• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 470
  • 182
  • 51
  • 8
  • 3
  • 3
  • 1
  • Tagged with
  • 706
  • 325
  • 246
  • 220
  • 177
  • 116
  • 100
  • 99
  • 85
  • 82
  • 78
  • 74
  • 72
  • 72
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Modélisation et simulation du rotomoulage réactif du polyuréthane / Modelling and simulation of reactive rotational of polyurethane

Hamidi, Abdelmoumen 09 September 2015 (has links)
Le procédé du rotomoulage réactif est une technologie de fabrication de pièces creuses de taille et géométrie très variés. Une compréhension et une modélisation des phénomènes physiques qui interviennent dans les différentes étapes de la fabrication apportent une contribution importante à la maîtrise de ce procédé. Les travaux abordés dans cette thèse se situent dans le cadre d'un programme plus général visant le contrôle et le pilotage du rotomoulage réactif.Tout d'abord, une caractérisation et modélisation de la cinétique du polyuréthane thermodurcissable en mode dynamique est réalisé suivie par des mesures rhéologiques afin d'établir des lois rhéocinétique ainsi que des lois du comportement viscoélastiques du système réactionnel. Ces lois de comportement sont établies conformément aux conditions réelles de la mise en œuvre du matériau.Ensuite, nous simulons le procédé du rotomoulage en utilisant un code de calcul basé sur la méthode « Smoothed Particle Hydrodynamics » (SPH), développé par notre équipe, en implémentant des nouveaux paramètres physiques: le caractère non-newtonien du mélange réactionnel et les effets de tension superficielle.Le modèle de tension de surface en 2 et 3D développé dans cette thèse permet la détection explicite de l'interface séparant le fluide réactif de l'air. Puis, nous utilisons l'interpolation lagrangienne ou la régression circulaire pour construire la courbe d'interface en 2D et la surface d'interface en 3D sera reconstruite via la régression sphérique. Quant à la modélisation de l'écoulement du fluide non-newtonien, une loi de puissance décrivant l'évolution de la viscosité en fonction du taux de cisaillement a été intégrée dans le solveur pour décrire le caractère non-newtonien du mélange réactionnel durant sa mise en œuvre. Ces paramètres physiques implémentés dans le code ont été validé par une série de cas de tests en 2 et 3D.L'intégration des effets de tension de surface et la prise en compte du caractère non-newtonien du fluide réactif nous ont permis de mieux présenter la mouillabilité de la surface interne du moule et l'étalement des différentes couches du polymères.Mots clés : rotomoulage réactif, polyuréthane thermodurcissable, rhéocinétique, Smoothed Particle Hydrodynamics, tension de surface, fluide non-newtonien, simulation. / Reactive Rotational molding (RRM) is a process for manufacturing hollow plastic products with no weld lines, in virtually any shape, size, color and configuration, using biaxial rotation and high temperature. Understanding and modelling of physical phenomena provide a great contribution for process control that is the purpose of a more general program.Firstly, a characterization and the kinetic modeling of the thermoset polyurethane are performed in anisothermal conditions followed by rheological measurements in order to establish rheokinetik model and the the viscoelastic behavior of the reactive system according with RRM conditions.Afterwards, to simulate the RRM, Smoothed Particles Hydrodynamics (SPH) method is applied which is suited method to simulate the fluid flow with free surface such as occurs at RRM. This solver is developed by our team. Modelling and simulating reactive system flow depend on different parameters; the physical phenomena involved are: surface tension force and non-newtonian fluid behavior.The surface tension method has been successfully applied to simulate RRM using SPH solver taking into account free surface tension force. Surface tension force is given explicitly in the current model. After detecting the boundary particles, the interface is locally fitted by using Lagrangian interpolation polynomial or fitting circle in 2D and by using fitting sphere in 3D, respectively. To study the non-newtonian fluid flow during RRM, a power law describes the evolution of the viscosity versus shear rate was adopted to describe the viscoelastic nature of the reactive fluid during its shaping.The implementation of surface tension and viscoelasticity allows us to present the wettability of internal surface of the mold and the spreading of different polymers layers.Keywords : Reactive rotational molding, thermoset polyurethane, rheokinetik, Smoothed Particle Hydrodynamics, surface tension, non-newtonian fluid, simulation.
332

Développement d'une méthode de couplage partitionné fort en vue d'une application aux turbomachines / Development of a partitioned strong coupling procedure with the aim of turbomachinery application

Bénéfice, Guillaume 11 December 2015 (has links)
Pour améliorer la conception des turbomachines, les industriels doivent appréhender des phénomènes aéroélastiques complexes présents dans les compresseurs comme les cycles limites d’interaction fluide-structure des fans. La compréhension et la modélisation de ces phénomènes impliquent de développer des modèles numériques complexes intégrant des phénomènes multi-physique et de valider ces modèles à l’aide de bancs d’essais. Le banc d’essai du compresseur CREATE est instrumenté pour étudier des instabilités aérodynamiques couplées à des vibrations, notamment sur le rotor du premier étage, et permet de valider des modèles numériques. La modélisation de l’écoulement en amont du premier étage du compresseur à l’aide du logiciel Turb’Flow, développé pour l’étude des écoulements dans les compresseurs aéronautiques, a permis de mettre en évidence l’importance des conditions limites d’entrée pour l’obtention de résultats précis. En particulier, il a été possible de modéliser correctement l’ingestion d’une alimentation non-homogène en entrée de la roue directrice d’entrée. Ce phénomène peut se produire en amont des fans et interagir avec un mode de la structure. Une stratégie de couplage partitionné fort explicite dans le domaine temporel a été introduite dans le logiciel Turb’Flow. Comme cette méthode présente un risque de décalage temporel à l’interface fluide-structure, une attention particulière a été portée à la modélisation de la conservation de l’énergie à cette interface. La conservation de l’énergie à l’interface est cruciale quand les déplacements sont importants et quand un comportement non-linéaire fort apparaît entre le fluide et la structure (onde de choc et amortissement structurel nonlinéaire). Parallèlement au développement du module aéroélastique, le schéma implicite de Runge- Kutta d’ordre 3 en temps (RKI-3) a été développé et évalué sur un cas de dynamique (vibration d’une aube de turbine transsonique) et sur un cas de propagation d’onde de choc. L’utilisation du schéma RKI-3 permet d’augmenter, à iso-précision, d’un ordre le pas de temps par rapport aux schémas de Gear et de Newmark. S’il apporte un gain en temps CPU pour l’étude de la dynamique des structures, il est pénalisant dans le cadre de simulation URANS. Cependant, le schéma RKI-3 est utilisable dans le cadre de simulations couplées fluide-structure. / To increase turbomachinery design, manufacturers have to comprehend complex aeroelastic phenomena involving compressors like fluid-structure interaction limit cycles of fans. The understanding and the modeling of these phenomena involve developing complex solvers coupling techniques and validating these techniques with bench tests. The bench test of the CREATE compressor is instrumented to study the coupling between aerodynamic instabilities and structure vibration, in particular on the first stage rotor, and allows to validate numerical techniques. The flow modeling upstream to the first stage with the Turb’Flow flow solver (targeting turbomachinery applications) shows that, to have accurate results, inlet limit conditions must take into account. The ingestion of non-homogeneous flow upstream to the inlet guide vane is accurately modeled. This phenomenon can appear upstream to fans and interact with structure Eigen-modes. Explicit partitioned strong coupling considered in time domain was implemented in a Turb’Flow flow solver. As there is a risk of time shift at the fluid-structure interface, careful attention should be paid to energy conservation at the interface. This conservation is crucial when displacements are large and when strong non-linear behaviors occur in both fluid and structure domains, namely shock waves, flow separations and non-linear structural damping. In parallel with coupling technique development, the three-order implicit Runge-Kutta scheme (RKI-3) was implemented and validated on a structure dynamic case (transonic turbine blade vibration) and on a case of shock waves propagation. The RKI-3 scheme allows increasing the time step of one order of magnitude with the same accuracy. There is a CPU time gain for structure dynamics simulations, but no for URANS simulations. However, the RKI-3 scheme can be to use for fluid-structure coupling simulations. The coupling technique was validated on a test case involving tube in which the shock wave impinges on a cross flow flexible panel, initially at rest. This case allows modeling an interaction between sonic flow and a panel movement with a tip clearance. Some numerical simulations were carried out with different temporal schemes. The RKI-3 scheme has no influence on results (compared with Gear and/or Newmark scheme) on the energy conservation at the fluid-structure interface. Compared to experimental results, pressure is in fairly good ix Liste des publications agreement. The analysis of numerical results highlighted that a vertical shock tube with up and down waves creates pressure fluctuation. Frequency is under predicted and amplitude is not in fairly good agreement. The panel root modeling might be questionable.
333

Vibrations de ligne d'arbre sur paliers hydrodynamiques : influence de l'état de surface / Vibration of a rotating shaft on hydrodynamic bearings : multi-scales surface effects

Rebufa, Jocelyn 06 December 2016 (has links)
Le palier hydrodynamique est une solution de guidage en rotation particulièrement appréciée pour ses caractéristiques d’amortissement à hautes vitesses de rotation. Cependant les performances des machines tournantes lubrifiées par un film fluide sont impactées par des effets non linéaires difficiles à analyser. La prédiction du comportement du système par la simulation nécessite une modélisation avancée de l’écoulement de lubrifiant dans le palier hydrodynamique. Enfin, l’état de surface semble avoir un impact important sur l’écoulement du fluide lubrifiant, lui-même agissant sur les caractéristiques statiques et dynamiques des parties tournantes. Cette étude vise à améliorer les modèles numériques liés à l’impact de l’état de surface des paliers hydrodynamiques sur la dynamique de ligne d’arbre. La méthode d’homogénéisation multi-échelles a été utilisée à cet effet dans un algorithme multi-physiques pour décrire l’interaction entre la structure flexible en rotation et les films fluides des supports de lubrification. Différents modèles ont été utilisés pour prendre en compte la présence de zone de rupture de film lubrifiant. Des méthodologies non-linéaires fréquentielles ont été mises en place afin de permettre l’étude paramétrique des solutions périodiques d’un tel système et de leur stabilité. Afin de confronter ce modèle complexe à la réalité, un banc d’essai miniature a également été conçu. Différents échantillons présentant des états de surface modifiés par ablation à l’aide de LASER femto-seconde ont été testés. L’étude expérimentale a permis de vérifier certaines tendances prévues par la simulation. Des améliorations des performances des paliers hydrodynamiques par rapport aux vibrations auto-entretenues du système ont été démontrées pour certaines textures. En revanche toutes les améliorations ne sont pas prédites par les algorithmes d’homogénéisation multi-échelles. La présence de recirculation dans les aspérités du motif a été mise en évidence à partir de la résolution locale des équations de Navier-Stokes. Ce résultat participe à la remise en question des hypothèses classiques utilisées en texturation, et peut justifier les améliorations obtenues expérimentalement avec les paliers texturés. / The hydrodynamic bearing provides good damping properties in rotating machineries. However, the performances of rotor-bearings systems are highly impacted by nonlinear effects that are difficult to analyze. The rotordynamics prediction requires advanced models for the flow in the bearings. The surface of the bearings seems to have a strong impact on the lubricant flow, acting on the static and dynamic properties of the rotating parts. This study aims to enhance the simulation of the bearings’ surface state effect on the motion of the rotating shaft. The flexible shaft interacts with textured hydrodynamic bearings. Multi-scales homogenization is used in a multi-physics algorithm in order to describe the fluid-structure interaction. Different models are used to account for the cavitation phenomenon in the bearings. Nonlinear harmonic methods allow efficient parametric studies of periodic solutions as well as their stability. Moreover, a test rig has been designed to compare predictions to real measurements. Several textured shaft samples modified with femto-seconds LASER surface texturing are tested. In most cases the experimental study showed similar results than the simulation. Enhancements of the vibration behaviors of the rotor-bearing system have been revealed for certain texturing patterns. The self-excited vibration, also known as "oil whirl" phenomenon, is stabilized on a wide rotating frequency range. However, the simulation tool does not predict well the enhancements that are observed. Vortices in surface texturing patterns have been revealed numerically with Navier-Stokes equation resolution. These results are opposed to the classical lubrication hypothesis. It is also a possible explanation of the enhancements that are experimentally measured with textured bearings.
334

Hamiltonian fluid reductions of kinetic equations in plasma physics / Réductions fluides hamiltoniennes des équations cinétiques en physique des plasmas

Perin, Maxime 19 September 2016 (has links)
La réduction fluide des équations cinétiques est un procédé couramment utilisé en physique des plasmas qui a pour objectif de remplacer la fonction de distribution définie dans l'espace des phases par des grandeurs fluides comme la densité et la pression. Cette réduction diminue la complexité du système initial. En contrepartie, la réduction fluide s'accompagne de la nécessité d'effectuer une fermeture sur les moments d'ordre supérieur. Celle-ci est souvent construite ad hoc en se basant sur des arguments physiques (e.g., quantités conservées, existance d'un théorème H, ...). Dans ce manuscrit, on propose un procédé de réduction qui permet de préserver la structure hamiltonienne du modèle cinétique parent. Ceci est important pour assurer qu'aucune dissipation d'origine non physique est introduite dans le modèle fluide, le munissant ainsi d'une structure hamiltonienne dont l'origine peut être suivie jusqu'à celle de la dynamique microscopique des particules. On utilise cette méthode pour construire des modèles fluides non-adiabatiques pour les trois premiers moments de la fonction de distribution associée à l'équation de Vlasov-Poisson à une dimension, i.e., la densité, la vitesse fluide et la pression. Les résultats sont ensuite étendus pour inclure la dynamique du flux de chaleur en considérant des fermetures construites à partir de l'analyse dimensionnelle. On montre également, pour un nombre arbitraire de champs, la relation existant avec le modèle water-bags. L'extension à des dimensions supérieures est étudiée dans le cadre de l'équation drift-cinétique ainsi que de l'équation de Vlasov-Poisson à trois dimensions. / Fluid reduction of kinetic equations is a ubiquitous procedure in plasma physics which aims to replace the distribution function defined in phase space with more concrete fluid quantities defined solely in configuration space such as the density, the fluid velocity and the pressure. This reduction lowers the complexity of the initial system, leading to a gain of physical insight into the phenomena under investigation as well as a significant decrease of the cost of numerical simulations. On the other hand, in order for the fluid reduction to be complete, one needs to perform a closure on the higher order fluid moments. The choice of the closure usually relies on some ad hoc physical arguments (e.g., conserved quantities, existence of an H-theorem, ...). In this manuscript, we present a reduction procedure that preserves the Hamiltonian structure of the parent kinetic model. This is important in order to ensure that no non-physical dissipation is introduced in the resulting fluid model, providing it with a geometric structure that can be traced back to the microscopic dynamics of the particles. We use this procedure to derive non-adiabatic fluid models for the first three fluid moments of the distribution function of the one dimensional Vlasov-Poisson equation, namely the density, the fluid velocity and the pressure. The results are extended to include the dynamics of the heat-flux by considering a closure based on dimensional analysis. For an arbitrary number of fields, we demonstrate the relationship with the water-bags model. Finally, the extension to higher dimensions is investigated through the drift-kinetic equation and the three dimensional Vlasov-Poisson equation.
335

Study of rigid solids movement in a viscous fluid / Etude du mouvement de solides rigides dans un fluide visqueux

Sabbagh, Lamis Marlyn Kenedy 22 November 2018 (has links)
Cette thèse est consacrée à l’analyse mathématique du problème du mouvement d’un nombre fini de corps rigides homogènes au sein d’un fluide visqueux incompressible homogène. Les fluides visqueux sont classés en deux catégories: les fluides newtoniens et les fluides non newtoniens. En premier lieu, nous considérons le système formé par les équations de Navier Stokes incompressible couplées aux lois de Newton pour décrire le mouvement de plusieurs disques rigides dans un fluide newtonien visqueux homogène dans l’ensemble de l’espace R^2. Nous montrons que ce problème est bien posé jusqu’à l’apparition de la première collision. Ensuite, nous éliminons tous les types de contacts pouvant survenir si le domaine fluide reste connexe à tout moment. Avec cette hypothèse, le système considéré est globalement bien posé. Dans la deuxième partie de cette thèse, nous montrons la non-unicité des solutions faibles au problème d’interaction fluide-solide 3D, dans le cas d’un fluide newtonien, après collision. Nous montrons qu’il existe des conditions initiales telles que nous pouvons étendre les solutions faibles après le temps pour lequel le contact a eu lieu de deux manières différentes. Enfin, dans la dernière partie, nous étudions le mouvement bidimensionnel d’un nombre fini de disques immergés dans une cavité remplie d’un fluide viscoélastique tel que des solutions polymériques. Les équations de Navier Stokes incompressible sont utilisées pour modéliser le solvant, dans lesquelles un tenseur de contrainte élastique supplémentaire apparaît comme un terme source. Dans cette partie, nous supposons que le tenseur de contrainte supplémentaire satisfait la loi différentielle d’Oldroyd ou sa version régularisée. Dans les deux cas, nous prouvons l’existence et l’unicité des solutions fortes locales en temps du problème considéré. / This thesis is devoted to the mathematical analysis of the problem of motion of afinite number of homogeneous rigid bodies within a homogeneous incompressible viscous fluid. Viscous fluids are classified into two categories: Newtonian fluids, and non-Newtonian fluids. First, we consider the system formed by the incompressible Navier-Stokes equations coupled with Newton’s laws to describe the movement of several rigid disks within a homogeneous viscous Newtonian fluid in the whole space R^2. We show the well-posedness of this system up to the occurrence of the first collision. Then we eliminate all type of contacts that may occur if the fluid domain remains connected at any time. With this assumption, the considered system is well-posed globally in time. In the second part of this thesis, we prove the non-uniqueness of weak solutions to the fluid-rigid body interaction problem in 3D in Newtonian fluid after collision. We show that there exist some initial conditions such that we can extend weak solutions after the time for which contact has taken place by two different ways. Finally, in the last part, we study the two-dimensional motion of a finite number of disks immersed in a cavity filled with a viscoelastic fluid such as polymeric solutions. The incompressible Navier–Stokes equations are used to model the flow of the solvent, in which the elastic extra stress tensor appears as a source term. In this part, we suppose that the extra stress tensor satisfies either the Oldroyd or the regularized Oldroyd constitutive differential law. In both cases, we prove the existence and uniqueness of local-in-time strongsolutions of the considered moving-boundary problem.
336

Nucleobases in supercritical fluids

Sarfraz, Adnan 02 March 2010 (has links)
Diese Arbeit zeigt die Verwendung ueberkritischer Fluide als analytisches Werkzeug fuer den Transport einer Gruppe nichtfluechtiger Molekuele, naemlich Nucleobasen, in die Gasphase. Das am haeufigsten verwendete ueberkritische Fluid ist Kohlendioxid, welches sich jedoch als zu ineffizient bei der Aufloesung von Nucleobasen herausstellte. Deshalb wurde ein Gemisch aus Ethylen mit Ethanol als Cosolvens als ueberkritisches Loesungsmittel verwendet. Für die Erkennung des kritischen Punktes reiner Fluide oder verduennter Fluidmischungen wurde eine neue Methode entwickelt. Die Verschiebung des kritischen Punktes von Ethylen durch Zugabe von Ethanol wurde experimentell ermittelt und mit der Zustandsgleichung von Soave Redlich Kwong in Beziehung gesetzt. Fuer einen Molenbruch des Cosolvens Ethanol von 0.054 erhoeht sich die kritische Temperatur nur um 5,5 C, wohingegen die Theorie eine Erhoehung um 10 C vorhersagt. Fuenf biologisch relevante Nucleobasen wurden mit Hilfe von 3% Ethanol als Cosolvens in ueberkritischem Ethylen geloest. Die Zusammensetzung des Ueberschall-Molekularstrahles der expandierten Loesung wurde mit einem Quadrupol-Massenspektrometer quantitativ analysiert. Das Signalverhaeltnis der Nucleobasen zu Ethylen lag in der Groessenordnung von 10^-4 bis 10^-5. Diese Nucleobasen wurden auch auf Oberflaechen abgeschieden, sowohl durch Hochdruckexpansion der ueberkritischen Loesungen, als auch durch Verdampfung von alkoholischen Loesungen (nach der ’Drop Casting’ Methode). Die dabei entstehenden Morphologien wurden ex-situ mittels Rasterkraftmikroskopie untersucht. Die Ursachen dieser Unterschiede werden anhand der relevanten Nukleationsmechanismen diskutiert. / This work highlights the use of supercritical fluids (SCF) as an analytical tool for the transfer of a group of non-volatile molecules, namely nucleobases, into the gas phase. The most commonly used SCF carbon dioxide was found inefficient in dissolving the nucleobases. Therefore, a mixture of ethylene (p_c = 50.6 bar and T_c = 9.35 C) with a cosolvent was used as the SC solvent. A new bracketing method was developed for detecting the critical point (CP) of pure fluids and diluted mixtures of fluids. The shift in CP of ethylene on addition of ethanol was determined and related to theoretical calculations by using the Soave Redlich Kwong equation of state. Comparing the experimental results to theoretical methods for calculating the CP showed large deviations. The critical temperature shifted by only 5.5 C when the mole fraction of the cosolvent i.e. ethanol was 0.054. Five biologically relevant were dissolved in SC ethylene using 3% of ethanol as cosolvent. The supersonic molecular beam composition of the expanded solution was analyzed quantitatively using a quadrupole mass spectrometer and the ratio of the nucleobases to ethylene in the beam was found to be of the order of 10^-4 to 10^-5. Surface deposition of the nucleobases through SCF solutions was carried out and the morphology was recorded using Atomic Force Microscopy. Remarkable differences were observed while comparing the morphology obtained after deposition using rapid expansion of supercritical solutions (RESS) and drop casting method. These differences are discussed in terms of diffusion, rate of evaporation of the solvent, degree of supersaturation, and the nucleation process.
337

Mathematical models for the study of granular fluids / Modèles mathématiques pour l'étude des fluides granulaires

Obando Vallejos, Benjamin 18 December 2018 (has links)
Cette thèse vise à obtenir et à développer des modèles mathématiques pour comprendre certains aspects de la dynamique des fluides granulaires hétérogènes. Plus précisément, le résultat attendu consiste à développer trois modèles. Nous supposons dans un premier temps que la dynamique du matériau granulaire est modélisée à l’aide d’une approche fondée sur la théorie du mélange. D’autre part, pour les deux modèles restant, nous considérons que le fluide granulaire est modélisé à l’aide d’une approche multiphase associant des structures et des fluides rigides. Plus exactement : • Dans le premier modèle, nous avons obtenu un ensemble d’équations basées sur la théorie du mélange en utilisant des outils d’homogénéisation et une procédure thermodynamique. Ces équations reflètent deux propriétés essentielles des fluides granulaires : la nature visqueuse du fluide interstitiel et un comportement de type Coulomb de la composante granulaire. Avec nos équations, nous étudions le problème de Couette entre deux cylindres infinis d’un écoulement hétérogène granulaire dense, composé d’un fluide newtonien et d’une composante solide. • Dans le deuxième modèle, nous considérons le mouvement d’un corps rigide dans un matériau viscoplastique. Les équations 3D de Bingham modélisent ce matériau et les lois de Newton régissent le déplacement du corps rigide. Notre résultat principal est d’établir l’existence d’une solution faible pour le système correspondant. • Dans le troisième modèle, nous considérons le mouvement d’un corps rigide conducteur thermique parfait dans un fluide newtonien conducteur de la chaleur. Les équations 3D de Fourier-Navier-Stokes modélisent le fluide, tandis que les lois de Newton et l’équilibre de l’énergie interne modélisent le déplacement du corps rigide. Notre principal objectif dans cette partie est de prouver l’existence d’une solution faible pour le système correspondant. La formulation faible est composée de l’équilibre entre la quantité du mouvement et l’équation de l’énergie totale, qui inclut la pression du fluide, et implique une limite libre due au mouvement du corps rigide. Pour obtenir une pression intégrable, nous considérons une condition au limite de glissement de Navier pour la limite extérieure et l’interface mutuelle / This Ph.D. thesis aims to obtain and to develop some mathematical models to understand some aspects of the dynamics of heterogeneous granular fluids. More precisely, the expected result is to develop three models, one where the dynamics of the granular material is modeled using a mixture theory approach, and the other two, where we consider the granular fluid is modeled using a multiphase approach involving rigid structures and fluids. More precisely : • In the first model, we obtained a set of equations based on the mixture theory using homogenization tools and a thermodynamic procedure. These equations reflect two essential properties of granular fluids : the viscous nature of the interstitial fluid and a Coulomb-type of behavior of the granular component. With our equations, we study the problem of a dense granular heterogeneous flow, composed by a Newtonian fluid and a solid component in the setting of the Couette flow between two infinite cylinders. • In the second model, we consider the motion of a rigid body in a viscoplastic material. The 3D Bingham equations model this material, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. • In the third model, we consider the motion of a perfect heat conductor rigid body in a heat conducting Newtonian fluid. The 3D Fourier-Navier-Stokes equations model the fluid, and the Newton laws and the balance of internal energy model the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is composed by the balance of momentum and the balance of total energy equation which includes the pressure of the fluid, and it involves a free boundary (due to the motion of the rigid body). To obtain an integrable pressure, we consider a Navier slip boundary condition for the outer boundary and the mutual interface
338

Mécanisme de filtration des suspensions de microgel / Filtration mechanism of suspensions of microgels

Kaushik, Swati 13 February 2019 (has links)
Les écoulements de suspensions dans des milieux poreux sont particulièrement complexes, notamment à cause du couplage d’écoulements de cisaillement et d’écoulements élongationnels (Herzig, Leclerc et Goff, 1970). On les retrouve fréquemment dans les applications industrielles, l’une des applications principales se trouvant lors des opérations de production de pétrole et de gaz. Lors de la construction d'un puits, des additifs polymères anti perte de fluide empêchent à plusieurs étapes l'écoulement de fluide entre le puits et la formation de roche poreuse environnante. La perte de fluide est un problème grave si elle n’est pas maîtrisée ; elle s’ajoute alors au coût total des opérations et pourrait surtout avoir des conséquences néfastes pour l’environnement et les opérateurs. Parmi les technologies disponibles, des additifs polymères connus sous le nom d'additifs anti perte de fluide, tels que des microgels et des particules de latex, sont ajoutés aux fluides injectés pour limiter les pertes de fluide (généralement de l'eau) via un mécanisme de colmatage / blocage de pores du support poreux.Le comportement de blocage de beaucoup de ces additifs anti perte de fluide a été testé par des méthodes conventionnelles qui impliquent l'application d'une différence de pression élevée (typiquement 35-70 bars) sur le fluide formulé comprenant les additifs contre un filtre représentatif de la taille typique des pores de la formation (une grille métallique, de la céramique ou du papier filtre) et la mesure du volume de filtrat en fonction du temps. Cependant, ces méthodes standard ne permettent pas de comprendre le mécanisme sous-jacent de la dynamique de blocage des supports poreux. Par conséquent, une meilleure compréhension du mécanisme de blocage d’un support poreux par des additifs industriels anti perte de fluide est nécessaire.Dans ce travail, nous utilisons des suspensions de microgels réticulés chimiquement comme additifs anti perte de fluide et nous étudions leur comportement de blocage dans des milieux poreux modèles transparents. Nous utilisons des dispositifs à base de polydiméthylsiloxane (PDMS) comme modèle de support poreux permettant l'observation directe du processus de blocage couplée à des mesures quantitatives. Nous fabriquons des dispositifs microfluidiques de filtration frontale et de filtration latérale avec différentes tailles de pores afin de déterminer comment des paramètres tels que la mouillabilité de la surface, la concentration en particules, la taille des particules et le débit affectent la formation du gâteau de filtration.Nous présentons une méthode de contrôle de la taille des particules constituant les suspensions de microgels. Nous décrivons ensuite une approche pour préparer des suspensions à plus haute concentration et étudions la rhéologie des suspensions en fonction de la concentration en particules. De plus, nous présentons un procédé simple pour former un gâteau de filtration à partir de la suspension de microgels sur une membrane et estimons la perméabilité à l’eau du gâteau de filtration formé selon la loi de Darcy. / The flow of suspensions in porous media is a complex phenomenon due to the mechanisms involved such as both shear and extensional flows (Herzig, Leclerc, & Goff, 1970). Their use in industrial applications is quite extensive with one of the major applications being at various stages of oil and gas production operations. At several stages of a well construction, flow of fluid between the well and the surrounding porous rock formation is prevented thanks to the polymeric fluid loss control additives. Fluid loss is a severe problem if not controlled, which would add up to the total cost of operations and more importantly could have hazardous impacts on the environment or operators. Among several technologies industrially available, polymeric additives popularly known as fluid loss additives such as microgels and latex particles are added to the injected fluids to limit the loss of fluid (usually water) via the mechanism of pore clogging/jamming in porous media.Many of these fluid loss additives have been tested for their jamming behaviour by conventional methods which involve the application of a high pressure difference (typically 35-70 bars) on the formulated fluid comprising of the additives against a filter representative of the formation’s typical pore size (either a metallic grid, ceramic or filter paper) and the measurement of the filtrate volume versus time. However, these standard methods do not give any insight in understanding the underlying mechanism of jamming dynamics in porous media, hence, a better understanding of the mechanism of jamming in porous media by industrial fluid loss additives is needed.In this work, we use chemically cross-linked microgel suspensions as the fluid loss additive and study its jamming behaviour in transparent model porous media. We make use of polydimethylsiloxane (PDMS) devices as model porous media which allows direct observation of the jamming process coupled with quantitative measurements. We fabricate microfluidic devices for frontal flow filtration and lateral flow filtration with different pore sizes to see how parameters like surface wettability, particle concentration, particle size and flow rates affect the filter cake formation.We present a method of controlling the size of the microgel suspensions. We then describe an approach for preparing higher concentration suspensions and investigate the rheology of the suspensions as a function of concentration. Furthermore, we present a simple method of forming a filter cake of the microgel suspension on a supporting membrane and estimate the permeability of the filter cake formed for the flow of water using Darcy’s law.
339

Modélisation et commande d’interaction fluide-structure sous forme de système Hamiltonien à ports : Application au ballottement dans un réservoir en mouvement couplé à une structure flexible / Port-Hamiltonian modeling and control of a fluid-structure system : Application to sloshing phenomena in a moving container coupled to a flexible structure

Cardoso-Ribeiro, Flávio Luiz 08 December 2016 (has links)
Cette thèse est motivée par un problème aéronautique: le ballottement du carburantdans des réservoirs d’ailes d’avion très flexibles. Les vibrations induites par le couplagedu fluide avec la structure peuvent conduire à des problèmes tels que l’inconfort des passagers,une manoeuvrabilité réduite, voire même provoquer un comportement instable. Cette thèse apour objectif de développer de nouveaux modèles d’interaction fluide-structure, en mettant enoeuvre la théorie des systèmes Hamiltoniens à ports d’interaction (pHs). Le formalisme pHsfournit d’une part un cadre unifié pour la description des systèmes multi-physiques complexeset d’autre part une approche modulaire pour l’interconnexion des sous-systèmes grâce auxports d’interaction. Cette thèse s’intéresse aussi à la conception de contrôleurs à partir desmodèles pHs. Des modèles pHs sont proposés pour les équations de ballottement du liquide en partantdes équations de Saint Venant en 1D et 2D. L’originalité du travail est de donner des modèlespHs pour le ballottement dans des réservoirs en mouvement. Les ports d’interaction sont utiliséspour coupler la dynamique du ballottement à la dynamique d’une poutre contrôlée par desactionneurs piézo-électriques, celle-ci étant préalablement modélisée sous forme pHs. Aprèsl’écriture des équations aux dérivées partielles dans le formalisme pHs, une approximation endimension finie est obtenue en utilisant une méthode pseudo-spectrale géométrique qui conservela structure pHs du modèle continu au niveau discret. La thèse propose plusieurs extensionsde la méthode pseudo-spectrale géométrique, permettant la discrétisation des systèmesavec des opérateurs différentiels du second ordre d’une part et avec un opérateur d’entrée nonborné d’autre part. Des essais expérimentaux ont été effectués sur une structure constituéed’une poutre liée à un réservoir afin d’assurer la validité du modèle pHs du ballottementdu liquide couplé à la poutre flexible, et de valider la méthode pseudo-spectrale de semi-discrétisation.Le modèle pHs a finalement été utilisé pour concevoir un contrôleur basé surla passivité pour réduire les vibrations du système couplé. / This thesis is motivated by an aeronautical issue: the fuel sloshing in tanksof very flexible wings. The vibrations due to these coupled phenomena can lead to problemslike reduced passenger comfort and maneuverability, and even unstable behavior. Thisthesis aims at developing new models of fluid-structure interaction based on the theory ofport-Hamiltonian systems (pHs). The pHs formalism provides a unified framework for thedescription of complex multi-physics systems and a modular approach for the coupling ofsubsystems thanks to interconnection ports. Furthermore, the design of controllers using pHsmodels is also addressed. PHs models are proposed for the equations of liquid sloshing based on 1D and 2D SaintVenant equations and for the equations of structural dynamics. The originality of the workis to give pHs models of sloshing in moving containers. The interconnection ports are used tocouple the sloshing dynamics to the structural dynamics of a beam controlled by piezoelectricactuators. After writing the partial differential equations of the coupled system using thepHs formalism, a finite-dimensional approximation is obtained by using a geometric pseudospectralmethod that preserves the pHs structure of the infinite-dimensional model at thediscrete level. The thesis proposes several extensions of the geometric pseudo-spectral method,allowing the discretization of systems with second-order differential operators and with anunbounded input operator. Experimental tests on a structure made of a beam connected to atank were carried out to validate both the pHs model of liquid sloshing in moving containersand the pseudo-spectral semi-discretization method. The pHs model was finally used to designa passivity-based controller for reducing the vibrations of the coupled system.
340

Etude expérimentale d’une interaction thermique au sein d’un fluide / Experimental study of a solid/liquid thermal interaction

Abbate, Adrien 08 January 2018 (has links)
Un accident d’insertion de réactivité (RIA) dans un cœur nucléaire pourrait provoquer la rupture d’une gaine et l’éjection d’une fine poudre de combustible chaud dans le caloporteur. La réponse du fluide peut être violente. L’étude de cette interaction (Fuel/Coolant Interaction FCI) est importante pour la sûreté nucléaire. Plusieurs études et expériences ont été menées avec de l’eau ou du sodium ou sont prévues dans le cadre des essais intégraux du programme international dans le réacteur CABRI. Cependant, les conditions complexes ne permettent pas la mesure des grandeurs locales nécessaires à l’étude de la dynamique de vaporisation. En effet, effectuer des expériences de vaporisation violente avec de l’eau requiert beaucoup d’énergie et des équipements résistant aux hautes pressions, notamment pour reproduire les conditions de fonctionnement d’une centrale nucléaire de type REP. Il est ainsi intéressant d’utiliser un autre fluide, tel que le dioxyde de carbone, dont les propriétés thermodynamiques (pression critique, enthalpie de vaporisation...) réduisent ces contraintes. Néanmoins, afin de pouvoir comparer et utiliser les observations de l’expérience, il est indispensable d’établir et de vérifier des lois de similitudes entre les deux fluides. L’étude de ces similarités entre l’eau et le dioxyde de carbone a établi qu’en conservant la pression réduite ainsi que le titre thermodynamique, on obtient des rendements similaires pour la conversion de l’énergie thermique en travail avec des énergies mises en jeu divisées par cinq. Ceci a permis d’envisager la conception et la réalisation d’un banc d’essais pour provoquer l’interaction thermique violente au sein d’un fluide. Afin de reproduire la cinétique de l’interaction, la géométrie du système a été adaptée. L’impulsion d’énergie au sein du fluide est générée à l’aide d’un filament de tungstène subissant la décharge d’une batterie de condensateurs à l’extrémité basse d’un cylindre. Au-dessus de ce cylindre, un réservoir de grand volume offre une source de compressibilité. L’enceinte contenant le CO2 liquide aux conditions thermodynamiques adaptables est instrumentée à l’aide de capteurs de pression le long du tube et des sondes optiques pour repérer la phase vapeur. Ce banc expérimental a permis d’acquérir des observations locales de la réaction telle que la montée en pression du liquide. Un pic de pression franc a été observé pour des impulsions d’énergie relativement faible, de l’ordre de 0,2 kJ. Plusieurs études sur les paramètres d’influences ont été menées. Notamment, l’influence de l’énergie, du diamètre du fil et du sous-refroidissement. / During a reactivity insertion accident, the temperature and the pressure rapidly increase inside the rod and can lead to the rupture of the clad and the ejection of fuel toward the coolant. Since the fuel could be finely fragmented, the thermal interaction between fuel and coolant (FCI) could create a pressure wave as well as a large vapor volume. Safety-related consequences of the FCI may be related to both phenomena. Past experimental studies concerning such a RIA related FCI are in-pile experiments in thermal hydraulics conditions that differ from PWR conditions. Therefore validation of a simulation tool from these data and extrapolation to reactors conditions is subject to uncertainties. This experimental study is devoted to the violent thermal interaction between a hot material and a fluid. An experimental bench has been designed. It is mainly a cylindrical tube, where the interaction takes place, connected to a larger vessel as a compressibility tank. To reduce the required level of energy as well as temperature and pressure conditions, liquid carbon dioxide has been chosen to simulate water in PWR conditions. Respect of thermodynamics similarity criteria allows to lower pressure by a factor 3 and energy per unit mass fluid by a factor 5. To produce the energy pulse, a tungsten wire is heated by Joule effect from the discharge of a 27 mF capacity. Design of the tank allows for a relatively long mechanical relaxation of the coolant with regards to the heat transfer kinetics. The pressure wave is recorded thanks to four dynamic pressure sensors along the tube. Two dual tip fiber optical probes allow characterizing the kinetics of vapor formation near the wire. The data acquisition system operates with a required frequency of the MHz range. This test bench allows to record the local behavior of the fluid such as the pressurization of the liquid. A very clear pressure wave have been recorded just after weak energy pulse around 0.2 kJ. The influence of some major parameters on these quantities have been studied. For example, the liquid level in the tank is increased between two tests up to be totally fu ll, so, the influence of the compressibility is highlighted. Also, three different wire diameters have been used to modify the heat transfer kinetics. Finally, several intensities of the energy pulse have been considered. All these studies help to improve the understanding on the thermal interaction potentially involved in the nuclear reactor safety context.

Page generated in 0.0455 seconds