• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 26
  • 26
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Piezoelectric generators based on semiconducting nanowires : simulation and experiments / Générateurs piézoélectrique à base de nanofils semi-conducteurs : simulations et études expérimentales

Tao, Ran 31 January 2017 (has links)
L’alimentation en énergie des réseaux de capteurs miniaturisés pose une question fondamentale, dans la mesure où leur autonomie est un critère de qualité de plus en plus important pour l’utilisateur. C’est même une question cruciale lorsque ces réseaux visent à assurer une surveillance d’infrastructure (avionique, machines, bâtiments…) ou une surveillance médicale ou environnementale. Les matériaux piézoélectriques permettent d’exploiter l’énergie mécanique inutilisée présente en abondance dans l’environnement (vibrations, déformations liées à des mouvements ou à des flux d’air…). Ils peuvent ainsi contribuer à rendre ces capteurs autonomes en énergie. Sous la forme de nanofils (NF), les matériaux piézoélectriques offrent une sensibilité qui permet d’exploiter des sollicitations mécaniques très faibles. Ils sont également intégrables, éventuellement sur substrat souple.Dans cette thèse nous nous intéressons au potentiel des nanofils de matériaux semi-conducteurs piézoélectriques, tels que ZnO ou les composés III-V, pour la conversion d’énergie mécanique en énergie électrique. Depuis peu, ceux-ci ont fait l’objet d’études relativement nombreuses, avec la réalisation de nanogénérateurs (NG) prometteurs. De nombreuses questions subsistent toutefois avec, par exemple, des contradictions notables entre prédictions théoriques et observations expérimentales.Notre objectif est d’approfondir la compréhension des mécanismes physiques qui définissent la réponse piézoélectrique des NF semi-conducteurs et des NG associés. Le travail expérimental s’appuie sur la fabrication de générateurs de type VING (Vertical Integrated Nano Generators) et sur leur caractérisation. Pour cela, un système de caractérisation électromécanique a été construit pour évaluer les performances des NG réalisés et les effets thermiques sous une force compressive contrôlée. Le module d’Young et les coefficients piézoélectriques effectifs de NF de GaN; GaAs et ZnO et de NF à structure cœur/coquille à base de ZnO ont été évalués également dans un microscope à force atomique (AFM). Les nanofils de ZnO sont obtenus par croissance chimique en milieu liquide sur des substrats rigides (Si) ou flexibles (inox) puis sont intégrés pour former un générateur. La conception du dispositif VING s’est appuyée sur des simulations négligeant l’influence des porteurs libres, comme dans la plupart des études publiées. Nous avons ensuite approfondi le travail théorique en simulant le couplage complet entre les effets mécaniques, piézoélectriques et semi-conducteurs, et en tenant compte cette fois des porteurs libres. La prise en compte du piégeage du niveau de Fermi en surface nous permet de réconcilier observations théoriques et expérimentales. Nous proposons notamment une explication au fait que des effets de taille apparaissent expérimentalement pour des diamètres au moins 10 fois plus grands que les valeurs prévues par simulation ab-initio ou au fait que la réponse du VING est dissymétrique selon que le substrat sur lequel il est intégré est en flexion convexe ou concave. / Energy autonomy in small sensors networks is one of the key quality parameter for end-users. It’s even critical when addressing applications in structures health monitoring (avionics, machines, building…), or in medical or environmental monitoring applications. Piezoelectric materials make it possible to exploit the otherwise wasted mechanical energy which is abundant in our environment (e. g. from vibrations, deformations related to movements or air fluxes). Thus, they can contribute to the energy autonomy of those small sensors. In the form of nanowires (NWs), piezoelectric materials offer a high sensibility allowing very small mechanical deformations to be exploited. They are also easy to integrate, even on flexible substrates.In this PhD thesis, we studied the potential of semiconducting piezoelectric NWs, of ZnO or III-V compounds, for the conversion from mechanical to electrical energy. An increasing number of publications have recently bloomed about these nanostructures and promising nanogenerators (NGs) have been reported. However, many questions are still open with, for instance, contradictions that remain between theoretical predictions and experimental observations.Our objective is to better understand the physical mechanisms which rule the piezoelectric response of semiconducting NWs and of the associated NGs. The experimental work was based on the fabrication of VING (Vertical Integrated Nano Generators) devices and their characterization. An electromechanical characterization set-up was built to evaluate the performance and thermal effects of the fabricated NGs under controlled compressive forces. Atomic Force Microscopy (AFM) was also used to evaluate the Young modulus and the effective piezoelectric coefficients of GaN, GaAs and ZnO NWs, as well as of ZnO-based core/shell NWs. Among them, ZnO NWs were grown using chemical bath deposition over rigid (Si) or flexible (stainless steel) substrates and further integrated to build VING piezoelectric generators. The VING design was based on simulations which neglected the effect of free carriers, as done in most publications to date. This theoretical work was further improved by considering the complete coupling between mechanical, piezoelectric and semiconducting effects, including free carriers. By taking into account the surface Fermi level pinning, we were able to reconcile theoretical and experimental observations. In particular, we propose an explanation to the fact that size effects are experimentally observed for NWs with diameters 10 times higher than expected from ab-initio simulations, or the fact that VING response is non-symmetrical according to whether the substrate on which it is integrated is actuated with a convex or concave bending.
22

Graphene based gas sensors : Fabrication, characterization, and study of gas molecules detection mechanism / Capteurs de gaz à base de graphène : Fabrication, caractérisation, et étude du mécanisme de détection des molécules de gaz

Ben Aziza, Zeineb 16 November 2015 (has links)
Ce travail nous a permis de réaliser une étude de capteurs de gaz et d’humidité à base de graphène. Cette étude pourrait être utile non seulement pour améliorer les performances des capteurs à base de graphène mais aussi pour mieux comprendre l’interaction entre le graphène et les molécules de gaz. Ceci semble indispensable pour faire avancer les applications du graphène comme un matériau prometteur pour la détection des gaz. Des avancées significatives ont été présentées au niveau de la fabrication de ces capteurs, leurs différentes caractérisations électriques ainsi que d’autres techniques employées pour analyser le mécanisme contrôlant la détection des molécules de gaz/vapeur. Ces outils ont été mis en place pour concevoir et fabriquer plusieurs structures de capteur en utilisant différents substrats support du graphène d’une part et en modifiant les propriétés du graphène par utilisation des produits chimiques d’autres part. La caractérisation de ces capteurs sous différents environnements a permis de comparer les différentes réponses des capteurs et d’en tirer plusieurs conclusions sur le fonctionnement de ces dispositifs. En effet, le Mica, un substrat lisse et transparent, a été utilisé comme substrat pour le graphène. Le dopage induit par le mica a été étudié ainsi que son impact sur la sensibilité du graphène au gaz d’ammoniac. Ceci a permis de mettre en évidence le fait que le substrat joue un rôle important pour la détection de l’ammoniac. De plus, ces capteurs fabriques sur mica et SiO2 ont été testés sous différentes conditions de températures et d’oxygène. Dans une autre approche, un polymère a été utilisé pour doper le graphène. Une étude détaillée a été menée pour analyser le comportement de ce graphène fonctionnalisé par rapport aux molécules d’eau. Ces nouveaux résultats expérimentaux obtenus pendant cette thèse constituent un bon support à plusieurs résultats théoriques établis et permettent d’optimiser la conception des capteurs de gaz à base de graphène pour des meilleures performances. / In this research, we report on a study of graphene based gas and humidity sensors. This study could be useful not only to improve the performance of graphene based sensors but also to better understand the interaction between graphene and gas molecules. This seems necessary to promote the applications of graphene as a promising material for gas sensing. Significant advances have been made to design and fabricate these sensors: the different electrical characterizations as well as other techniques used to analyze the mechanism controlling the detection of gas/vapor molecules. These tools have been set up to design and manufacture various sensor structures using different underlying substrates for graphene on one hand and chemical modification of graphene properties on the other hand. The characterization of these sensors under different environments was used to compare the different responses of the sensors and draw several conclusions about gas sensing mechanism. Indeed, Mica, a smooth and transparent substrate, was used as a supporting substrate for graphene. Doping induced to graphene by mica and its impact on graphene sensitivity to ammonia gas were studied. This has made it possible to highlight the fact that the substrate plays an important role for the detection of ammonia. In addition, these sensors made on mica and SiO2 were tested under a variety of temperatures and oxygen. In another approach, a polymer was used to dope graphene. A detailed study was realized about the behavior of water molecules on functionalized graphene. The obtained experimental results, reported for the first time, represent a good support for several theoretical studies already made and could be used to optimize the design of graphene based gas sensors.
23

Electrical characterization of ZnO and metal ZnO contacts

Mtangi, Wilbert 11 February 2010 (has links)
The electrical properties of ZnO and contacts to ZnO have been investigated using different techniques. Temperature dependent Hall (TDH) effect measurements have been used to characterize the as-received melt grown ZnO samples in the 20 – 330 K temperature range. The effect of argon annealing on hydrogen peroxide treated ZnO samples has been investigated in the 200 – 800oC temperature range by the TDH effect measurement technique. The experimental data has been analysed by fitting a theoretical model written in Matlab to the data. Donor concentrations and acceptor concentrations together with the associated energy levels have been extracted by fitting the models to the experimentally obtained carrier concentration data by assuming a multi-donor and single charged acceptor in solving the charge balance equation. TDH measurements have revealed the dominance of surface conduction in melt grown ZnO in the 20 – 40 K temperature range. Surface conduction effects have proved to increase with the increase in annealing temperature. Surface donor volume concentrations have been determined in the 200 – 800oC by use of theory developed by D. C. Look. Good rectifying Schottky contacts have been fabricated on ZnO after treating the samples with boiling hydrogen peroxide. Electrical properties of these Schottky contacts have been investigated using current-voltage (IV) and capacitance-voltage (CV) measurements in the 60 – 300 K temperature range. The Schottky contacts have revealed the dominance of predominantly thermionic emission at room temperature and the existence of other current transport mechanisms at temperatures below room temperature. Polarity effects on the Schottky contacts deposited on the O-polar and Zn-polar faces of ZnO have been demonstrated by the IV technique on the Pd and Au Schottky contacts at room temperature. Results obtained indicate a strong dependence of the Schottky contact quality on the polarity of the samples at room temperature. The quality of the Schottky contacts have also indicated their dependence on the type of metal used with the Pd producing contacts with the better quality as compared to the Au. Schottky barrier heights determined using temperature dependent IV measurements have been observed to increase with increasing temperature and this has been explained as an effect of barrier inhomogeneities, while the ones obtained from CV measurements have proved to follow the negative temperature coefficient of the II – VI semiconductor material, i.e. a decrease in barrier height with increasing temperature. However, the values have proved to be larger than the energy gap of ZnO, an effect that has been explained as caused by an inversion layer. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Physics / unrestricted
24

Accurate Band Energies of Metals with Quadratic Integration

Jorgensen, Jeremy John 18 April 2022 (has links)
Materials play an important role in society. Historically, and even at present, materials have been discovered by trial and error, and many of the most useful materials have been discovered by chance. The high-throughput approach aims to remove (as much as possible) chance and guesswork at the experimental level by filtering out materials candidates that are not predicted to exist. Many successes have been recorded. In the high-throughput approach to materials discovery, machined-learned models of materials are created from databases of theoretical materials. These databases are the result of millions of density-functional-theory (DFT) simulations. The size and accuracy of the data in the databases (and, consequently, the predictions of machined-learned models) are most affected by the band energy calculation; most of the computation of a DFT simulation is computing the band energy in the self-consistency cycle, and most of the error in the simulation comes from band energy error. The band energy is obtained from a two-part multidimensional numerical integral over the Brillouin or irreducible Brillouin zone. A quadratic approximation and integration algorithm for computing the band energy in 2D and 3D is described. Analytic and semi-analytic integration of quadratic polynomials over simplices improves the accuracy and efficiency of the calculation. A method is proposed for estimating the error bounds of the quadratic approximation that does not require additional eigenvalues. Error propagation of approximation errors leads to an adaptive refinement approach that is driven by band energy error. Because adaptive meshes have little symmetry, integration is performed within the irreducible Brillouin zone, and a general algorithm for computing the irreducible Brillouin zone is described. The efficiency of quadratic integration is tested on realistic empirical pseudopotentials. When compared to current integration methods, uniform quadratic integration over the irreducible Brillouin zone sometimes results in fewer k-points for a given accuracy. Adaptive refinement fails to improve integration performance because band energy error bounds are inaccurate, especially at accidental crossings at the Fermi level.
25

Organic light-emitting diodes with doped charge transport layers / Organische Leuchtdioden mit dotierten Ladungsträgertransportschichten

Blochwitz, Jan 08 July 2001 (has links) (PDF)
Organische Farbstoffe mit einem konjugierten pi-Elektronen System zeigen überwiegend ein halbleitendes Verhalten. Daher sind sie potentielle Materialien für elektronische und optoelektronische Anwendungen. Erste Anwendungen in Flachbildschirmen sind bereits in (noch) geringen Mengen auf dem Markt. Die kontrollierte Dotierung anorganischer Halbleiter bereitete die Basis für den Durchbruch der bekannten Halbleitertechnologie. Die Kontrolle des Leitungstypes und der Lage des Fermi-Niveaus erlaubte es, stabile pn-Übergänge herzustellen. LEDs können daher mit Betriebsspannungen nahe dem thermodynamischen Limit betrieben werden (ca. 2.5V für eine Emission im grünen Spektralbereich). Im Gegensatz dazu bestehen organische Leuchtdioden (OLEDs) typischerweise aus einer Folge intrinsischer Schichten. Diese weisen eine ineffiziente Injektion aus Kontakten und eine relative geringe Leitfähigkeit auf, welche mit hohen ohmschen Verlusten verbunden ist. Andererseits besitzen organische Materialien einige technologische Vorteile, wie geringe Herstellungskosten, große Vielfalt der chemischen Verbindungen und die Möglichkeit sie auf flexible große Substrate aufzubringen. Sie unterscheiden sich ebenso in einigen fundamentalen physikalischen Parametern wie Brechungsindex, Dielektrizitätskonstante, Absorptionskoeffizient und Stokes-Verschiebung der Emissionswellenlänge gegenüber der Absorption. Das Konzept der Dotierung wurde für organische Halbleiter bisher kaum untersucht und angewandt. Unser Ziel ist die Erniedrigung der Betriebsspannung herkömmlicher OLEDs durch den Einsatz der gezielten Dotierung der Transportschichten mit organischen Molekülen. Um die verbesserte Injektion aus der Anode in die dotierte Löchertransportschicht zu verstehen, wurden UPS/XPS Messungen durchgeführt (ultraviolette und Röntgen-Photoelektronenspektroskopie). Messungen wurden an mit F4-TCNQ dotiertem Zink-Phthalocyanin auf ITO und Gold-Kontakten durchgeführt. Die Schlussfolgerungen aus den Experimenten ist, das (i) die Fermi-Energie sich durch Dotierung dem Transportniveau (also dem HOMO im Falle der vorliegenden p-Dotierung) annähert, (ii) die Diffusionspannung an der Grenzfläche durch Dotierung entsprechend verändert wird, und (iii) die Verarmungszone am Kontakt zum ITO sehr dünn wird. Der Kontakt aus organischem Material und leitfähigem Substrat verhält sich also ganz analog zum Fall der Dotierung anorganischer Halbleiter. Es entsteht ein stark dotierter Schottky-Kontakt dessen schmale Verarmungszone leicht durchtunnelt werden kann (quasi-ohmscher Kontakt). Die Leistungseffizienz von OLEDs mit dotierten Transportschichten konnte sukzessive erhöht werden, vom einfachen 2-Schicht Design mit dotiertem Phthalocyanine als Löchertransportschicht, über einen 3-Schicht-Aufbau mit einer Elektronen-Blockschicht bis zu OLEDs mit dotierten 'wide-gap' Löchertransport-Materialien, mit und ohne zusätzlicher Schicht zur Verbesserung der Elektroneninjektion. Sehr effiziente OLEDs mit immer noch niedriger Betriebsspannung wurden durch die Dotierung der Emissionsschicht mit Molekülen erhöhter Photolumineszenzquantenausbeute (Laser-Farbstoffe) erreicht. Eine optimierte LED-Struktur weist eine Betriebsspannung von 3.2-3.2V für eine Lichtemission von 100cd/m2 auf. Diese Resultate entsprechen den zur Zeit niedrigsten Betriebsspannungen für OLEDs mit ausschließlich im Vakuum aufgedampften Schichten. Die Stromeffizienz liegt bei ca. 10cd/A, was einer Leistungseffizienz bei 100cd/m2 von 10lm/W entspricht. Diese hohe Leistungseffizienz war nur möglich durch die Verwendung einer Blockschicht zwischen der dotierten Transportschicht und der Lichtemissions-Schicht. Im Rahmen der Arbeit konnte gezeigt werden, dass die Dotierung die Betriebsspannungen von OLEDs senken kann und damit die Leistungseffizienz erhöht wird. Zusammen mit einer sehr dünnen Blockschicht konnte einen niedrige Betriebsspannung bei gleichzeitig hoher Effizienz erreicht werden (Blockschicht-Konzept). / Organic dyes with a conjugated pi-electron system usually exhibit semiconducting behavior. Hence, they are potential materials for electronic and optoelectronic devices. Nowadays, some applications are already commercial on small scales. Controlled doping of inorganic semiconductors was the key step for today's inorganic semiconductor technology. The control of the conduction type and Fermi-level is crucial for the realization of stable pn-junctions. This allows for optimized light emitting diode (LED) structures with operating voltages close to the optical limit (around 2.5V for a green emitting LED). Despite that, organic light emitting diodes (OLEDs) generally consist of a series of intrinsic layers based on organic molecules. These intrinsic organic charge transport layers suffer from non-ideal injection and noticeable ohmic losses. However, organic materials feature some technological advantages for device applications like low cost, an almost unlimited variety of materials, and possible preparation on large and flexible substrates. They also differ in some basic physical parameters, like the index of refraction in the visible wavelength region, the absorption coefficient and the Stokes-shift of the emission wavelength. Doping of organic semiconductors has only been scarcely addressed. Our aim is the lowering of the operating voltages of OLEDs by the use of doped organic charge transport layers. The present work is focused mainly on the p-type doping of weakly donor-type molecules with strong acceptor molecules by co-evaporation of the two types of molecules in a vacuum system. In order to understand the improved hole injection from a contact material into a p-type doped organic layer, ultraviolet photoelectron spectroscopy combined with X-ray photoelectron spectroscopy (UPS/XPS) was carried out. The experimental results of the UPS/XPS measurements on F4-TCNQ doped zinc-phthalocyanine (ZnPc) and their interpretation is given. Measurements were done on the typical transparent anode material for OLEDs, indium-tin-oxide (ITO) and on gold. The conclusion from these experiments is that (i) the Fermi-energy comes closer to the transport energy (the HOMO for p-type doping), (ii) the built-in potential is changed accordingly, and (iii) the depletion layer becomes very thin because of the high space charge density in the doped layer. The junction between a doped organic layer and the conductive substrate behaves rather similar to a heavily doped Schottky junction, known from inorganic semicondcutor physics. This behavior favors charge injection from the contact into the organic semiconductor due to tunneling through a very small Schottky barrier (quasi-ohmic contact). The performance of OLEDs with doped charge transport layers improves successively from a simple two-layer design with doped phthalocyanine as hole transport layer over a three-layer design with an electron blocking layer until OLEDs with doped amorphous wide gap materials, with and without additional electron injection enhancement and electron blocking layers. Based on the experience with the first OLEDs featuring doped hole transport layers, an ideal device concept which is based on realistic material parameters is proposed (blocking layer concept). Very high efficient OLEDs with still low operating voltage have been prepared by using an additional emitter dopant molecule with very high photoluminescence quantum yield in the recombination zone of a conventional OLED. An OLED with an operating voltage of 3.2-3.2V for a brightness of 100cd/m2 could be demonstrated. These results represent the lowest ever reported operating voltage for LEDs consisting of exclusively vacuum sublimed molecular layers. The current efficiency for this device is above 10cd/A, hence, the power efficiency at 100cd/m2 is about 10lm/W. This high power efficiency could be achieved by the use of a blocking layer between the transport and the emission layer.
26

Organic light-emitting diodes with doped charge transport layers

Blochwitz, Jan 12 July 2001 (has links)
Organische Farbstoffe mit einem konjugierten pi-Elektronen System zeigen überwiegend ein halbleitendes Verhalten. Daher sind sie potentielle Materialien für elektronische und optoelektronische Anwendungen. Erste Anwendungen in Flachbildschirmen sind bereits in (noch) geringen Mengen auf dem Markt. Die kontrollierte Dotierung anorganischer Halbleiter bereitete die Basis für den Durchbruch der bekannten Halbleitertechnologie. Die Kontrolle des Leitungstypes und der Lage des Fermi-Niveaus erlaubte es, stabile pn-Übergänge herzustellen. LEDs können daher mit Betriebsspannungen nahe dem thermodynamischen Limit betrieben werden (ca. 2.5V für eine Emission im grünen Spektralbereich). Im Gegensatz dazu bestehen organische Leuchtdioden (OLEDs) typischerweise aus einer Folge intrinsischer Schichten. Diese weisen eine ineffiziente Injektion aus Kontakten und eine relative geringe Leitfähigkeit auf, welche mit hohen ohmschen Verlusten verbunden ist. Andererseits besitzen organische Materialien einige technologische Vorteile, wie geringe Herstellungskosten, große Vielfalt der chemischen Verbindungen und die Möglichkeit sie auf flexible große Substrate aufzubringen. Sie unterscheiden sich ebenso in einigen fundamentalen physikalischen Parametern wie Brechungsindex, Dielektrizitätskonstante, Absorptionskoeffizient und Stokes-Verschiebung der Emissionswellenlänge gegenüber der Absorption. Das Konzept der Dotierung wurde für organische Halbleiter bisher kaum untersucht und angewandt. Unser Ziel ist die Erniedrigung der Betriebsspannung herkömmlicher OLEDs durch den Einsatz der gezielten Dotierung der Transportschichten mit organischen Molekülen. Um die verbesserte Injektion aus der Anode in die dotierte Löchertransportschicht zu verstehen, wurden UPS/XPS Messungen durchgeführt (ultraviolette und Röntgen-Photoelektronenspektroskopie). Messungen wurden an mit F4-TCNQ dotiertem Zink-Phthalocyanin auf ITO und Gold-Kontakten durchgeführt. Die Schlussfolgerungen aus den Experimenten ist, das (i) die Fermi-Energie sich durch Dotierung dem Transportniveau (also dem HOMO im Falle der vorliegenden p-Dotierung) annähert, (ii) die Diffusionspannung an der Grenzfläche durch Dotierung entsprechend verändert wird, und (iii) die Verarmungszone am Kontakt zum ITO sehr dünn wird. Der Kontakt aus organischem Material und leitfähigem Substrat verhält sich also ganz analog zum Fall der Dotierung anorganischer Halbleiter. Es entsteht ein stark dotierter Schottky-Kontakt dessen schmale Verarmungszone leicht durchtunnelt werden kann (quasi-ohmscher Kontakt). Die Leistungseffizienz von OLEDs mit dotierten Transportschichten konnte sukzessive erhöht werden, vom einfachen 2-Schicht Design mit dotiertem Phthalocyanine als Löchertransportschicht, über einen 3-Schicht-Aufbau mit einer Elektronen-Blockschicht bis zu OLEDs mit dotierten 'wide-gap' Löchertransport-Materialien, mit und ohne zusätzlicher Schicht zur Verbesserung der Elektroneninjektion. Sehr effiziente OLEDs mit immer noch niedriger Betriebsspannung wurden durch die Dotierung der Emissionsschicht mit Molekülen erhöhter Photolumineszenzquantenausbeute (Laser-Farbstoffe) erreicht. Eine optimierte LED-Struktur weist eine Betriebsspannung von 3.2-3.2V für eine Lichtemission von 100cd/m2 auf. Diese Resultate entsprechen den zur Zeit niedrigsten Betriebsspannungen für OLEDs mit ausschließlich im Vakuum aufgedampften Schichten. Die Stromeffizienz liegt bei ca. 10cd/A, was einer Leistungseffizienz bei 100cd/m2 von 10lm/W entspricht. Diese hohe Leistungseffizienz war nur möglich durch die Verwendung einer Blockschicht zwischen der dotierten Transportschicht und der Lichtemissions-Schicht. Im Rahmen der Arbeit konnte gezeigt werden, dass die Dotierung die Betriebsspannungen von OLEDs senken kann und damit die Leistungseffizienz erhöht wird. Zusammen mit einer sehr dünnen Blockschicht konnte einen niedrige Betriebsspannung bei gleichzeitig hoher Effizienz erreicht werden (Blockschicht-Konzept). / Organic dyes with a conjugated pi-electron system usually exhibit semiconducting behavior. Hence, they are potential materials for electronic and optoelectronic devices. Nowadays, some applications are already commercial on small scales. Controlled doping of inorganic semiconductors was the key step for today's inorganic semiconductor technology. The control of the conduction type and Fermi-level is crucial for the realization of stable pn-junctions. This allows for optimized light emitting diode (LED) structures with operating voltages close to the optical limit (around 2.5V for a green emitting LED). Despite that, organic light emitting diodes (OLEDs) generally consist of a series of intrinsic layers based on organic molecules. These intrinsic organic charge transport layers suffer from non-ideal injection and noticeable ohmic losses. However, organic materials feature some technological advantages for device applications like low cost, an almost unlimited variety of materials, and possible preparation on large and flexible substrates. They also differ in some basic physical parameters, like the index of refraction in the visible wavelength region, the absorption coefficient and the Stokes-shift of the emission wavelength. Doping of organic semiconductors has only been scarcely addressed. Our aim is the lowering of the operating voltages of OLEDs by the use of doped organic charge transport layers. The present work is focused mainly on the p-type doping of weakly donor-type molecules with strong acceptor molecules by co-evaporation of the two types of molecules in a vacuum system. In order to understand the improved hole injection from a contact material into a p-type doped organic layer, ultraviolet photoelectron spectroscopy combined with X-ray photoelectron spectroscopy (UPS/XPS) was carried out. The experimental results of the UPS/XPS measurements on F4-TCNQ doped zinc-phthalocyanine (ZnPc) and their interpretation is given. Measurements were done on the typical transparent anode material for OLEDs, indium-tin-oxide (ITO) and on gold. The conclusion from these experiments is that (i) the Fermi-energy comes closer to the transport energy (the HOMO for p-type doping), (ii) the built-in potential is changed accordingly, and (iii) the depletion layer becomes very thin because of the high space charge density in the doped layer. The junction between a doped organic layer and the conductive substrate behaves rather similar to a heavily doped Schottky junction, known from inorganic semicondcutor physics. This behavior favors charge injection from the contact into the organic semiconductor due to tunneling through a very small Schottky barrier (quasi-ohmic contact). The performance of OLEDs with doped charge transport layers improves successively from a simple two-layer design with doped phthalocyanine as hole transport layer over a three-layer design with an electron blocking layer until OLEDs with doped amorphous wide gap materials, with and without additional electron injection enhancement and electron blocking layers. Based on the experience with the first OLEDs featuring doped hole transport layers, an ideal device concept which is based on realistic material parameters is proposed (blocking layer concept). Very high efficient OLEDs with still low operating voltage have been prepared by using an additional emitter dopant molecule with very high photoluminescence quantum yield in the recombination zone of a conventional OLED. An OLED with an operating voltage of 3.2-3.2V for a brightness of 100cd/m2 could be demonstrated. These results represent the lowest ever reported operating voltage for LEDs consisting of exclusively vacuum sublimed molecular layers. The current efficiency for this device is above 10cd/A, hence, the power efficiency at 100cd/m2 is about 10lm/W. This high power efficiency could be achieved by the use of a blocking layer between the transport and the emission layer.

Page generated in 0.0279 seconds