization 3.1. Conventional Anderson transition 3.1.1. Fundamentals 3.1.2. Scaling theory of localization 3.1.3. Universality 3.2. Quantum Hall transition 3.2.1. Universality 3.3. Random Voronoi-Delaunay Hamiltonian 4. Methods 4.1. Multifractal analysis 4.1.1. Fundamentals 4.1.2. Box-size scaling 4.1.3. Partitioning scheme 4.1.4. Numerical realization 4.2. Recursive Green function approach 4.2.1. Fundamentals 4.2.2. Recursive formulation 4.2.3. Layer construction 4.3. Finite-size scaling approach 4.3.1. Scaling functions 4.3.2. Numerical determination 5. Electron behavior on 2D random Voronoi-Delaunay lattices 5.1. 2D orthogonal systems 5.2. 2D unitary systems 5.2.1. Density of states and principal behavior 5.2.2. Criticality in the lowest Landau band 5.2.3. Criticality in higher Landau bands 5.2.4. Edge states 6. Electron behavior on 3D random Voronoi-Delaunay lattices 6.1. 3D orthogonal systems 6.1.1. Pure connectivity disorder 6.1.2. Additional potential disorder 6.2. 3D unitary systems 6.2.1. Pure topological disorder 7. Conclusion Bibliography A. Appendices A.1. Quantum Hall effect on regular lattices A.1.1. Simple square lattice A.1.2. Triangular lattice A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices Lebenslauf Publications / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.:1. Introduction 2. Random Voronoi-Delaunay lattice 2.1. Definition 2.2. Properties 2.3. Numerical construction 3. Anderson localization 3.1. Conventional Anderson transition 3.1.1. Fundamentals 3.1.2. Scaling theory of localization 3.1.3. Universality 3.2. Quantum Hall transition 3.2.1. Universality 3.3. Random Voronoi-Delaunay Hamiltonian 4. Methods 4.1. Multifractal analysis 4.1.1. Fundamentals 4.1.2. Box-size scaling 4.1.3. Partitioning scheme 4.1.4. Numerical realization 4.2. Recursive Green function approach 4.2.1. Fundamentals 4.2.2. Recursive formulation 4.2.3. Layer construction 4.3. Finite-size scaling approach 4.3.1. Scaling functions 4.3.2. Numerical determination 5. Electron behavior on 2D random Voronoi-Delaunay lattices 5.1. 2D orthogonal systems 5.2. 2D unitary systems 5.2.1. Density of states and principal behavior 5.2.2. Criticality in the lowest Landau band 5.2.3. Criticality in higher Landau bands 5.2.4. Edge states 6. Electron behavior on 3D random Voronoi-Delaunay lattices 6.1. 3D orthogonal systems 6.1.1. Pure connectivity disorder 6.1.2. Additional potential disorder 6.2. 3D unitary systems 6.2.1. Pure topological disorder 7. Conclusion Bibliography A. Appendices A.1. Quantum Hall effect on regular lattices A.1.1. Simple square lattice A.1.2. Triangular lattice A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices Lebenslauf Publications
26

Extensão do modelo Raise and Peel / Extension of the Raise and Peel model

Santamaria, Julian Andres Jaimes 25 July 2011 (has links)
O modelo raise and peel é um modelo estocástico unidimensional com absorção local e desorção não local. O modelo depende de um único parâmetro u que é a razão entre a taxa de absorção pela de dessorção. Em um valor especial deste parâmetro (u = 1) o modelo tem características interessantes. O espectro é descrito por uma teoria de campos conforme (carga central c = 0), sendo que a distribuição de probabilidade estacionária está relacionada a um sistema de equilíbrio em duas dimensões. O diagrama de fases do modelo, como função do parâmetro u, tem uma fase massiva (com lacuna de massa) e uma sem massa (lacuna de massa nula) com expoentes críticos que variam continuamente com o parâmetro u. Nesta dissertação estudamos uma extensão do modelo raise and peel model no ponto u = 1, e que depende de um parâmetro adicional p. Surpreendentemente o novo modelo exibe invariância conforme para todo o domínio do seu parâmetro p, e está na mesma classe de universalidade do modelo raise and peel usual (u = 1). A única diferença entre os dois modelos é o valor da velocidade do som vs(p), que agora é função de p. Os métodos que utilizamos nesta dissertação foram diagonalizações exatas do operador de evolução do modelo (Hamiltoniano) para cadeias pequenas e simulações de Monte Carlo. / The raise and peel model is a one-dimensional nonlocal stochastic model where adsorption happens locally and desorption is nonlocal. The model depends on the single parameter u that is the ratio among the desorption and adsorption rates. At a special value of this parameter (u = 1) the model has interesting features. The spectrum is described by a conformal field theory (central charge c = 0), and its stationary probability density is related to the equilibrium distribution of a two dimensional system. The phase diagram of the model, as a function of the parameter u, has a massive phase (gapped phase) and a massless (gapless phase) whose critical exponents vary continuously with u. In this monography we study a one-parameter extension of the raise and peel model at u = 1, that depends on the additional parameter p. The new model exhibits conformal invariance for the whole range of values of its parameter p, and it is in the same universality class as the usual raise and peel model. The single difference between the models is the value of the sound velocity vs(p) which is a function of p. The methods used in this monography are the exact diagonalization of the evolution operator of the stochastic model (Hamiltonian), for small lattice sizes and Monte Carlo simulations.
27

Improvement of monte carlo algorithms and intermolecular potencials for the modelling of alkanois, ether thiophenes and aromatics

Pérez Pellitero, Javier 05 October 2007 (has links)
Durante la última década y paralelamente al incremento de la velocidad de computación, las técnicas de simulación molecular se han erigido como una importante herramienta para la predicción de propiedades físicas de sistemas de interés industrial. Estas propiedades resultan esenciales en las industrias química y petroquímica a la hora de diseñar, optimizar, simular o controlar procesos. El actual coste moderado de computadoras potentes hace que la simulación molecular se convierta en una excelente opción para proporcionar predicciones de dichas propiedades. En particular, la capacidad predictiva de estas técnicas resulta muy importante cuando en los sistemas de interés toman parte compuestos tóxicos o condiciones extremas de temperatura o presión debido a la dificultad que entraña la experimentación a dichas condiciones. La simulación molecular proporciona una alternativa a los modelos termofísicos utilizados habitualmente en la industria como es el caso de las ecuaciones de estado, modelos de coeficientes de actividad o teorías de estados correspondientes, que resultan inadecuados al intentar reproducir propiedades complejas de fluidos como es el caso de las de fluidos que presentan enlaces de hidrógeno, polímeros, etc. En particular, los métodos de Monte Carlo (MC) constituyen, junto a la dinámica molecular, una de las técnicas de simulación molecular más adecuadas para el cálculo de propiedades termofísicas. Aunque, por contra del caso de la dinámica molecular, los métodos de Monte Carlo no proporcionan información acerca del proceso molecular o las trayectorias moleculares, éstos se centran en el estudio de propiedades de equilibrio y constituyen una herramienta, en general, más eficiente para el cálculo del equilibrio de fases o la consideración de sistemas que presenten elevados tiempos de relajación debido a su bajos coeficientes de difusión y altas viscosidades. Los objetivos de esta tesis se centran en el desarrollo y la mejora tanto de algoritmos de simulación como de potenciales intermoleculares, factor considerado clave para el desarrollo de las técnicas de simulación de Monte Carlo. En particular, en cuanto a los algoritmos de simulación, la localización de puntos críticos de una manera precisa ha constituido un problema para los métodos habitualmente utilizados en el cálculo de equlibrio de fases, como es el método del colectivo de GIBBS. La aparición de fuertes fluctuaciones de densidad en la región crítica hace imposible obtener datos de simulación en dicha región, debido al hecho de que las simulaciones son llevadas a cabo en una caja de simulación de longitud finita que es superada por la longitud de correlación. Con el fin de proporcionar una ruta adecuada para la localización de puntos críticos tanto de componentes puros como mezclas binarias, la primera parte de esta tesis está dedicada al desarrollo y aplicación de métodos adecuados que permitan superar las dificultades encontradas en el caso de los métodos convencionales. Con este fin se combinan estudios de escalado del tamaño de sitema con técnicas de "Histogram Reweighting" (HR). La aplicación de estos métodos se ha mostrado recientemente como mucho mejor fundamentada y precisa para el cálculo de puntos críticos de sistemas sencillos como es el caso del fluido de LennardJones (LJ). En esta tesis, estas técnicas han sido combinadas con el objetivo de extender su aplicación a mezclas reales de interés industrial. Previamente a su aplicación a dichas mezclas reales, el fluido de LennardJones, capaz de reproducir el comportamiento de fluidos sencillos como es el caso de argón o metano, ha sido tomado como referencia en un paso preliminar. A partir de simulaciones realizadas en el colectivo gran canónico y recombinadas mediante la mencionada técnica de "Histogram Reweighting" se han obtenido los diagramas de fases tanto de fluidos puros como de mezclas binarias. A su vez se han localizado con una gran precisión los puntos críticos de dichos sistemas mediante las técnicas de escalado del tamaño de sistema. Con el fin de extender la aplicación de dichas técnicas a sistemas multicomponente, se han introducido modificaciones a los métodos de HR evitando la construcción de histogramas y el consecuente uso de recursos de memoria. Además, se ha introducido una metodología alternativa, conocida como el cálculo del cumulante de cuarto orden o parámetro de Binder, con el fin de hacer más directa la localización del punto crítico. En particular, se proponen dos posibilidades, en primer lugar la intersección del parámetro de Binder para dos tamaños de sistema diferentes, o la intersección del parámetro de Binder con el valor conocido de la correspondiente clase de universalidad combinado con estudios de escalado. Por otro lado, y en un segundo frente, la segunda parte de esta tesis está dedicada al desarrollo de potenciales intermoleculares capaces de describir las energías inter e intramoleculares de las moléculas involucradas en las simulaciones. En la última década se han desarrolldo diferentes modelos de potenciales para una gran variedad de compuestos. Uno de los más comunmente utilizados para representar hidrocarburos y otras moléculas flexibles es el de átomos unidos, donde cada grupo químico es representado por un potencial del tipo de LennardJones. El uso de este tipo de potencial resulta en una significativa disminución del tiempo de cálculo cuando se compara con modelos que consideran la presencia explícita de la totalidad de los átomos. En particular, el trabajo realizado en esta tesis se centra en el desarrollo de potenciales de átomos unidos anisotrópicos (AUA), que se caracterizan por la inclusión de un desplazamiento de los centros de LennardJones en dirección a los hidrógenos de cada grupo, de manera que esta distancia se convierte en un tercer parámetro ajustable junto a los dos del potencial de LennardJones.En la segunda parte de esta tesis se han desarrollado potenciales del tipo AUA4 para diferentes familias de compuesto que resultan de interés industrial como son los tiofenos, alcanoles y éteres. En el caso de los tiofenos este interés es debido a las cada vez más exigentes restricciones medioambientales que obligan a eliminar los compuestos con presencia de azufre. De aquí la creciente de necesidad de propiedades termodinámicas para esta familia de compuestos para la cual solo existe una cantidad de datos termodinámicos experimentales limitada. Con el fin de hacer posible la obtención de dichos datos a través de la simulación molecular hemos extendido el potencial intermolecular AUA4 a esta familia de compuestos. En segundo lugar, el uso de los compuestos oxigenados en el campo de los biocombustibles ha despertado un importante interés en la industria petroquímica por estos compuestos. En particular, los alcoholes más utilizados en la elaboración de los biocombustibles son el metanol y el etanol. Como en el caso de los tiofenos, hemos extendido el potencial AUA4 a esta familia de compuestos mediante la parametrización del grupo hidroxil y la inclusión de un grupo de cargas electrostáticas optimizadas de manera que reproduzcan de la mejor manera posible el potencial electrostático creado por una molecula de referencia en el vacío. Finalmente, y de manera análoga al caso de los alcanoles, el último capítulo de esta tesis la atención se centra en el desarrollo de un potencial AUA4 capaz de reproducir cuantitativamente las propiedades de coexistencia de la familia de los éteres, compuestos que son ampliamente utilizados como solventes. / Parallel with the increase of computer speed, in the last decade, molecular simulation techniques have emerged as important tools to predict physical properties of systems of industrial interest. These properties are essential in the chemical and petrochemical industries in order to perform process design, optimization, simulation and process control. The actual moderate cost of powerful computers converts molecular simulation into an excellent tool to provide predictions of such properties. In particular, the predictive capability of molecular simulation techniques becomes very important when dealing with extreme conditions of temperature and pressure as well as when toxic compounds are involved in the systems to be studied due to the fact that experimentation at such extreme conditions is difficult and expensive.Consequently, alternative processes must be considered in order to obtain the required properties. Chemical and petrochemical industries have made intensive use of thermophysical models including equations of state, activity coefficients models and corresponding state theories. These predictions present the advantage of providing good approximations with minimal computational needs. However, these models are often inadequate when only a limited amount of information is available to determine the necesary parameters, or when trying to reproduce complex fluid properties such as that of molecules which exhibit hydrogen bonding, polymers, etc. In addition, there is no way for dynamical properties to be estimated in a consistent manner.In this thesis, the HR and FSS techniques are combined with the main goal of extending the application of these methodologies to the calculation of the vaporliquid equilibrium and critical point of real mixtures. Before applying the methodologies to the real mixtures of industrial interest, the LennardJones fluid has been taken as a reference model and as a preliminary step. In this case, the predictions are affected only by the omnipresent statistical errors, but not by the accuracy of the model chosen to reproduce the behavior of the real molecules or the interatomic potential used to calculate the configurational energy of the system.The simulations have been performed in the grand canonical ensemble (GCMC)using the GIBBS code. Liquidvapor coexistences curves have been obtained from HR techniques for pure fluids and binary mixtures, while critical parameters were obtained from FSS in order to close the phase envelope of the phase diagrams. In order to extend the calculations to multicomponent systems modifications to the conventional HR techniques have been introduced in order to avoid the construction of histograms and the consequent need for large memory resources. In addition an alternative methodology known as the fourth order cumulant calculation, also known as the Binder parameter, has been implemented to make the location of the critical point more straightforward. In particular, we propose the use of the fourth order cumulant calculation considering two different possibilities: either the intersection of the Binder parameter for two different system sizes or the intersection of the Binder parameter with the known value for the system universality class combined with a FSS study. The development of transferable potential models able to describe the inter and intramolecular energies of the molecules involved in the simulations constitutes an important field in the improvement of Monte Carlo techniques. In the last decade, potential models, also referred to as force fields, have been developed for a wide range of compounds. One of the most common approaches for modeling hydrocarbons and other flexible molecules is the use of the unitedatoms model, where each chemical group is represented by one LennardJones center. This scheme results in a significant reduction of the computational time as compared to allatoms models since the number of pair interactions goes as the square of the number of sites. Improvements on the standard unitedatoms model, where typically a 612 LennardJones center of force is placed on top of the most significant atom, have been proposed. For instance, the AUA model consists of a displacement of the LennardJones centers of force towards the hydrogen atoms, converting the distance of displacement into a third adjustable parameter. In this thesis we have developed AUA 4 intermolecular potentials for three different families of compounds. The family of ethers is of great importance due to their applications as solvents. The other two families, thiophenes and alkanols, play an important roles in the oil and gas industry. Thiophene due to current and future environmental restrictions and alkanols due ever higher importance and presence of biofuels in this industry.
28

Numerical Studies Of Slow Dynamics And Glass Transition In Model Liquids

Karmakar, Smarajit 02 1900 (has links)
An increase in the co-operativity in the motion of particles and a growth of a suitably defined dynamical correlation length seem to be generic features exhibited by all liquids upon supercooling. These features have been observed both in experiments and in numerical simulations of glass-forming liquids. Specially designed NMR experiments have estimated that the rough magnitude of this correlation length is of the order of a few nanometers near the glass transition. Simulations also predict that there are regions in the system which are more liquid-like than other regions. A complete theoretical understanding of this behaviour is not available at present. In recent calculations, Berthier, Biroli and coworkers [1, 2] extended the simple mode coupling theory (MCT) to incorporate the effects of dynamic heterogeneity and predicted the existence of a growing dynamical correlation length associated with the cooperativity of the dynamics. MCT also predicts a power law divergence of different dynamical quantities at the mode coupling temperature and at temperatures somewhat higher than the mode coupling temperature, these predictions are found to be consistent with experimental and simulation results. The system size dependence of these quantities should exhibit finite size scaling (FSS) similar to that observed near a continuous phase transition in the temperature range where they show power law growth. Hence we have used the method of finite size scaling in the context of the dynamics of supercooled liquids. In chapter 2, we present the results of extensive molecular dynamics simulations of a model glass forming liquid and extract a dynamical correlation length ξ associated with dynamic heterogeneity by performing a detailed finite size scaling analysis of a four-point dynamic susceptibility χ4(t) [3] and the associated Binder cumulant. We find that although these quantities show the “normal” finite size scaling behaviour expected for a system with a growing correlation length, the relaxation time τ does not. Thus glassy dynamics can not be fully understood in terms of “standard” critical phenomena. Inspired by the success of the empirical Adam-Gibbs relation [4] which relates dynamics with the configurational entropy, we have calculated the configurational entropy for different system sizes and temperatures to explain the nontrivial scaling behaviour of the relaxation time. We find that the behaviour of the relaxation time τ can be explained in terms of the Adam-Gibbs relation [4] for all temperatures and system sizes. This observation raises serious questions about the validity of the mode coupling theory which does not include the effects of the potential energy (or free energy) landscape on the dynamics. On the other hand, in the “random first order transition” theory (RFOT), introduced by Wolynes and coworkers [5], the configurational entropy plays a central role in determining the dynamics. So we also tried to explain our simulation results in terms of RFOT. However, this interpretation has the drawback that the value of one of the exponents of this theory extracted from our numerical results does not satisfy an expected physical bound, and there is no clear explanation for the obtained values of other exponents. Thus we find puzzling values for the exponents relevant to the applicability of RFOT, which are in need of explanation. This can be due to the fact that RFOT focuses only near the glass transition, while all our simulation results are for temperatures far above the glass transition temperature (actually, above the mode coupling temperature). Interestingly, results similar to ours were obtained in a recent analysis [6] of experimental data near the laboratory glass transition, on a large class of glass-forming materials. Thus right now we do not have any theory which can explain our simulation data consistently from all perspectives. There have been some attempts to extend the RFOT analysis to temperatures above the mode coupling temperature [7, 8] and to estimate a length scale associated with the configurational entropy at such temperatures. We compare our results with the predictions arising from these analyses. In chapter 3, we present simulation results that suggest that finite size scaling analysis is probably the only feasible method for obtaining reliable estimates of the dynamical correlation length for supercooled liquids. As mentioned before, although there exists a growing correlation length, the behaviour of all measured quantities (specifically, the relaxation time) is not in accordance with the behaviour expected in “standard” critical phenomena. So one might suspect the results for the correlation length extracted from the scaling analysis. To find out whether the results obtained by doing finite size scaling are correct, we have done simulations of very large system sizes for the same model glass forming liquid. In earlier studies, the correlation length has been extracted from the wave vector dependence of the dynamic susceptibility in the limit of zero wave vector, but to estimate the correlation length with reasonable accuracy one needs data in the small wave vector range. This implies that one needs to simulate very large systems. But as far as we know, in all previous studies typical system sizes of the order of 10, 000 particles have been used to do this analysis. In this chapter we show by comparing results for systems of 28, 000 and 350, 000 particles that these previous estimates are not reliable. We also show that one needs to simulate systems with at least a million particles to estimate the correlation length correctly near the mode coupling temperature and this size increases with decreasing temperature. We compare the correlation length obtained by analyzing the wave vector dependence of the dynamic susceptibility for a 350, 000particle system with the results obtained from the finite size scaling analysis. We were only able to compare the results in the high temperature range due to obvious reasons. However the agreement in the high temperature range shows that the finite size scaling analysis is robust and also establishes the fact that finite size scaling is the only practical method to extract reliable correlation lengths in supercooled liquids. In chapter 4, we present a free energy landscape analysis of dynamic heterogeneity for a monodisperse hard sphere system. The importance of the potential energy landscape for particles interacting with soft potentials is well known in the glass community from the work of Sastry et al. [9] and others, but the hard sphere system which does not have any well defined potential energy landscape also exhibits similar slow dynamics in the high density limit. Thus it is not clear how to treat the hard sphere systems within the same energy landscape formalism. Dasgupta et al. [10, 11, 12, 13, 14, 15] showed that one can explain the slow dynamics of these hard core systems in term of a free energy landscape picture. They and other researchers showed that these system have many aperiodic local minima in its free energy landscape, with free energy lower than that of the liquid. Using the Ramkrishnan-Yussouff free energy functional, we have performed multi parameter variational minimizations to map out the detailed density distribution of glassy free energy minima. We found that the distribution of the widths of local density peaks at glassy minima is spatially heterogeneous. By performing hard sphere event driven molecular dynamics simulation, we show that there exists strong correlation between these density inhomogeneity and the local Debye-Waller factor which provides a measure of the dynamic heterogeneity observed in simulations. This result unifies the system of hard core particles with the other soft core particles in terms of a landscapebased description of dynamic heterogeneity. In chapter 5, we extend the same free energy analysis to a polydisperse system and show that there is a critical polydispersity beyond which the crystal state is not stable and glassy states are thermodynamically stable. We also found a reentrant behaviour in the liquid-solid phase transition within this free-energy based formalism. These results are in qualitative agreement with experimental observations for colloidal systems.
29

Extensão do modelo Raise and Peel / Extension of the Raise and Peel model

Julian Andres Jaimes Santamaria 25 July 2011 (has links)
O modelo raise and peel é um modelo estocástico unidimensional com absorção local e desorção não local. O modelo depende de um único parâmetro u que é a razão entre a taxa de absorção pela de dessorção. Em um valor especial deste parâmetro (u = 1) o modelo tem características interessantes. O espectro é descrito por uma teoria de campos conforme (carga central c = 0), sendo que a distribuição de probabilidade estacionária está relacionada a um sistema de equilíbrio em duas dimensões. O diagrama de fases do modelo, como função do parâmetro u, tem uma fase massiva (com lacuna de massa) e uma sem massa (lacuna de massa nula) com expoentes críticos que variam continuamente com o parâmetro u. Nesta dissertação estudamos uma extensão do modelo raise and peel model no ponto u = 1, e que depende de um parâmetro adicional p. Surpreendentemente o novo modelo exibe invariância conforme para todo o domínio do seu parâmetro p, e está na mesma classe de universalidade do modelo raise and peel usual (u = 1). A única diferença entre os dois modelos é o valor da velocidade do som vs(p), que agora é função de p. Os métodos que utilizamos nesta dissertação foram diagonalizações exatas do operador de evolução do modelo (Hamiltoniano) para cadeias pequenas e simulações de Monte Carlo. / The raise and peel model is a one-dimensional nonlocal stochastic model where adsorption happens locally and desorption is nonlocal. The model depends on the single parameter u that is the ratio among the desorption and adsorption rates. At a special value of this parameter (u = 1) the model has interesting features. The spectrum is described by a conformal field theory (central charge c = 0), and its stationary probability density is related to the equilibrium distribution of a two dimensional system. The phase diagram of the model, as a function of the parameter u, has a massive phase (gapped phase) and a massless (gapless phase) whose critical exponents vary continuously with u. In this monography we study a one-parameter extension of the raise and peel model at u = 1, that depends on the additional parameter p. The new model exhibits conformal invariance for the whole range of values of its parameter p, and it is in the same universality class as the usual raise and peel model. The single difference between the models is the value of the sound velocity vs(p) which is a function of p. The methods used in this monography are the exact diagonalization of the evolution operator of the stochastic model (Hamiltonian), for small lattice sizes and Monte Carlo simulations.
30

Contraintes Topologiques et Ordre dans les Systèmes Modèle pour le Magnétisme Frustré / Topological Constraints and Ordering in Model Frustrated Magnets

Harman-Clarke, Adam 11 November 2011 (has links)
Dans cette thèse, l’étude de plusieurs modèles de systèmes magnétiques frustrés a été couverte. Leur racine commune est le modèle de la glace de spin, qui se transforme en modèle de la glace sur réseau kagome (kagome ice) et réseau en damier (square ice) à deux dimensions, et la chaîne d’Ising à une dimension. Ces modèles ont été particulièrement étudiés dans le contexte de transitions de phases avec un ordre magnétique induit par les contraintes du système : en effet, selon la perturbation envisagée, les contraintes topologiques sous-jacentes peuvent provoquer une transition de Kasteleyn dans le kagome ice, ou une transition de type vitreuse dans la square ice, due à l’émergence d’un ordre ferromagnétique dans une chaîne d’Ising induit seulement par des effets de taille fini. Dans tous les cas, une étude détaillée par simulations numériques de type Monte Carlo ont été comparées à des résultats théoriques pour déterminer les propriétés de ces transitions. Les contraintes topologiques du kagome ice ont requis le développement d’un algorithme de vers permettant aux simulations de ne pas quitter l’ensemble des états fondamentaux. Une revue poussée de la thermodynamique et de la réponse de la diffraction de neutrons sur kagome ice sous un champ magnétique planaire arbitraire, nous ont amené à une compréhension plus profonde de la transition de Kasteleyn, et à un modèle numérique capable de prédire les figures de diffraction de neutrons de matériau de kagome ice dans n’importe quelles conditions expérimentales. Sous certaines conditions, ce modèle a révélé des propriétés thermodynamiques quantifiées et devrait fournir un terreau fertile pour de futurs travaux sur les conséquences des contraintes et transitions de phases topologiques. Une étude combinée du square ice et de la chaîne d’Ising a mise en lumière l’apparition d’un ordre sur réseau potentiellement découplé de l’ordre ferromagnétique sous-jacent, et particulièrement pertinent pour les réseaux magnétiques artificiels obtenus par lithographie. / In this thesis a series of model frustrated magnets have been investigated. Their common parent is the spin ice model, which is transformed into the kagome ice and square ice models in two-dimensions, and an Ising spin chain model in one-dimension. These models have been examined with particular interest in the spin ordering transitions induced by constraints on the system: a topological constraint leads, under appropriate conditions, to the Kasteleyn transition in kagome ice and a lattice freezing transition is observed in square ice which is due to a ferromagnetic ordering transition in an Ising chain induced solely by finite size effects. In all cases detailed Monte Carlo computational simulations have been carried out and compared with theoretical expressions to determine the characteristics of these transitions. In order to correctly simulate the kagome ice model a loop update algorithm has been developed which is compatible with the topological constraints in the system and permits the simulation to remain strictly on the groundstate manifold within the appropriate topological sector of the phase space. A thorough survey of the thermodynamic and neutron scattering response of the kagome ice model influenced by an arbitrary in-plane field has led to a deeper understanding of the Kasteleyn transition, and a computational model that can predict neutron scattering patterns for kagome ice materials under any experimental conditions. This model has also been shown to exhibit quantised thermodynamic properties under appropriate conditions and should provide a fertile testing ground for future work on the consequences of topological constraints and topological phase transitions. A combined investigation into the square ice and Ising chain models has revealed ordering behaviour within the lattice that may be decoupled from underlying ferro- magnetic ordering and is particularly relevant to magnetic nanoarrays.

Page generated in 0.028 seconds