• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 16
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Role of Shb in Angiogenesis, FGF and VEGF Signalling in Endothelial Cells

Holmqvist, Kristina January 2004 (has links)
<p>Angiogenesis is defined as the formation of new capillary blood vessels from pre-existing ones. This process involves several steps including: migration, proliferation and differentiation of endothelial cells into blood vessels. Angiogenesis is initiated by binding of specific growth factors, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), to their cell surface receptors. Shb is a ubiquitously expressed adaptor protein with the ability to bind several tyrosine kinase receptors. My aim has been to identify the role of Shb in FGF- and VEGF-signalling in endothelial cells. Shb was found to be phosphorylated in a Src-dependent manner upon both FGF- and VEGF-stimulation. This was confirmed using fibroblasts overexpressing temperature sensitive v-Src. Furthermore, Shb-induced cell spreading on collagen of immortalised brain endothelial (IBE) cells was also Src-dependent. FGF stimulation led to a direct association between Shb and FAK, which was mediated by the phosphotyrosine binding domain of Shb. IBE cells overexpressing wild-type or R522K Shb (inactive SH2 domain) displayed increased FAK activation on collagen.</p><p>The SH2-domain of Shb was found to bind to tyrosine 1175 in the VEGFR-2 in a phosphotyrosine dependent manner using PAE cells expressing VEGFR-2. Furthermore, by use of siRNA, Shb knock-down experiments revealed that Shb regulates FAK activity, cellular migration and stress fiber formation in response to VEGF stimulation of VEGFR-2. In summary, Shb binds to both FGFR-1 and VEGFR-2 and regulates the activity of FAK and thereby stress fiber formation and cellular migration, which are necessary for formation of new blood vessels. IBE cells with an inactive SH2 domain of Shb displayed disorganised formation of tubular structures in the tube formation assay, while overexpression of wild-type Shb led to accelerated tubular morphogenesis.</p><p>Taken together, my data show that the adaptor protein Shb plays an important role in the process angiogenesis, in response to angiogenic tyrosine kinase receptors, by interacting with FAK and regulating spreading, stress fiber formation and cellular migration.</p>
52

The Role of Shb in Angiogenesis, FGF and VEGF Signalling in Endothelial Cells

Holmqvist, Kristina January 2004 (has links)
Angiogenesis is defined as the formation of new capillary blood vessels from pre-existing ones. This process involves several steps including: migration, proliferation and differentiation of endothelial cells into blood vessels. Angiogenesis is initiated by binding of specific growth factors, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), to their cell surface receptors. Shb is a ubiquitously expressed adaptor protein with the ability to bind several tyrosine kinase receptors. My aim has been to identify the role of Shb in FGF- and VEGF-signalling in endothelial cells. Shb was found to be phosphorylated in a Src-dependent manner upon both FGF- and VEGF-stimulation. This was confirmed using fibroblasts overexpressing temperature sensitive v-Src. Furthermore, Shb-induced cell spreading on collagen of immortalised brain endothelial (IBE) cells was also Src-dependent. FGF stimulation led to a direct association between Shb and FAK, which was mediated by the phosphotyrosine binding domain of Shb. IBE cells overexpressing wild-type or R522K Shb (inactive SH2 domain) displayed increased FAK activation on collagen. The SH2-domain of Shb was found to bind to tyrosine 1175 in the VEGFR-2 in a phosphotyrosine dependent manner using PAE cells expressing VEGFR-2. Furthermore, by use of siRNA, Shb knock-down experiments revealed that Shb regulates FAK activity, cellular migration and stress fiber formation in response to VEGF stimulation of VEGFR-2. In summary, Shb binds to both FGFR-1 and VEGFR-2 and regulates the activity of FAK and thereby stress fiber formation and cellular migration, which are necessary for formation of new blood vessels. IBE cells with an inactive SH2 domain of Shb displayed disorganised formation of tubular structures in the tube formation assay, while overexpression of wild-type Shb led to accelerated tubular morphogenesis. Taken together, my data show that the adaptor protein Shb plays an important role in the process angiogenesis, in response to angiogenic tyrosine kinase receptors, by interacting with FAK and regulating spreading, stress fiber formation and cellular migration.
53

Effects of interstitial fluid flow and cell compression in FAK and SRC activities in chondrocytes

Cho, Eunhye 08 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Articular cartilage is subjected to dynamic mechanical loading during normal daily activities. This complex mechanical loading, including cell deformation and interstitial fluid flow, affects chondrocyte mechano-chemical signaling and subsequent cartilage homeostasis and remodeling. Focal adhesion kinase (FAK) and Src are known to be main mechanotransduction proteins, but little is known about the effect of mechanical loading on FAK and Src under its varying magnitudes and types. In this study, we addressed two questions using C28/I2 chondrocytes subjected to the different types and magnitudes of mechanical loading: Does a magnitude of the mechanical loading affect activities of FAK and Src? Does a type of the mechanical loading also affect their activities? Using fluorescence resonance energy transfer (FRET)-based FAK and Src biosensor in live C28/I2 chondrocytes, we monitored the effects of interstitial fluid flow and combined effects of cell deformation/interstitial fluid flow on FAK and Src activities. The results revealed that both FAK and Src activities in C28/I2 chondrocytes were dependent on the different magnitudes of the applied fluid flow. On the other hand, the type of mechanical loading differently affected FAK and Src activities. Although FAK and Src displayed similar activities in response to interstitial fluid flow only, simultaneous application of cell deformation and interstitial fluid flow induced differential FAK and Src activities possibly due to the additive effects of cell deformation and interstitial fluid flow on Src, but not on FAK. Collectively, the data suggest that the intensities and types of mechanical loading are critical in regulating FAK and Src activities in chondrocytes.
54

MT1-MMP: TARGETING THE CENTER OF MELANOMA METASTASIS, GROWTH AND TREATMENT RESISTANCE

Marusak, Charles 23 May 2019 (has links)
No description available.
55

DIVERSE ROLES FOR EGF RECEPTOR SIGNALING IN THE BREAST CANCER TUMOR MICROENVIRONMENT

Balanis, Nikolas G. January 2013 (has links)
No description available.
56

Non-Pyroptotic Gasdermin-B (GSDMB) Regulates Epithelial Restitution and Repair, and is Increased in Inflammatory Bowel Disease

Rana, Nitish 23 May 2022 (has links)
No description available.
57

Role of Ring1B in ephitelial to mesenchimal transition, invasion and migration of mammary epithelial cells

Bosch Gutiérrez, Almudena 21 December 2009 (has links)
The Polycomb group (PcG) family of proteins form chromatin-modifying complexes essential for embryonic development, and stem cell renewal and are commonly deregulated in cancer. There are several reports that address the possible implication of PcG proteins in tumor progression and metastasis, but very little is known about the specific role of these proteins in tumor progression and invasion. On the other hand, the molecular processes of the worst cancer prognosis, metastasis, which leads to an incurable disease, are yet incompletely elucidated. Here we show a role for Ring1B, a PcG protein, in three processes related to metastasis: in the Epithelial-mesenchymal transition (EMT), a critical morphogenic event that occurs during embryonic development and during the progression of various epithelial tumors, an in the migration and the invasion of mammary epithelial cells. / Las proteínas del grupo Polycomb (PcG) forman complejos modificadores de la cromatina esenciales en el desarrollo embrionario y en la renovación de las células madre, y su desregulación ha sido asociada al cáncer. Varios estudios muestran la posible implicación de las proteínas de PcG en la progresión tumoral y en la metástasis, pero a pesar de ello se sabe muy poco de los procesos moleculares en los que estas proteínas están participando. Por otro lado, los procesos moleculares responsables del peor pronóstico en cáncer, la metástasis, que continua siendo una enfermedad incurable, siguen sin estar completamente elucidados. En esta disertación mostramos el papel de Ring1B, una proteína del PcG, en tres procesos implicados en la metástasis: en la transición epitelio-mesénquima (EMT), un proceso morfogénico crítico en el desarrollo embrionario y durante la progresión de varios cánceres epiteliales, y en la migración y la invasión de las células epiteliales mamarias.

Page generated in 0.2359 seconds