• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 13
  • 12
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

O Modelo de Ising inomog?neo: uma interrup??o cont?nua entre as redes quadrada e triangular.

Bezerril, Leonardo Mafra 15 October 2007 (has links)
Made available in DSpace on 2014-12-17T15:14:46Z (GMT). No. of bitstreams: 1 LeonardoMB.pdf: 494253 bytes, checksum: e942f2631cbf177866f92a4c5472b4a6 (MD5) Previous issue date: 2007-10-15 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case. / Investigamos o diagrama de fases do modelo de Ising, com intera??es feromagn?ticas e antiferromagn?ticas, emuma rede bidimensional inomog?nea caracterizada por duas constantes de troca (J1 e J2), a qual permite interpolar cont?nuamente as redes quadrada (J2 = 0) e triangular (J2 = J1) uniformes. Utilizando o m?todo de simula??o de Monte Carlo, atrav?s da din?mica deMetropolis aplicada de forma seq?encial, calculamos a magnetiza??o e a susceptibilidade para redes de diversos tamanhos e aplicando t?cnicas de escalonamento para tamanhos finitos obtemos, atrav?s de um colapso de dados, valores para a temperatura cr?tica e expoentes cr?ticos em fun??o do par?metro α = J2 J1, contido no intervalo [0, 1]. No caso ferromagn?tico observamos que a temperatura cr?tica Tc cresce linearmente com α em todo o intervalo de varia??o deste par?metro, enquanto no caso antiferromagn?tico, o comportamento linear (decrescente) de Tc ? observado somente para pequenos valores de α; no intervalo [0.6, 1], onde os efeitos de frustra??o s?o mais pronunciados, a temperatura cr?tica sofre uma redu??o mais significativa, possivelmente n?o linear, para seu valor limite Tc = 0, que corresponde ? rede triangular homog?nea, antiferromagn?tica, completamente frustrada.
12

Phenomenological structure for large deviation principle in time-series statistics / 時系列統計における大偏差原理の現象論的構造

Nemoto, Takahiro 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18783号 / 理博第4041号 / 新制||理||1582(附属図書館) / 31734 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 佐々 真一, 准教授 篠本 滋, 准教授 武末 真二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
13

Criticality and novel quantum liquid phases in Ginzburg--Landau theories with compact and non-compact gauge fields

Smiseth, Jo January 2005 (has links)
<p>We have studied the critical properties of three-dimensional U(1)-symmetric lattice gauge theories. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. This thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication.</p><p>Paper I: Critical properties of the 2+1-dimensional compact abelian Higgs model with gauge charge q=2 are studied. We introduce a novel method of computing the third moment M<sub>3</sub> of the action which allows us to extract correlation length and specific heat critical exponents ν and α without invoking hyperscaling. Finite-size scaling analysis of M<sub>3</sub> yields the ratio (1+α)/ν and 1/ν separately. We find that α and ν vary along the critical line of the theory, which however exhibits a remarkable resilience of Z<sub>2</sub> criticality. We conclude that the model is a fixed-line theory, which we propose to characterize the zero temperature quantum phase transition from a Mott-Hubbard insulator to a charge fractionalized insulator in two spatial dimensions.</p><p>Paper II: Large scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional compact abelian Higgs model in adjoint representations of the matter field, labeled by an integer q, for q=2,3,4,5. We also study various limiting cases of the model, such as the Z<sub>q</sub> lattice gauge theory, dual to the 3DZ<sub>q</sub> spin model, and the 3D xy spin model which is dual to the Z<sub>q</sub> lattice gauge theory in the limit q → ∞. In addition, for benchmark purposes, we study the 2D square lattice 8-vertex model, which is exactly solvable and features non-universal critical exponents. The critical exponents α and ν are calculated from finite size scaling of the third moment of the action, and the method is tested thoroughly on models with known values for these exponents. We have found that for q=3, the three-dimensional compact abelian Higgs model exhibits a second order phase transition line which joins a first order phase transition line at a tricritical point. The results for q=2 in Paper I are reported with a higher lever of detail.</p><p>Paper III: This paper is based on a talk by F. S. Nogueira in the Aachen HEP 2003 conference where a review of the results for the compact abelian Higgs model from Paper I and Paper II was presented, as well as the results for the q=1 case studied by F. S. Nogueira, H. Kleinert and A. Sudbø.</p><p>Paper IV: We study the effects of a Chern-Simons (CS) term in the phase structure of two different abelian gauge theories in three dimensions. By duality transformations we show how the compact U(1) gauge theory with a CS term for certain values of the CS coupling can be written as a gas of vortex loops interacting through steric repulsion. This theory is known to exhibit a phase transition governed by proliferation of vortex loops. We also employ Monte Carlo simulations to study the non-compact U(1) abelian Higgs model with a CS term. Finite size scaling of the third moment of the action yields critical exponents α and ν that vary continuously with the strength of the CS term, and a comparison with available analytical results is made.</p><p>Paper V: The critical properties of N-component Ginzburg-Landau theory are studied in d=2+1 dimensions. The model is dualized to a theory of N vortex fields interacting through a Coulomb and a screened potential. The model with N=2 shows two anomalies in the specific heat. From Monte Carlo simulations we calculate the critical exponents α and ν and the mass of the gauge field. We conclude that one anomaly corresponds to an inverted 3D xy fixed point, while the other corresponds to a 3D xy fixed point. There are N fixed points, namely one corresponding to an inverted 3D xy fixed point, and N-1corresponding to neutral 3D xy fixed points. Applications are briefly discussed.</p><p>Paper VI: The phase diagram and critical properties of the N-component London superconductor are studied both analytically and through large-scale Monte-Carlo simulations in d=2+1 dimensions. The model with different bare phase stiffnesses for each flavor is a model of superconductivity which should arise out of metallic phases of light atoms under extreme pressure. A projected mixture of electronic and protonic condensates in liquid metallic hydrogen under extreme pressure is the simplest example, corresponding to N=2 with individually conserved matter fields. We compute critical exponents α and ν for N=2 and N=3. The results from Paper V are presented at a higher level of detail. For the arbitrary N case, there are N fixed points,namely one charged inverted 3D xy fixed point, and N-1 neutral 3D xy fixed points. We explicitly identify one charged vortex mode and N-1 neutral vortex modes. The model for N=2 and equal bare phase stiffnesses corresponds to a field theoretical description of an easy-plane quantum antiferromagnet. In this case, the critical exponents are computed and found to be non 3D xy values. Furthermore, we study the model in an external magnetic field, and find a novel feature, namely N-1 superfluid phases arising out of N charged condensates. In particular, for N=2 we point out the possibility of two novel types of field-induced phase transitions in ordered quantum fluids: i) A phase transition from a superconductor to a superfluid or vice versa, driven by tuning an external magnetic field. This identifies the superconducting phase of liquid metallic hydrogen as a novel quantum fluid. ii) A phase transition corresponding to a quantum fluid analogue of sublattice melting, where a composite field-induced Abrikosov vortex lattice is decomposed and disorders the phases of the constituent condensate with lowest bare phase stiffness. Both transitions belong to the 3D xy universality class.</p><p>Paper VII: We consider the vortex superconductor with two individually conserved condensates in a finite magnetic field. The ground state is a lattice of cocentered vortices in both order parameters. We find two novel phase transitions when temperature is increased at fixed magnetic field. i) A "vortex sublattice melting" transition where vortices in the field with lowest phase stiffness ("light vortices") loose cocentricity with the vortices with large phase stiffness ("heavy vortices"), entering a liquid state (the structure factor of the light vortex sublattice vanishes continuously.) This transition is in the 3D xy universality class. ii) A first order melting transition of the lattice of heavy vortices in a liquid of light vortices.</p><p>Paper VIII: We report on large-scale Monte Carlo simulations of a novel type of a vortex matter phase transition which should take place in a three dimensional two-component superconductor. We identify the regime where first, at a certain temperature a field-induced lattice of co-centered vortices of both order parameters melts, causing the system to loose superconductivity. In this state the two-gap system retains a broken composite symmetry and we observe that at a higher temperature it undergoes an extra phase transition where the disordered composite one-flux-quantum vortex lines are "ionized" into a "plasma" of constituent fractional flux vortex lines in individual order parameters. This is the hallmark of the superconductor-to-superfluid-to-normal fluid phase transitions projected to occur in e.g. liquid metallic hydrogen.</p>
14

Criticality and novel quantum liquid phases in Ginzburg--Landau theories with compact and non-compact gauge fields

Smiseth, Jo January 2005 (has links)
We have studied the critical properties of three-dimensional U(1)-symmetric lattice gauge theories. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. This thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. Paper I: Critical properties of the 2+1-dimensional compact abelian Higgs model with gauge charge q=2 are studied. We introduce a novel method of computing the third moment M3 of the action which allows us to extract correlation length and specific heat critical exponents ν and α without invoking hyperscaling. Finite-size scaling analysis of M3 yields the ratio (1+α)/ν and 1/ν separately. We find that α and ν vary along the critical line of the theory, which however exhibits a remarkable resilience of Z2 criticality. We conclude that the model is a fixed-line theory, which we propose to characterize the zero temperature quantum phase transition from a Mott-Hubbard insulator to a charge fractionalized insulator in two spatial dimensions. Paper II: Large scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional compact abelian Higgs model in adjoint representations of the matter field, labeled by an integer q, for q=2,3,4,5. We also study various limiting cases of the model, such as the Zq lattice gauge theory, dual to the 3DZq spin model, and the 3D xy spin model which is dual to the Zq lattice gauge theory in the limit q → ∞. In addition, for benchmark purposes, we study the 2D square lattice 8-vertex model, which is exactly solvable and features non-universal critical exponents. The critical exponents α and ν are calculated from finite size scaling of the third moment of the action, and the method is tested thoroughly on models with known values for these exponents. We have found that for q=3, the three-dimensional compact abelian Higgs model exhibits a second order phase transition line which joins a first order phase transition line at a tricritical point. The results for q=2 in Paper I are reported with a higher lever of detail. Paper III: This paper is based on a talk by F. S. Nogueira in the Aachen HEP 2003 conference where a review of the results for the compact abelian Higgs model from Paper I and Paper II was presented, as well as the results for the q=1 case studied by F. S. Nogueira, H. Kleinert and A. Sudbø. Paper IV: We study the effects of a Chern-Simons (CS) term in the phase structure of two different abelian gauge theories in three dimensions. By duality transformations we show how the compact U(1) gauge theory with a CS term for certain values of the CS coupling can be written as a gas of vortex loops interacting through steric repulsion. This theory is known to exhibit a phase transition governed by proliferation of vortex loops. We also employ Monte Carlo simulations to study the non-compact U(1) abelian Higgs model with a CS term. Finite size scaling of the third moment of the action yields critical exponents α and ν that vary continuously with the strength of the CS term, and a comparison with available analytical results is made. Paper V: The critical properties of N-component Ginzburg-Landau theory are studied in d=2+1 dimensions. The model is dualized to a theory of N vortex fields interacting through a Coulomb and a screened potential. The model with N=2 shows two anomalies in the specific heat. From Monte Carlo simulations we calculate the critical exponents α and ν and the mass of the gauge field. We conclude that one anomaly corresponds to an inverted 3D xy fixed point, while the other corresponds to a 3D xy fixed point. There are N fixed points, namely one corresponding to an inverted 3D xy fixed point, and N-1corresponding to neutral 3D xy fixed points. Applications are briefly discussed. Paper VI: The phase diagram and critical properties of the N-component London superconductor are studied both analytically and through large-scale Monte-Carlo simulations in d=2+1 dimensions. The model with different bare phase stiffnesses for each flavor is a model of superconductivity which should arise out of metallic phases of light atoms under extreme pressure. A projected mixture of electronic and protonic condensates in liquid metallic hydrogen under extreme pressure is the simplest example, corresponding to N=2 with individually conserved matter fields. We compute critical exponents α and ν for N=2 and N=3. The results from Paper V are presented at a higher level of detail. For the arbitrary N case, there are N fixed points,namely one charged inverted 3D xy fixed point, and N-1 neutral 3D xy fixed points. We explicitly identify one charged vortex mode and N-1 neutral vortex modes. The model for N=2 and equal bare phase stiffnesses corresponds to a field theoretical description of an easy-plane quantum antiferromagnet. In this case, the critical exponents are computed and found to be non 3D xy values. Furthermore, we study the model in an external magnetic field, and find a novel feature, namely N-1 superfluid phases arising out of N charged condensates. In particular, for N=2 we point out the possibility of two novel types of field-induced phase transitions in ordered quantum fluids: i) A phase transition from a superconductor to a superfluid or vice versa, driven by tuning an external magnetic field. This identifies the superconducting phase of liquid metallic hydrogen as a novel quantum fluid. ii) A phase transition corresponding to a quantum fluid analogue of sublattice melting, where a composite field-induced Abrikosov vortex lattice is decomposed and disorders the phases of the constituent condensate with lowest bare phase stiffness. Both transitions belong to the 3D xy universality class. Paper VII: We consider the vortex superconductor with two individually conserved condensates in a finite magnetic field. The ground state is a lattice of cocentered vortices in both order parameters. We find two novel phase transitions when temperature is increased at fixed magnetic field. i) A "vortex sublattice melting" transition where vortices in the field with lowest phase stiffness ("light vortices") loose cocentricity with the vortices with large phase stiffness ("heavy vortices"), entering a liquid state (the structure factor of the light vortex sublattice vanishes continuously.) This transition is in the 3D xy universality class. ii) A first order melting transition of the lattice of heavy vortices in a liquid of light vortices. Paper VIII: We report on large-scale Monte Carlo simulations of a novel type of a vortex matter phase transition which should take place in a three dimensional two-component superconductor. We identify the regime where first, at a certain temperature a field-induced lattice of co-centered vortices of both order parameters melts, causing the system to loose superconductivity. In this state the two-gap system retains a broken composite symmetry and we observe that at a higher temperature it undergoes an extra phase transition where the disordered composite one-flux-quantum vortex lines are "ionized" into a "plasma" of constituent fractional flux vortex lines in individual order parameters. This is the hallmark of the superconductor-to-superfluid-to-normal fluid phase transitions projected to occur in e.g. liquid metallic hydrogen.
15

Nonstandard finite-size effects at discontinuous phase transitions: Degenerate low-temperature states and boundary conditions

Müller, Marco 06 March 2018 (has links)
In dieser Dissertation wird das Skalenverhalten derÜbergangstemperatur von Systemen an diskontinuierlichen Phasenübergängen aus einem Zwei- Zustands-Modell abgeleitet und erweitert. Es wird erläutert, wie sich das Skalenverhalten für periodische Randbedingungen drastisch verändern kann, sobald der Entartungsgrad der geordneten Phasen von der Teilchenzahl abhängt. Eswerden Modellsysteme in zwei und drei Dimensionen betrachtet, deren Zustandssummen mittels analytischer, kombinatorischer Argumente berechnet werden. Für das kompliziertere, isotrope Plaquettemodell in drei Dimensionen können durch diese Rechnungen Ordnungsparameter definiert werden. Diese werden, zusammen mit dem veränderten Skalenverhalten selbskonsistent durch anspruchsvolle und hochpräzise, sogenannte multikanonische Monte-Carlo Simulationen überprüft und bestätigt.
16

From localization to delocalization: numerical studies of transport in disordered systems

Römer, Rudolf 19 April 2000 (has links)
The present thesis reviews my scientific works on disordered systems from 1995 until today. They can be roughly categorized into three main classes: (1) non-interacting disordered systems, (2) the two-interacting particle problem, and (3) the interplay of disorder and many-particle interaction. A (4)th chapter is concerned with the implementation of the numerical algorithms. The structure of the thesis reflects this division. The reprints have been added at the end of these main divisions according to their context. For the convenience of the reader, I have ordered them in each chapter alphabetically according to the names of the authors. Furthermore, in each citation of my work, the starting page number in the thesis is given, e.g, Ref.\ \cite{EPR97} refers to a paper of Eckle, Punnoose and myself and can be found on page \pageref{EPR97}. Citations which do not refer to my work are numbered and are ordered in the bibliography according to the names of the authors.
17

Finite size scaling and the critical Casimir force : Ising magnets and binary fluids / Finite size scaling et force de Casimir critique : aimants d'Ising et fluides binaires

Lopes Cardozo, David 22 October 2015 (has links)
À l'approche d'un point critique, la divergence de la longueur de corrélation des fluctuations peut être tronquée par le confinement du système. Cette troncature engendre des effets de taille finie présentant des caractères universels au sein d'un classe de transitions de phases.Nous nous sommes intéressés particulièrement à la classe d'universalité du modèle d'Ising, regroupant notamment les transitions de phase ferro/paramagnétique pour les systèmes magnétiques uniaxiaux, la transition liquide/gaz et encore la démixtion de mélanges binaires. Nous présentons tout d'abord une introduction aux phénomènes critiques, à l'universalité, au « finite-size scaling » et aux simulations Monte Carlo du modèle d'Ising, sur lesquelles se fondent la majeur partie de ce travail.Un effet de taille finie ayant attiré une grande attention durant les dernières dizaines d'années est la force de Casimir critique. Les travaux théoriques et numériques concernant cette force ont, dans leur quasi totalité, été menés dans des systèmes magnétiques modèles, tel que les modèles d'Ising ou XY. Par contre, les approches expérimentales ont toutes été réalisées dans des systèmes fluides, tels que des mélanges binaires ou de l'hélium IV proche de la transition superfluide.Une motivation de ce travail a été de chercher a résoudre cette situation paradoxale en proposant, d'une part, un protocole expérimental pour la mesure de la force de Casimir dans une couche mince magnétique et, d'autre part, une approche numérique dans un mélange binaire de type Lennard-Jones. Cette dernière approche présente l'avantage d'ouvrir la porte à des études des fluctuations de la force de Casimir ou encore hors-équilibre. / Approaching a critical point, the divergence of the correlation length of fluctuations can be cut-off by a confinement of the system. This truncation fosters finite size effects with universal features in a class of continuous phase transitions. We are particularly interested in the Ising universality class, regrouping transitions such as the ferromagnetic/paramagnetic transition for uniaxial magnetic systems, the liquid/gas tran- sition and the demixing of binary mixtures. We will first present an introduction to critical phenomena, universality, finite-size scaling and Monte Carlo simulations of the Ising model, on which a major part of this work relies.A finite size effect that has particularly drawn attention in the past decades is the critical Casimir force. On the one hand, theoretical and numerical works on the subject have almost systematically been performed in magnetic model systems, such as the Ising or XY models. On the other hand, experimental approaches were all realized in fluid systems, such as binary mixtures or helium IV close to the superfluid transition.A motivation of this work was to bridge this gap by proposing, firstly, an experimental protocol for measuring the critical Casimir force in a magnetic layer and, secondly, a numerical approach in a Lennard-Jones binary mixture. The latter is of particular interest as it could lead the way to studying fluctuations of the Casimir force or out-of-equilibrium phenomena.
18

Anderson transitions on random Voronoi-Delaunay lattices / Anderson-Übergänge auf zufälligen Voronoi-Delaunay-Gittern

Puschmann, Martin 20 December 2017 (has links) (PDF)
The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed. / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.
19

Chaos quantique et transition d'Anderson avec des atomes refroidis par laser

Chabé, Julien 07 December 2007 (has links) (PDF)
En utilisant des atomes refroidis par laser placés dans une onde stationnaire pulsée nous réalisons expérimentalement un système quantique présentant une dynamique chaotique à la limite classique appelé « kicked rotor ». Le kicked rotor est le paradigme de l'étude du chaos quantique. Un tel système présente un phénomène de « localisation dynamique » correspondant à la suppression de la diffusion ergodique par des interférences quantiques. Après un temps caractéristique, la distribution en impulsion est gelée à un état stationnaire et son énergie cinétique atteint une valeur asymptotique.<br />Le forçage périodique du kicked rotor est une condition nécessaire à l'apparition de la localisation dynamique. Dans ce cas, on montre que la localisation dynamique est équivalente à un modèle d'Anderson à une dimension pour les solides désordonnés. De nombreuses études numériques ont étudié l'analogie avec le modèle d'Anderson à deux et trois dimensions lorsque le forçage comporte deux et trois fréquences. Nous proposons une étude expérimentale de la destruction de la localisation dynamique par un forçage à deux fréquences en introduisant progressivement une seconde fréquence dans le forçage. Celle-ci révèle l'existence d'une loi d'échelle quantique concernant la délocalisation. Pour le modèle avec forçage à trois fréquences correspondant au modèle d'Anderson à trois dimensions les expériences montrent l'existence d'une transition de phase entre un état localisé et un état délocalisé.
20

Disorder-induced metal-insulator transition in anisotropic systems

Milde, Frank 17 July 2000 (has links) (PDF)
Untersucht wird der Auswirkung von Anisotropie auf den unordnungsinduzierten Metall-Isolator-Übergang (MIÜ) im Rahmen des dreidimensionalen Anderson-Modells der Lokalisierung für (schwach) gekoppelte Ebenen bzw. Ketten. Mittels numerischer Verfahren (Lanczos- und Transfer-Matrix-Methode) werden Eigenwerte und -vektoren bzw. die Lokalisierungslänge berechnet. Zur Bestimmung des kritischen Exponenten dieses Phasenüberganges 2. Ordnung wird ein allgemeiner Skalenansatz verwendet, der auch den Einfluss einer irrelevanten Skalenvariablen und Nichtlinearitäten berücksichtigt. Ein Kapitel untersucht die verwendeten numerischen Verfahren, verschiedene Methoden werden verglichen und die Portierbarkeit zu Parallelrechnern diskutiert. Der MIÜ wird mit zwei unabhängigen Methoden charakterisiert: Eigenwertstatistik und Transfer-Matrix-Methode. Die Systemgrößenunabhängigkeit der betrachteten Größen am Phasenübergang wird benutzt um den MIÜ zu identifizieren. Sie resultiert aus der Multifraktalität der kritischen Eigenzustände, die für den isotropen Fall bis zu einer Systemgröße von 111^3 Gitterplätzen gezeigt wird. Es stellt sich heraus, daß der MIÜ auch bei sehr starker Anisotropie existiert und bereits bei geringerer Potentialunordnung als im isotropen Fall auftritt. Für den Fall sehr schwach gekoppelter Ebenen wird gezeigt, daß der kritische Exponent mit dem des isotropen Falles übereinstimmt und damit die übliche Einteilung in Universalitätsklassen bestätigt.

Page generated in 0.0217 seconds