• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 23
  • 22
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 224
  • 58
  • 52
  • 46
  • 41
  • 36
  • 35
  • 26
  • 21
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Systematic characterization of Rab GTPase cell type expression and subcellular localization in Drosophila melanogaster

Dunst, Sebastian 14 April 2015 (has links)
The Rab family of small GTPases orchestrates intracellular endomembrane transport through the recruitment of diverse effector proteins. Since its first discovery in 1987, almost 70 Rab proteins have been identified in humans to date and their perturbed function is implicated in several hereditary and acquired diseases. In this Ph.D. thesis, I systematically characterize cell type expression and subcellular localization of all Rab proteins present in Drosophila melanogaster utilizing a genetic resource that represents a major advance for studying membrane trafficking in vivo: the ’Drosophila YRab library’. This collection comprises 27 different D. melanogaster knock-in lines that harbor YFPMyc fusions to each Rab protein, referred to as YRab. For each YRab, I present a comprehensive data set of quantitative and qualitative expression profiles across six larval and adult tissues that include 23 annotated cell types. The whole image data set, along with its annotations, is publicly accessible through the FLYtRAB database that links to CATMAID for online browsing of tissues. I exploit this data set to address basic cell biological questions. i) How do differentiating cells reorganize their transport machinery to perform cell type-specific functions? My data indicates that qualitative and quantitative changes in YRab protein expression facilitate the functional specialization of differentiated cells. I show that about half of the YRab complement is ubiquitously expressed across D. melanogaster tissues, while others are missing from some cell types or reflect strongly restricted cell type expression, e.g. in the nervous system. I also depict that relative YRab expression levels change as cells differentiate. ii) Are specific Rab proteins dedicated to apical or basolateral protein transport in all epithelia? My data suggests that the endomembrane architecture reflects specific tasks performed by particular epithelial tissues, rather than a generalized apicobasal organization. I demonstrate that there is no single YRab that is similarly polarized in all epithelia. Rather, different epithelial tissues dynamically polarize the subcellular localization of many YRab compartments, producing membrane trafficking architectures that are tissue- and stage-specific. I further discuss YRab cell type expression and subcellular localization in the context of Rab family evolution. I report that the conservation of YRab protein expression across D. melanogaster cell types reflects their evolutionary conservation in eukaryotes. In addition, my data supports the assumption that the flexible deployment of an expanded Rab family triggered cell differentiation in metazoans. The FLYtRAB database and the ’Drosophila Rab Library’ are complementary resources that facilitate functional predictions based on YRab cell type expression and subcellular localization, and to subsequently test them by genetic loss-of-function experiments. I demonstrate the power of this approach by revealing new and redundant functions for Rab23 and Rab35 in wing vein patterning. My data collectively highlight that in vivo studies of endomembrane transport pathways in different D. melanogaster cell types is a valuable approach to elucidate functions of Rab family proteins and their potential implications for human disease.
82

RAS small GTPase signalling to the enigmatic RASSF death effectors

Seetharaman Thillai Villalan, Dhanaraman 04 1900 (has links)
Les petites GTPases RAS alternent entre une forme inactive liée au GDP et une forme active liée au GTP. Ce mécanisme permet aux protéines RAS de transmettre les signaux des récepteurs se trouvant à la surface cellulaire vers divers réseaux de signalisation en aval. La protéine RAS joue un rôle important dans plusieurs fonctions biologiques, notamment la prolifération cellulaire, la survie cellulaire et même l'apoptose. Les mutations des gènes de la famille RAS sont retrouvées dans environ un tiers des tumeurs. HRAS, KRAS et NRAS, les trois principaux homologues de la protéine RAS, sont principalement mutées au niveau des codons 12, 13 ou 61. Les mutations avec un effet de gain de fonction au niveau de ces codons rendent ces protéines RAS constitutivement actives et sont à l’origine des signaux hyperprolifératifs. Depuis la découverte de la protéine RAS, de nombreuses "protéines effectrices RAS" agissant en aval ont été identifiées. Le rôle biologique de la plupart de ces effecteurs RAS est lié à la prolifération et à la survie des cellules. Cependant, au cours des deux dernières décennies une nouvelle famille d'effecteurs RAS, les protéines RASSF, a été découverte comme ayant une fonction pro-apoptotique. Les protéines suppresseures de tumeurs de la famille RASSF sont fréquemment inhibées dans les cellules cancéreuses humaines. Il existe 10 homologues de RASSF (RASSF1-10) chez humain, chacun comprenant un domaine d'association RAS (RA) impliqué dans la liaison avec les GTPases RAS. Plusieurs RASSF comportent également les domaines SARAH (Salvador-RASSF-Hippo), connus pour interagir avec les kinases Hippo contenant aussi les domaines SARAH. On ne sait toutefois pas si toutes les protéines RASSF sont de véritables effecteurs RAS. Il a été démontré qu'un seul membre de la famille RASSF, appelé RASSF5, s'associe directement à HRAS et cette interaction a été validée par des études cristallographiques à rayons X. Dans la première partie de cette thèse, je démontre qu'aucun autre membre de la famille RASSF n'interagit directement avec KRAS. En me servant de la modélisation par l'homologie du domaine RA hautement apparenté de RASSF1, j’ai identifié les acides aminés essentiels pour l’interaction avec la GTPase. Je démontre que la substitution d’un seul acide aminé dans la protéine RASSF1 permet l'interaction avec KRAS, et je pose l'hypothèse que ce résidu, ayant divergé au cours de l'évolution, a modifié la spécificité de RASSF1 pour les petites GTPases. En utilisant une approche informatique, nous avons prédit six GTPases candidates que pourraient interagir avec RASSF1 : GEM, REM1, REM2, RASL12, ERAS et DIRAS3. J'ai validé les interactions avec plusieurs GTPases RGK (GEM, REM1, REM2) et j’ai démontré que la co-expression des GTPases RGK avec RASSF1 active la voie Hippo. Ainsi, je propose un nouveau lien entre ces GTPases peu étudiées et la régulation de la voie de signalisation Hippo. Dans la deuxième partie de ma thèse, je tente de rediriger la signalisation de prolifération cellulaire de KRAS (RAF/MAPK) vers une signalisation impliquant les effecteurs pro-apoptotiques (RASSF-Hippo). Pour y parvenir, j'ai conçu des mutations dans KRAS dans le but d’augmenter son affinité pour RASSF5 et d’affaiblir son interaction avec BRAF. Comme deuxième stratégie, j'ai remplacé les résidus divergents de l'effecteur RASSF1 par les résidus correspondants de RASSF5 et j’ai démontré que cette variante de RASSF1 est capable de lier KRAS. Diverses approches biophysiques et biochimiques ont été utilisées pour valider KRAS et RASSF1 mutés, impliquées dans cette signalisation redirigée. Les études de co-localisation montrent que ces mutants interagissent avec leurs nouveaux partenaires comme prévu. D’autre part, je démontre par les expériences intracellulaires que KRAS modifiée ne lie plus BRAF tout en interagissant fortement avec RASSF5 et RASSF1, et que les mutants établis activent la voie Hippo. Ainsi, j'ai développé deux approches qui nous aideront à étudier la signalisation de KRAS dans la voie pro-apoptotique impliquant RASSF en absence de l’activation de la voie des MAP kinases. Les données présentées ici nous permettent de mieux comprendre la manière dont les protéines RASSF ont divergé au cours de l'évolution; cette divergence leur empêchant d’interagir avec les RAS. Ces données fournissent également une stratégie innovante pour rediriger les signaux RAS vers les effecteurs RASSF, qui pourrait être utilisée comme nouvelle stratégie dans les études cliniques utilisant RAS comme cible thérapeutique. / RAS small GTPases function as molecular switches to transduce signals from cell surface receptors to various downstream signalling networks. The RAS protein has roles in multiple biological functions, including cell proliferation, survival, and even apoptosis. Mutations in RAS genes are present in up to 30% of all human tumors. The three major RAS homologs HRAS, KRAS, and NRAS are each found mutated, predominantly at codons 12, 13 or 61. Gain-of-function mutations at these codons render these RAS proteins constitutively active and thereby produce hyperproliferative signals. Since the discovery of RAS, numerous downstream ‘RAS effector proteins’ have been identified. The biological role of most identified RAS effectors relates to cell proliferation and survival, however, in the past two decades a new family of RAS effectors, RASSF proteins, were discovered to have a pro-apoptotic function. The RASSF family of tumor suppressors proteins are frequently downregulated in human cancer cells. There are 10 RASSF homologs (RASSF1-10) in humans, each comprising a RAS association (RA) domain presumed to bind RAS GTPases. RASSF also encode SARAH (Salvador-RASSF-Hippo) domain, known to interact with SARAH-containing Hippo kinases. It is not clear whether all the RASSF proteins are true RAS effectors. Only a single family member, RASSF5, has been shown to directly associate with HRAS and this interaction has been completely validated by X-Ray crystallographic studies. In the first part of this thesis, I demonstrate that no other RASSF family members directly interact with KRAS. I used homology modelling of the highly related RASSF1 RA domain to identify amino acids crucial to GTPase binding. I show that a single amino acid substitution in RASSF1 enables interaction with KRAS, and hypothesize that this evolutionarily diverged residue has altered RASSF1 specificity for small GTPases. Using an informatics approach, we predicted six candidate GTPases that could interact with RASSF1: GEM, REM1, REM2, RASL12, ERAS and DIRAS3. I validated interactions with several RGK GTPases (GEM, REM1, REM2) and show that co-expression of RGK GTPases with RASSF1 activates the Hippo pathway. Thus, I show a novel link between these unstudied GTPases to Hippo pathway regulation. In the second part of my thesis I attempt to rewire KRAS signalling from cell proliferation pathways (RAF/MAPK) to pro-apoptotic effectors (RASSF-Hippo). To achieve this, I designed mutations in KRAS that augmented its affinity for RASSF5 and weakened interaction with BRAF. As a second strategy, I reverted evolutionarily diverged residues in the RASSF1 effector to corresponding residues in RASSF5 and demonstrate that this variant now binds KRAS. Various biophysical and biochemical approaches were used to validate both the KRAS and RASSF1 rewired mutants, and co-localization studies show that these mutants interact with their new binding partners as predicted. Further, I demonstrate that our rewired KRAS no longer binds BRAF in cells but interacts strongly with RASSF5 and rewired RASSF1, and that the rewiring mutants activate the Hippo pathway. Thus, I have developed two rewiring approaches that will help us to study KRAS signalling towards pro-apoptotic RASSF pathway in the absence of strong MAP kinase activation. The data presented here provide several novel insights into how RASSF proteins diverged through evolution and are not all direct effectors of RAS. In addition, I present an innovative rewiring strategy to couple RAS signals towards RASSF effectors which can be a clinical tactic to target RAS oncogenesis.
83

Rôle de la SNARE Memb11 comme « récepteur » de la GTPase Arf1 à l’appareil de Golgi chez Arabidopsis thaliana / Role of the SNARE Memb11 as "receptor" of the GTPase Arf1 at the Golgi apparatus of Arabidopsis thaliana

Marais, Claire-Line 16 December 2013 (has links)
Les protéines SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) sont essentielles pour la fusion membranaire. J'ai étudié chez Arabidopsis thaliana la SNARE Memb11 de l’appareil de Golgi qui intervient au début de la voie sécrétoire à l'interface Réticulum endoplasmique (RE)-appareil de Golgi. Dans les cellules de mammifères, l'orthologue de Memb11 (Membrine) est un « récepteur » potentiel de la GTPase Arf1 à la membrane golgienne. Cette dernière est impliquée dans le recrutement de la machinerie COPI nécessaire au transport rétrograde de l'appareil de Golgi vers le RE. Le but de ce travail était de déterminer si Memb11 pouvait interagir avec Arf1 dans les cellules végétales. Des anticorps dirigés contre la partie cytosolique de Memb11 ont été obtenus et ont été utilisés sur tissus végétaux pour réaliser des immunomarquages en microscopie électronique à transmission et des immunoprécipitations sur extraits de plantes. Il a été démontré que Memb11 est située au niveau de la membrane cis-golgienne et qu'elle co-immunoprécipite avec Arf1, suggérant ainsi que Arf1 peut interagir avec Memb11. J'ai confirmé l'interaction de Memb11 et Arf1 au niveau de l'appareil de Golgi par des expériences de BiFC (Bimolecular Fluorescence Complementation) in vivo. Cette interaction est spécifique puisque ni Memb12 (90% d'identité avec Memb11) ni Sec22 interagissent avec Arf1. Grâce à une approche de bioinformatique structurale, j'ai déterminé les régions de Memb11 (différentes de Memb12) qui pourraient être critiques pour l'interaction et j’ai commencé à tester in vivo les mutants correspondants par BiFC. En outre, des expériences d’immunoprécipitations avec des protéines recombinantes produites in vitro suggèrent que la forme d’Arf1 liée au GTP interagit avec Memb11. / The SNARE proteins (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) are critical for membrane fusion in the secretory pathway. I have studied the Golgi SNARE Memb11 in Arabidopsis thaliana cells. Memb11 is involved at the ER-Golgi interface. In mammalian cells, the ortholog of Memb11 (Membrin) is the potential “receptor” of the GTPase Arf1 in the Golgi membrane. This protein is involved for the recruitment of the COPI machinery, required for retrograde transport from the Golgi to the ER. The aim of this work was to determine whether Memb11 can interact with Arf1 in plant cells. Antibodies against the cytosolic part of Memb11 were obtained and were applied on plant tissues to perform immunolabeling by transmission electron microscopy and immunoprecipitation (IP) studies. It has been shown that Memb11 is located at the cis-Golgi and that it co-immunoprecipated with Arf1, suggesting that Arf1 may interact with Memb11. I confirmed the interaction of Memb11 and Arf1 at the Golgi by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was specific since neither Memb12 (90% identity with Memb11) nor Sec22 interacted with ARF1. Thanks to a structural bioinformatic approach, I determined the regions in Memb11 (different from Memb12) that could be critical for the interaction and started to test corresponding mutants in vivo by BiFC. In addition, IP experiments with recombinant proteins produced in vitro suggest that the GTP-bound form of ARF1 interacts with Memb11.
84

Etude du maintien de l'adhérence dans les tissus prolifératifs / Study of Adhesion Maintenance During Cell Division in Epithelial Tissues.

Guillot, Charlene 26 August 2014 (has links)
Les tissus épithéliaux présentent deux caractéristiques majeures, ils sont robustes (rôle de barrière) mais également plastiques lors de la morphogénèse. L'homéostasie des tissus épithéliaux repose sur la régulation de la balance prolifération/mort cellulaire. Dans ma thèse, je décris tout d'abord, les mécanismes moléculaires permettant à la cellule épithéliale de se diviser tout en maintenant l'intégrité du tissu. J'ai ensuite altéré cette intégrité, en utilisant le système de génération de clônes mosaïques, afin de comprendre comment la cohésion du tissu est maintenue. Ce travail m'a alors permis de comprendre comment l'adhérence est modulée, puis restaurée, au cours de la division cellulaire. Ainsi, j'ai montré que l'intégrité des tissus est assurée par l'action concomitante des forces d'adhésion et des forces de tension. Enfin, mon travail apporte également des éléments clés pour l'étude de la perte d'adhérence des cellules tumorales responsable en partie, de la progression des tumeurs solides en métastases. / Tissue homeostasis relies on the tight regulation of cell proliferation and cell death. Epithelial tissues are robust tissues that support the structure of developing embryos and adult organs and are effective barriers that physically protect the organism against pathogens. In my thesis, I have first described the molecular mechanisms responsible for maintaining tissue integrity during epithelial cell division. I have then abrogated this integrity by inducing mosaic clones within tissues to understand how tissue cohesion is maintained. This work shows how the continuity of adhesive properties is ensured during cell division. It also reveals new key elements that result in loss of adhesion in tissues and thus may be responsible for the progession from solid cancer to metastasis.
85

Estudos estruturais e bioquímicos das septinas humanas bradeiona alfa e beta: moléculas relacionadas com o desenvolvimento de câncer do cólon, reto e melanoma maligno / Human SETPT4: heterologoes expression, Purification and biophysical characterization

Silva, Wânius José Garcia da 08 June 2005 (has links)
Septinas constituem uma família de proteínas de ligação a GTP que foram inicialmente identificadas em levedura Saccharomyces cerevisiae, mas também estão presentes em outros eucariotos com exceção de plantas. Septinas são purificadas de leveduras, Drosophila e cérebros de mamíferos na forma de filamentos, porém o mecanismo através do qual acorre a formação destes filamentos ainda não é muito bem compreendido. Septinas são constituídas de três regiões principais: um N-terminal variável, um domínio central GTPase altamente conservado e um domínio coiled-coil C-terminal. O gene SEPT4 foi identificado por M. Tanaka e colaboradores a partir do cDNA de cérebro humano e apresentou duas distintas transcrições: Bradeiona ? e ?. Interessantemente, além de cérebro e coração, as proteínas Bradeiona Α e Β. são detectadas somente em câncer do cólon, reto, próstata e melanoma maligno. Neste trabalho, o gene da proteína Bradeiona Β foi subclonado em um vetor de expressão bacteriano, produzido em E. coli e purificado com sucesso. O espectro de dicroísmo circular (CD) mostrou o perfil característico de proteínas com hélices a na estrutura secundária. Resultados de cromatografia de exclusão molecular (SEC) e espalhamento dinâmico de luz (DLS) indicam que a septina Bradeina foi produzida na forma de um estável oligômero com características monodispersivas, que foi subseqüentemente cristalizado em PEG6000. A atividade GTPase da Bradeiona Β foi comprovada através da técnica de eletroforese capilar (CE), mostrando-se absolutamente dependente de íons Mg2+. Inibição da atividade GTPase foi verificada em altas concentrações de Mg2+ (maiores que 5 mM). Com a finalidade de caracterizar os domínios preditos da Bradeiona Β (Fragmento Conservado e domínio GTPase), essas regiões foram previamente definidas, expressas em E. cozi e purificadas com sucesso. Resultados de CD, SEC, espectroscopia de fluorescência e NMR-600MHz indicam que o FC foi produzido na forma de um estável monômero com pouca estrutura secundária regular. Resultados de DLS e CD indicam que a fusão 6xHis-DGTPase foi produzida na forma de um oligômero com a presença de hélices a na estrutura secundária. A fusão 6xHis-DGTPase mostrou-se instável a altas concentrações na ausência de imidazol. A atividade GTPase da fusão GST+DGTPase foi comprovada, similarmente a Bradeiona , através da técnica de CE. Novamente, verificou-se dependência de íons Mg2+ (para a atividade catalítica) e inibição em altas concentrações de Mg2+. A fusão GST+DGTPase também foi capaz de hidrolisar ATP. Espera-se que as informações relatadas neste estudo proporcionem um alicerce para estudos estruturais/funcionais futuros das proteínas Bradeiona Α e Βoutras septinas. / Septins form a class of eukaryoyic guanine nucleotide-binding proteins that were first identified in budding yeast. Septins purified from yeast, Drosophila and mammalian brain form filaments, however the mechanism by which the filaments assemble is unclear. Septins have a highly conserved structure, which includes a central GTP-binding domain, a variable N-terminal region, and most septins also contain a coiled coil domain at the Cterminus. Bradeion p is one of the splice variants of the human septin gene, SEPT4, recently isolated by expression screening of an adult human brain cDNA library. The Bradeion gene resides at 17q23, and has been shown to present specific expression in both human colorectal cancer, urologic cancers and malignant melanoma. In order to characterize the GTPase activity of Bradeion Β , the protein was successfully expressed in E. coli and purified. The recombinant protein was characterized by circular dichroism (CD), dynamic light scattering (DLS) and a novel non-radioactive enzyme assay, which utilizes capillary electrophoresis (EC) to monitor GTP hydrolysis. The CD spectrum exhibited the typical shape characteristic of the presence of helical elements of secondary structure and the DLS pattern was indicative of a monodisperse solution, which was readily crystallized in the presence of PEG6000. GTP hydrolysis was shown to be Mg2+ dependent within the low millimolar range but at 5 mM was inhibitory. In order to characterize the predicted domains of Bradeion Β, these defined regions were successfully expressed in E. cozi and purified. The CD spectrum of CF exhibited the shape typically found for non-regular structure. The results of fluorescence spectroscopy, gel filtration (SEC) and NMR-600MHz also corroborate with the CD results indicating an irregular structure. The fusion protein 6xHis-DGTPase exhibited a CD spectrum with the typical shape characteristic of the presence of helical elements but was show to be instable at high concentrations in the absence of imidazole. To characterize the GTPase activity of the fusion protein GST+DGTPase, the CE technique was used to monitor GTP hydrolysis. Analysis by CE showed that GST+DGTPase was functional, since both GTP and ATP hydrolysis was observed in a Mg2+ dependent manner. This work provides novel approaches, which should aid in the fbture study of the structure and fùnction of Bradeion Α e Β, others septins and related GTPases.
86

Rab-domain dynamics in endocytic membrane trafficking / Zur Dynamik von Rab-Domänen während endozytotischer Transportprozesse

Rink, Jochen C. 26 April 2005 (has links) (PDF)
Eukaryotic cells depend on cargo uptake into the endocytic membrane system, which comprises a functionally interconnected network of endosomal compartments. The establishment and maintenance of such diverse compartments in face of the high rates of exchange between them, poses a major challenge for obtaining a molecular understanding of the endocytic system. Rab-GTPases have emerged as architectural key element thereof: Individual family members localize selectively to endosomal compartments, where they recruit a multitude of cytoplasmic effector proteins and coordinate them into membrane sub-domains. Such "Rab-domains" constitute modules of molecular membrane identity, which pattern the endocytic membrane system into a mosaic of Rab-domains. The main objective of this thesis research was to link such "static" mosaic-view with the highly dynamic nature of the endosomal system. The following questions were addressed: How are neighbouring Rab-domains coordinated? Are Rab-domains stable or can they undergo assembly and disassembly? Are the dynamics of Rab-domains utilized in cargo transport? The first part of this thesis research focused on the organization of Rab-domains in the recycling pathway. Utilizing Total Internal Reflection (TIRF) microscopy, Rab11-, but neither Rab4- nor Rab5-positive vesicles were observed to fuse with the plasma membrane. Rab4-positive membranes, however, could be induced to fuse in presence of Brefeldin A. Thus, these experiments complete the view of the recycling pathway by the following steps: a) Rab11-carriers likely mediate the return of recycling cargo to the surface; b) such carriers are presumably generated in an Arf-dependent fission reaction from Rab4-positive compartments. Rab11-chromatography was subsequently carried out in the hope of identifying Rab11-effectors functioning at the Rab4-Rab11 domain interface. An as yet uncharacterized ubiquitin ligase was identified, which selectively interacts with both Rab4 and Rab11. Contrary to expectations, however, the protein (termed RUL for *R*ab interacting *U*biquitin *L*igase) does not function in recycling,but appears to mediate trafficking between Golgi/TGN and endosomes instead.In order to address the dynamics of Rab-domains, fluorescently tagged Rab-GTPases were imaged during cargo transport reactions in living cells. Herefore high-speed/long-term imaging procedures and novel computational image analysis tools were developed. The application of such methodology to the analysis of Rab5-positive early endosomes showed that a) The amount of Rab5 associated with individual endosomes fluctuates strongly over time; b) such fluctuations can lead to the "catastrophic" loss of the Rab5-machinery from membranes; c) Rab5 catastrophe is part of a functional cycle of early endosomes, involving net centripetal motility, continuous growth and increase in Rab5 density. Next, the relevance of Rab5 catastrophe with respect to cargo transfer into either the recycling- or degradative pathway was examined. Recycling cargo (transferrin) could be observed to exit Rab5-positive early endosomes via the frequent budding of tubular exit carriers. Exit of degradative cargo (LDL) from Rab5-positive endosomes did not involve budding, but the rapid loss of Rab5 from the limiting membrane.Rab5-loss was further coordinated with the concomitant acquisition of Rab7, suggesting "Rab conversion" as mechanism of transport between early- and late endosomes.Altogether, this thesis research has shown that first, Rab-machineries can be acquired and lost from membranes. Second, such dynamics provide a molecular mechanism for cargo exchange between endosomal compartments. Jointly, these findings lead to the concept of Rab-domain dynamics modulation in /trans/ between neighbouring domains as mechanistic principle behind the dynamic organization of membrane trafficking pathways.
87

Regulation of PDGF receptor trafficking and signalling by the RabGAP function of p85α

2014 July 1900 (has links)
Activated receptor tyrosine kinases recruit many signalling proteins to initiate downstream cell proliferation and survival pathways, including phosphatidylinositol 3-kinase (PI3K), a heterodimer consisting of a p85 regulatory protein and a p110 catalytic protein. Our laboratory has previously shown the p85α protein also has in vitro GTPase activating protein (GAP) activity towards Rab5 and Rab4, small GTPases that regulate vesicle trafficking events for activated receptors. Expression of a p85α protein containing an arginine to alanine substitution at position 274 (p85R274A) that affects its GAP activity, caused sustained levels of activated platelet-derived growth factor receptors (PDGFRs), enhanced downstream signalling, and resulted in cellular transformation. Together with other data, this suggested that in p85R274A-expressing cells, PDGFRs are more rapidly trafficked through the endocytic pathway, which reduces opportunities for sorting events necessary for receptor degradation. Our laboratory has observed previously that p85 was capable of binding to both Rab5-GDP, as well as Rab5-GTP, which is an atypical characteristic of GAP proteins, whereas p110β had previously been reported to bind Rab5-GTP selectively. Based on these observations, this thesis project was designed to test the hypothesis that both proteins contributed GAP activity towards Rab5, with p85 providing a catalytic arginine residue (R274) and p110β providing switch stabilization functions specific to the GTP-bound state. To accomplish the thesis objective, cells expressing individual p85 defects (lacking GAP activity, R274A; or lacking p110-binding ability through deletion of residues 478-513, Δ110) were compared to cells expressing a double mutant missing both functions. Stable clonal NIH 3T3 cell lines were generated and selected in G418 and clones expressing similar levels of FLAG-tagged p85 wild type or mutants compared to the control cell lines (NIH 3T3, FLAG-vector control, p85 wild type, and p85R274A) were chosen for analysis. A time-course of PDGF stimulation showed that cells expressing p85R274A or p85Δ110+R274A have sustained phosphorylation levels of the PDGFR, reduced rates of PDGFR degradation and sustained MAPK/Erk signalling. Contrary to the cellular transformation previously reported for p85R274A-expressing cells, expression of p85Δ110+R274A did not lead to cellular transformation. These divergent results suggest that p85-associated p110 serves two functions. As the catalytic subunit of PI3K, one function is the localized generation of PI3,4,5P3 lipids at the plasma membrane for Akt activation, and possibly during receptor endocytosis where it could impact MAPK/Erk activation/deactivation kinetics and cell transformation. These results support a second function for p110 in the regulation of PDGFR activation/deactivation kinetics and PDGFR half-life, both strongly influenced by alterations in PDGFR trafficking. This suggests that p110β may regulate PDGFR trafficking by providing Rab5-GTP switch stabilization that complements the catalytic arginine residue (R274) within p85, and that p85α and p110β work together as a Rab5 GAP. The role of PDGFR in the localization of the RabGAP function of p85 to specific subcellular compartments was also examined. It was hypothesized that PDGFR may help localize the RabGAP function of p85 to vesicles containing Rab5 or Rab4 through the binding of p85 to phosphorylated tyrosine residues on activated PDGFR. Stable cell lines expressing individual p85 defects (lacking GAP activity, R274A; or lacking PDGFR-binding ability through site-directed mutation of residues 358 and 649 from arginine to alanine, ΔR; or a double mutant missing both functions) demonstrated that p85R274A or p85ΔR+R274A expression leads to sustained PDGFR activation and signalling, and to delayed PDGFR degradation in response to PDGF stimulation. The sustained signalling observed resulted in cellular transformation in cells expressing p85R274A or p85ΔR+R274A. The data suggests that PDGFR does not play a role in the localization of the RabGAP activity of p85. The findings of this study elucidates important non-canonical functions of the PI3K heterodimer and contributes to our understanding of how specific mutations in both p85 and p110β within regions implicated in the regulation of RabGAP activity can alter signalling events and lead to enhancement of tumour-associated phenotypes.
88

Rôle de l'intersectin-1 au cours du trafic membranaire : identification de nouveaux partenaires moléculaires / Role of Intersectin-1 in membrane trafficking : identification of new molecular partners

Gubar, Olga 22 March 2013 (has links)
L’homéostasie cellulaire est intimement liée au trafic membranaire, processus dynamique qui permet les échanges de lipides et de protéines entre les compartiments cellulaires mais aussi entre la cellule et le milieu extracellulaire. L’intersectin-1 (ITSN1) est une protéine d’échafaudage multifonctionnelle, impliquée dans les processus d’endocytose, d’exocytose, diverses voies de signalisation ainsi que dans la survie cellulaire. L’ensemble de mes travaux de doctorat a permis d’identifier deux nouveaux partenaires de l’ITSN1, RhoU et l’OPHN1, et de montrer leur implication dans le trafic membranaire. De plus je démontre que les variants d’épissage de l’ITSN1 pourraient avoir une spécificité d’interactiondifférente vis-à-vis de ses partenaires. Nous montrons aussi que l’ITSN1 est capable de former des complexes entre ses différentes isoformes. Ainsi, l'ensemble de ces données apportent de nouvelles connaissances sur l’interactôme d’ITSN1. / The cellular homeostasis is tightly linked to the membrane trafficking, a dynamic process which allows lipid and protein exchange between the cellular compartments as well as the cell and the environment. Intersectin1 (ITSN1) is a multifunctional scaffold protein implicated in the processes of endocytosis and exocytosis, different signaling pathways and cell survival. In present study I have identified two new partners of ITSN1, RhoU and OPHN1, and demonstrated their implication in membrane trafficking. Surprisingly, I have also found that the alternative splicing of ITSN1-L can lead to the change of the specificity of its interaction with binding partners. In addition, I have shown that different ITSN1 isoforms are capable to form complexes with each other. All together these data add new knowledge to ITSN1 interactome.
89

Estudos estruturais e bioquímicos das septinas humanas bradeiona alfa e beta: moléculas relacionadas com o desenvolvimento de câncer do cólon, reto e melanoma maligno / Human SETPT4: heterologoes expression, Purification and biophysical characterization

Wânius José Garcia da Silva 08 June 2005 (has links)
Septinas constituem uma família de proteínas de ligação a GTP que foram inicialmente identificadas em levedura Saccharomyces cerevisiae, mas também estão presentes em outros eucariotos com exceção de plantas. Septinas são purificadas de leveduras, Drosophila e cérebros de mamíferos na forma de filamentos, porém o mecanismo através do qual acorre a formação destes filamentos ainda não é muito bem compreendido. Septinas são constituídas de três regiões principais: um N-terminal variável, um domínio central GTPase altamente conservado e um domínio coiled-coil C-terminal. O gene SEPT4 foi identificado por M. Tanaka e colaboradores a partir do cDNA de cérebro humano e apresentou duas distintas transcrições: Bradeiona ? e ?. Interessantemente, além de cérebro e coração, as proteínas Bradeiona Α e Β. são detectadas somente em câncer do cólon, reto, próstata e melanoma maligno. Neste trabalho, o gene da proteína Bradeiona Β foi subclonado em um vetor de expressão bacteriano, produzido em E. coli e purificado com sucesso. O espectro de dicroísmo circular (CD) mostrou o perfil característico de proteínas com hélices a na estrutura secundária. Resultados de cromatografia de exclusão molecular (SEC) e espalhamento dinâmico de luz (DLS) indicam que a septina Bradeina foi produzida na forma de um estável oligômero com características monodispersivas, que foi subseqüentemente cristalizado em PEG6000. A atividade GTPase da Bradeiona Β foi comprovada através da técnica de eletroforese capilar (CE), mostrando-se absolutamente dependente de íons Mg2+. Inibição da atividade GTPase foi verificada em altas concentrações de Mg2+ (maiores que 5 mM). Com a finalidade de caracterizar os domínios preditos da Bradeiona Β (Fragmento Conservado e domínio GTPase), essas regiões foram previamente definidas, expressas em E. cozi e purificadas com sucesso. Resultados de CD, SEC, espectroscopia de fluorescência e NMR-600MHz indicam que o FC foi produzido na forma de um estável monômero com pouca estrutura secundária regular. Resultados de DLS e CD indicam que a fusão 6xHis-DGTPase foi produzida na forma de um oligômero com a presença de hélices a na estrutura secundária. A fusão 6xHis-DGTPase mostrou-se instável a altas concentrações na ausência de imidazol. A atividade GTPase da fusão GST+DGTPase foi comprovada, similarmente a Bradeiona , através da técnica de CE. Novamente, verificou-se dependência de íons Mg2+ (para a atividade catalítica) e inibição em altas concentrações de Mg2+. A fusão GST+DGTPase também foi capaz de hidrolisar ATP. Espera-se que as informações relatadas neste estudo proporcionem um alicerce para estudos estruturais/funcionais futuros das proteínas Bradeiona Α e Βoutras septinas. / Septins form a class of eukaryoyic guanine nucleotide-binding proteins that were first identified in budding yeast. Septins purified from yeast, Drosophila and mammalian brain form filaments, however the mechanism by which the filaments assemble is unclear. Septins have a highly conserved structure, which includes a central GTP-binding domain, a variable N-terminal region, and most septins also contain a coiled coil domain at the Cterminus. Bradeion p is one of the splice variants of the human septin gene, SEPT4, recently isolated by expression screening of an adult human brain cDNA library. The Bradeion gene resides at 17q23, and has been shown to present specific expression in both human colorectal cancer, urologic cancers and malignant melanoma. In order to characterize the GTPase activity of Bradeion Β , the protein was successfully expressed in E. coli and purified. The recombinant protein was characterized by circular dichroism (CD), dynamic light scattering (DLS) and a novel non-radioactive enzyme assay, which utilizes capillary electrophoresis (EC) to monitor GTP hydrolysis. The CD spectrum exhibited the typical shape characteristic of the presence of helical elements of secondary structure and the DLS pattern was indicative of a monodisperse solution, which was readily crystallized in the presence of PEG6000. GTP hydrolysis was shown to be Mg2+ dependent within the low millimolar range but at 5 mM was inhibitory. In order to characterize the predicted domains of Bradeion Β, these defined regions were successfully expressed in E. cozi and purified. The CD spectrum of CF exhibited the shape typically found for non-regular structure. The results of fluorescence spectroscopy, gel filtration (SEC) and NMR-600MHz also corroborate with the CD results indicating an irregular structure. The fusion protein 6xHis-DGTPase exhibited a CD spectrum with the typical shape characteristic of the presence of helical elements but was show to be instable at high concentrations in the absence of imidazole. To characterize the GTPase activity of the fusion protein GST+DGTPase, the CE technique was used to monitor GTP hydrolysis. Analysis by CE showed that GST+DGTPase was functional, since both GTP and ATP hydrolysis was observed in a Mg2+ dependent manner. This work provides novel approaches, which should aid in the fbture study of the structure and fùnction of Bradeion Α e Β, others septins and related GTPases.
90

Study of the mechanism of Tunneling nanotubes formation and their role in aggregate proteins transfer between cells / Etude du mécanisme de formation des Tunneling nanotubes et leur rôle dans le transfert de protéines agrégées entre les cellules

Zhu, Seng 29 September 2017 (has links)
Les Tunneling nanotubes (TNT) sont des protrusions cellulaires à base d'actine qui médient la communication cellulaire en transférant des cargos cellulaires. Les différents types de communication intercellulaires sont de plus en plus considérés comme des cibles potentielles pour le traitement de différentes maladies, telles que les maladies infectieuses liées aux virus et bactéries, les cancers ou les maladies neurodégénératives. Des études récentes ont mis en évidence un mécanisme de propagation d'agrégats protéiques ressemblant à la propagation du prion dans diverses maladies neurodégénératives non infectieuses telles que la maladie d'Alzheimer (AD), la démence frontotemporelle (FTD), la maladie de Parkinson (PD) et la maladie de Huntington. Ces maladies se caractérisent par l'accumulation de protéines mal repliées dans le cerveau des patients. Ainsi, on peut envisager de nouvelles stratégies thérapeutiques pour bloquer la propagation des protéines anormales dans tout le cerveau. Il a été démontré que les TNT pourraient jouer un rôle essentiel dans la propagation des agrégats de prions au sein du système nerveux central (SNC) et périphérique. Par conséquent, l'étude du mécanisme de la formation de TNT pourrait fournir de nouvelles idées sur le mécanisme de propagation de la maladie et de nouvelles cibles thérapeutiques. L'objectif de ma thèse était d'étudier le rôle du transfert des agrégats de protéines par les TNT entre les cellules et d'étudier le mécanisme de formation des TNT. Dans notre laboratoire, nous avons déjà montré que les TNT permettent le transfert de prions entre les cellules. Dans la première partie de mon doctorat, j'ai confirmé que les transferts d'agrégats de prions entre les cellules de CAD neuronales se faisaient par les TNT à l'intérieur de vésicules endocytiques (Zhu et al., 2015). De plus, en collaboration avec un collègue, nous avons fourni des preuves que les agrégats de prions pourraient être transférés entre des astrocytes primaires et des neurones et que ce transfert était médié par un contact cellulaire (Victoria et al., 2016). J'ai également collaboré à une autre étude où nous avons montré que les agrégats d'α-synucléine (caractéristiques de la maladie de Parkinson) peuvent être transférés entre les cellules à l'intérieur des lysosomes, et que ce transfert intercellulaire est médié par les TNT (Abounit et al., 2016). Dans mon deuxième projet, afin d'étudier le mécanisme de la formation de TNT, j'ai effectué un crible à haut débit pour les Rab GTPase. J'ai trouvé que Rab8 et Rab11 peuvent favoriser la formation des TNT, et que les cascades Rab8-VAMP3, Rab11-ERM et Rab8-Rab11 sont impliquées dans la formation des TNT. Mes données suggèrent que la polymérisation de l'actine et le trafic de membranes sont impliqués dans la formation des TNT. Ces résultats permettent d'éclairer le mécanisme de la formation des TNT et de fournir des preuves moléculaires que les Rab GTPases régulent ce processus. / Tunneling nanotubes are actin-based cell protrusions that mediate cell-to-cell communication by transferring cellular cargos. The different types of intercellular communication are increasing by being considered as potential targets for the treatment of various diseases, such as infectious diseases linked to viruses and bacteria, cancers or neurodegenerative diseases. Recent studies have highlighted a prion-like mechanism of propagation of protein misfolding in a variety of common, non-infectious, neurodegenerative diseases such as Alzheimer’s disease (AD), Frontotemporal dementia (FTD), Parkinson’s disease (PD), and Polyglutamine (PolyQ) diseases, which are characterized by the accumulation of misfolded proteins in the brain of patients. Thus, new therapeutic strategies to block propagation of protein misfolding throughout the brain can be envisaged. It has been shown that TNTs might play a critical role in spreading of prion aggregates within the CNS and from the periphery. Therefore, the study of mechanism of TNT formation could provide new insights on the mechanism of disease propagation and novel therapeutic targets. The aim of my thesis was to study the role of TNT-mediate protein aggregates transfer between cells and to investigate the mechanism of TNT formation. In our lab, we already reported TNT mediate prion transfer between cells. In the first part of my PhD, I further confirmed that prion aggregates transfer between neuronal CAD cells through TNT inside endocytic vesicles (Zhu et al., 2015). Furthermore in collaboration with a colleague, we provided evidences that prion aggregates could transfer between primary astrocytes and neurons and the transfer was mediated by cell-to-cell contact (Victoria et al., 2016). I also collaborated to another study where we showed that α-synuclein aggregates (Parkinson’s disease) can transfer between cells inside lysosomes, and the intercellular transfer is mediated by TNTs (Abounit et al., 2016).In my second project, in order to investigate the mechanism of TNT formation, I performed a High-content screening of Rab GTPase. I found that Rab8 and Rab11 can promote TNT formation, that Rab8-VAMP3, Rab11-ERM and Rab8-Rab11 cascades are involved in TNT formation. My data suggests that both actin polymerization and membrane trafficking are involved in TNT formation. These results help to shed light on the mechanism of TNT formation, and provide molecular evidences that Rab GTPases regulate this process.

Page generated in 0.0337 seconds